
1

Creating and using a Custom
ActiveX Control

(From Michael Young, “Mastering
Visual C++”)

ActiveX Control (Review)
l A custom control that can be plugged into

any container application
l Mechanisms for interaction between a

control and its container:
– Properties

• attributes of control a container can read/change

– Methods
• Functions provided by control callable by container

– Events
• Occurrence in control to trigger container response

ActiveX Events, Properties,
and Methods

AXCtrl and AXCont: Example
ActiveX control and Container

l AXCrtl displays a picture
l User clicks on picture (event), it

switches to another picture & beeps
l Properties allow AXCont container to

change control’s background color and
add/remove a frame around the picture

l Container can call an About() method in
control that give info about the control

Creating the ActiveX Control

l File / New / Projects
l MFCActiveX Control Wizard
l Name it AXCtrl / “OK”
l “Finish” in Step 1 & 2 Dialog boxes
l “OK”

2

Creating the bitmaps

l Insert / Resource / New
l Draw bitmap (about 150 X 150 pixels)
l Keep default ID

– IDB_BITMAP1

l Repeat with second bitmap
– IDB_BITMAP2

Loading the Bitmaps

l Add variables to CAXCtrlCtrl class
– CBitmap* m_CurrentBitmap

– CBitmap m_BitmapNight

– CBitmap m_BitmapDay

l Add code to constructor:
m_BitmapNight.LoadBitmap(IDB_BITMAP1);
m_BitmapDay.LoadBitmap(IDB_BITMAP2);

m_CurrentBitmap=&m_BitmapDay;

The AXCtrl ActiveX Control Adding a Click Message Handler

l Run ClassWizard
– “Message Maps” Tab / CAXCtrlCtrl Class

– WM_LBUTTONUP in “Messages” List

– Add following code to OnLButtonUp ():
if (m_CurrentBitmap == &m_BitmapNight)

m_CurrentBitmap=&m_BitmapDay;

else
m_CurrentBitmap=&m_BitmapNight;

InvalidateControl(); //force call to OnDraw()

Defining Properties

l BackColor Stock Property
– A predefined property

– Lets container change control’s
background color

l A ShowFrame Custom Property
– Lets container place or remove a frame

around the picture in the control

Enabling BackColor Property
l ClassWizard / “Automation” tab
l CAxCtrlCtrl Class / Click “Add Property”

– Brings up Add Property Dialog Box

– Select BackColor stock property from “External
Name” list

– “Stock” option should be selected

– OK

l MFC stores value of BackColor property &
initializes it to background color of any
container control is in

l If property is changed, control is invalidated,
forcing OnDraw() to redraw it

3

Defining ShowFrame Custom
Property

l Again Click “Add Property”
– External Name: ShowFrame
– Type: BOOL

– Variable name: m_showFrame
– Default Notification ftn: OnShowFrameChanged()

l If container changes value of property, MFC
code assigns new value to m_showFrame &
calls OnShowFrameChanged() ftn -- we must
add code to this

Coding for ShowFrame property

l Initialize ShowFrame property and
m_showFrame variable:

l In CAXCtrlCtrl::DoPropExchange()
PX_Bool (pPx, “ShowFrame”, m_showFrame,
 FALSE);

– Initializes both to FALSE

l In CAXCtrlCtrl::OnShowFrameChanged()
InvalidateControl();

– Forces control’s OnDraw() to execute

Coding for OnDraw()
l Replace default ellipse-drawing code in OnDraw()

void CAXCtrlCtrl::OnDraw(CDC* pdc, const CRect& rcBounds ,
 const CRect& rcInvalid)
{

// TODO: Replace the following code with your own drawing code.
BITMAP BM;

CDC MemDC;

 CBrush Brush (TranslateColor(GetBackColor()));
pdc->FillRect(rcBounds,&Brush);
MemDC.CreateCompatibleDC(NULL);

MemDC.SelectObject (*m_CurrentBitmap) ;
m_CurrentBitmap->GetObject(sizeof (BM), &BM);
pdc->BitBlt((rcBounds.right - BM.bmWidth)/2, (rcBounds.bottom -
BM.bmHeight)/2, BM.bmWidth, BM.bmHeight , &MemDC, 0, 0, SRCCOPY);

if(m_showFrame)
{

CBrush *pOldBrush = (CBrush *)pdc->SelectStockObject
 (NULL_BRUSH);

CPen Pen(PS_SOLID | PS_INSIDEFRAME, 20, RGB(0,0,0));

CPen *pOldPen = pdc->SelectObject (&Pen);

pdc->Rectangle(rcBounds);

pdc->SelectObject(pOldPen) ;

pdc->SelectObject(pOldBrush) ;
}

}

Property Pages
l In container app, work similar to “Properties” dialog box
l Comes up in “Properties” of Control
l Each tab contains a property of the control
l Can be used to assign initial values to the control’s properties

l A new ActiveX control has a single property page
– Defined in IDD_PROPPAGE_AXCTRL dialog resource

l We’ll modify it for the ShowFrame property
– Replace default static control with a check box

– ID=IDC_SHOWFRAME, caption=“Display a frame around
the picture”

– Now link new check box to ShowFrame property
• ClassWizard / “Member variables” tab

