Using ActiveX Controls

Microsoft ActiveX Controls
e Reusable software components that can
be plugged into many different programs
e Allows you to design & use custom
controls
e Like concept of hardware components
e Expansion of OLE technology
— Enabled combining docs created with
different apps into a single doc
— ActiveX allows it to work in a distributed
environment (e.g., the internet)

COM Technology

@ Microsoft’'s Component Object Model

e Interface and interaction model

o Defines how to construct ActiveX objects &
how interfaces are designed

o A COM “Interface”:
— Like a function call into an ActiveX object
— COM specifies how function must be built & called
— To pass data & events to/from controls
— Not specific to any language

e ActiveX controls can be used with many
different tools (e.g., Access, FoxPro, VB)

Automation

o Key technology in ActiveX

e Enables an app embedded in another app
to activate itself & control its part of the
user interface

— Does its thing and shuts itself down when user
moves on

— e.g., an Excel spreadsheet in a Word document

Servers and Containers
e Embedding an ActiveX object in another

e Embedded object is implemented as an
ActiveX server

e Containing object called a container

® A server can also be a container
— (e.g., Internet Explorer)

® An ActiveX control is a special case of an
ActiveX server

e In MFC any class derived from CWnd can be
an ActiveX control container

@ COleControl is base class for ActiveX controls

Interaction between control &

container
e Occur through three IDispatch Interfaces
— Events
— Properties
— Methods

IDispatch Interfaces

Ipatacy
{Eventsh
AetiveX ActiveX
Costamer | DHptch Comiral
(Frapenies)
Tssparch
(Meinods)

ActiveX Control Events

o Notification messages sent from the control to
the container application
o Control sends event to container when
something occurs inside control
— e.g., mouse clicks, pressed buttons, expiring
timers

e Triggering of events done in the IDispatch
interface in the container

® Two types: Stock & Custom

ActiveX Control Properties

e Attributes of controls visible to and usually
modifiable by container
— Stock: e.g., background color, default font
— Custom: related to functionality of control

e Provided by container but maintained by
control

® Use Class Wizard Automaton tab to specify
control properties

® Must also specify property aspects
— name shown to container
— internal variable used in code

ActiveX Control Methods

@ Function exposed by control and called by
container

o Use Class Wizard Automation tab to add
methods to a control

— Specify name, return type, & parameters

Components and Controls Gallery

e Visual Studio’s store of reusable components
@ Most are ActiveX controls
® Adding your own classes to the Gallery:
— Open project containing the class
— Open Class View in project workspace
— Right click on class name
— Select “Add to Gallery”
e Displaying all available controls on computer:

— Main menu: “Project | Add to Project | “Components
and Controls” --> Component Gallery dialog box

— Select Registered ActiveX Controls from list box

Adding an ActiveX Control to
Dialog Box Editor

® So you can use it like any of the other
standard controls
— Select desired ActiveX control icon
— Click “Insert” button
— Click “OK” on resulting message box

— Click “OK” to resulting list box containing the
classes that will be added to your project

— Click “Close” to get rid of Gallery dialog box

o Now control will appear in Dialog box editor
tool box and can be added by dragging and
dropping

Configuring ActiveX Control w/

Class Wizard

e Just as with other controls, use Class Wizard
to add message-handling functions and

associate it with an MFC object

o Add member variables just as though it were

a standard control

® Most controls will have many properties

exposed as variables

An Example: Using the Microsoft
Hierarchical Flex Grid Control

o Grid Control
— Like a mini spread sheet
— Divided into rows and columns --> cells
— Tracks active cells, size & contents of each cell
— Data in a cell obtained through a member function call
— You can:
« Retrieve current row, cell, column information

« Set attributes (font, size, contents) for current cell
« Retrieve attributes of current cell

The GridCtrl App

A

L]

Preparing the App

o New MFC AppWizard (exe) application
— Choose Dialog-based
— Makes sure ActiveX Controls check box is
selected
o Add the grid control to the app (see above)

— Then open ResourceView and double-click on
IDD_GRIDCTRL_DLG

— Drag and drop the the new grid control from the
tool bar to the dialog-app

e Right click on grid control; select “Properties”

“General” Tab:
— ID: IDC_GRID
e “Control” tab:
— Rows: 5, Fixed Rows: 1
— Cols: 5, Fixed Cols: 1
— ScrollBars: 0-None
@ Add an edit control
— ID: IDC_EDIT
® Add a “Calculate” button
— ID: IDC_CALC

o Use Class Wizard to attach member variables to
edit and grid controls in the CGridCtrIDIg class:

Resource ID Category Type Variable name

IDC_EDIT Control Cedit m_edit
IDC_GRID Control CMSFlexGrid m_grid

e Add protected member variables to
CGridCtrIDIg class:
— BOOL m_bEditing
—int m_nRow
—int m_nCol

e Add initialization code to
CGridCtrIDIg::OnlInitDialog
— See listing
® Use Class Wizard to add a “Click” handler for
the Grid control
— Class: CGridCtrIDIg
— Tab: Message Maps
— Object ID: IDC_GRID
— Message: Click
— Handler Function: default OnClickGrid()
® Add code to OnClickGrid() -- See listing

® Recomputing the totals
e Use Class Wizard to a message handler to
the “Calculate” button
— Object ID: IDC_CALC
— Class: CGridCtrIDIg
— Message: BN_CLICKED
— Function: default OnCald)
@ Add code to OnCalc() -- See listing
e Build the Application