• CAXCtrlPropPage class (manages default property page)
• Add BOOL Member variable m_ShowFrame
• Type ShowFrame into “Optional Property Name”

Add a second property page

l The Stock Color property page

l Used to set value of Control’s BackColor
property when container app is designed

l In CAXCtrlCtrl class, // Property page section

l Change 1 to 2 in macro:
BEGIN_PROPPAGEIDS(CAXCrtlCtrl, 2);

l Add second PROPPAGEID:
PROPPAGEID(CLSID_CColorPropPage)
– Macro will link Color property page with BackColor

property

4

Defining Methods

l We’ll use the predefined AboutBox method

l When a container calls it, the control displays
an “About” dialog box
– Defined in IDD_ABOUTBOX_AXCTRL dialog

resource

l To add other Methods you would:
– Use ClassWizard / “Automation” tab
– Select control class (CAXCtrlCtrl)

– Click “Add Method” button
– Enter name, return type, parameters

– Method could be either stock or custom

Defining Events
l Once defined, control can call associated Fire ftn.

– E.g., FireClick() for click action on control

l Calling the Fire function called “firing an event”
l Causes an event handling function in container to

be called
l For stock events MFC provides Fire functions &

calling code
l For custom events ClassWizard can generate

Fire function.
– We must write calling code when event is to be fired

Defining a Click stock event for
AXCtrl App

l ClassWizard / “ActiveX Events” tab
– “Add Event” -- opens “Add Event” dialog box
– Select “Click” stock event in “External Name” list

– Make sure “Stock” option is enabled
– Click “OK”

l FireClick is defined in COleControl base class

l MFC adds code to call it to fire the Click event
whenever user clicks on the control
– So no calls to FireClick() need to be added

Building / Registering the Control

l Build as usual

– Generates the file AXCtrl.ocx

– Also registers the control on the system
being used
• So it can be accessed by containers you write

Making the Control usable to
others

l Should provide an installation program
– To register the control on the user’s system

l See online help on:
– “Distributing ActiveX Controls”

5

Testing the Control
l Use “Test Container” program that comes

with VC++
– “Tools” / “ActiveX Control Test Container”

• Brings up the Test Container

– “Edit” / “Insert New Control”
– Select “AXCtrl Control” & click “OK”

• Brings the control into the Test Container (enlarge it)
• Now Properties can be tested

– “Edit” / “Properties” --> Properties Page

– Try changing ShowFrame property

• Methods can also be invoked
– “Control” / “Invoke Methods” / Invoke AboutBox(Method)

• Click Event can also be fired
– Click on the control

Creating the ActiveX Control
Container Application

l File / New / Projects
l MFC AppWizrd (exe)

l Dialog Based option
l In step 2 deselect About box

l Leave ActiveX Controls option selected

l Title: ActiveX Control Container Demo

Adding the ActiveX control to the
project

l Generates a wrapper class: CAXCtrl
– So program can interact with control

l Appends an “OCX” button for the control to
the Controls toolbar of the dialog editor

Steps
l “Project” / “Add to Project” / “Components and

Controls”
– Opens Components & Controls Dialog Box

l Select Gallery folder, double-click “Registered
ActiveX Controls”

l Select AXCtrl (our new control)

l Click “Insert” & “OK”

l Click “Close”
l This will add the control to the Dialog box

toolbar
– “OCX” button

Designing the App’s Dialog Box

l Open IDD_AXCONT_DIALOG

l Delete static text “TODO” & “OK” button

l Change caption of Cancel button to Close

l Add “About” and “Frame” buttons
– IDC_ABOUT, IDC_FRAME

l Drag our ActiveX Control (“OCX” button) from
toolbar into dialog box

l Enlarge it so bitmap and large surrounding
are visible

6

l Right click on the ActiveX Control, select
“Properties”
– Note “Control” and “Colors” property pages

l Open “Color” property page (click on tab)
– Click on Red button to set background color to red

l Open “Control” property page (click on tab)
– Check “Display Frame…” check box

• Will set ShowFrame property to TRUE
• Overrides FALSE value we set in program
• Produces a black frame around picture

Customizing Initial Properties
Attach ActiveX Control to a

Wrapper Class Object
l So code in dialog box class can access

functions in the control
– To change properties & call its method

l ClassWizard / “Member Variables” tab

l Dialog class: CAXContDlg

l Select IDC_AXCTRLCTRL1 (the control)

l “Add Variable” button
– Name: m_AXCtrl, Category: Control (default),

Type: CAXCtrl (only choice)

l “OK”

Interaction Between Control & Container Defining Message Handlers for
“About” & “Frame” Buttons

l ClassWizard / “Message Maps” tab

l Class: CAXContDlg

l Select IDC_FRAME
– BN_CLICKED, “Add Function” --> OnFrame
– Edit Code:

m_AXCtrl.SetShowFrame (!m_AXCtrl.GetShowFrame());

l Select IDC_ABOUT
– BN_CLICKED, “Add Function” --> OnAbout
– Edit Code:

m_AXCtrl.AboutBox();

Adding a Click Event Handler

l ClassWizard / “Message Maps” tab

l Class: CAXContDlg

l Select IDC_AXCTRLCTRL1
l Select “Click” Message (only event fired)

l Select “Add Function” and add code:
::MessageBeep(MB_OK);

Build and run the application

7

