
1

Using ActiveX Controls

Microsoft ActiveX Controls
l Reusable software components that can

be plugged into many different programs
l Allows you to design & use custom

controls
l Like concept of hardware components
l Expansion of OLE technology

– Enabled combining docs created with
different apps into a single doc

– ActiveX allows it to work in a distributed
environment (e.g., the internet)

COM Technology
l Microsoft’s Component Object Model
l Interface and interaction model

l Defines how to construct ActiveX objects &
how interfaces are designed

l A COM “Interface”:
– Like a function call into an ActiveX object

– COM specifies how function must be built & called

– To pass data & events to/from controls

– Not specific to any language

l ActiveX controls can be used with many
different tools (e.g., Access, FoxPro, VB)

Automation

l Key technology in ActiveX

l Enables an app embedded in another app
to activate itself & control its part of the
user interface
– Does its thing and shuts itself down when user

moves on

– e.g., an Excel spreadsheet in a Word document

Servers and Containers
l Embedding an ActiveX object in another

l Embedded object is implemented as an
ActiveX server

l Containing object called a container

l A server can also be a container
– (e.g., Internet Explorer)

l An ActiveX control is a special case of an
ActiveX server

l In MFC any class derived from CWnd can be
an ActiveX control container

l COleControl is base class for ActiveX controls

Interaction between control &
container

l Occur through three IDispatch Interfaces
– Events

– Properties
– Methods

2

IDispatch Interfaces ActiveX Control Events

l Notification messages sent from the control to
the container application

l Control sends event to container when
something occurs inside control
– e.g., mouse clicks, pressed buttons, expiring

timers

l Triggering of events done in the IDispatch
interface in the container

l Two types: Stock & Custom

ActiveX Control Properties
l Attributes of controls visible to and usually

modifiable by container
– Stock: e.g., background color, default font
– Custom: related to functionality of control

l Provided by container but maintained by
control

l Use Class Wizard Automaton tab to specify
control properties

l Must also specify property aspects
– name shown to container
– internal variable used in code

ActiveX Control Methods

l Function exposed by control and called by
container

l Use Class Wizard Automation tab to add
methods to a control
– Specify name, return type, & parameters

Components and Controls Gallery
l Visual Studio’s store of reusable components

l Most are ActiveX controls

l Adding your own classes to the Gallery:
– Open project containing the class

– Open Class View in project workspace
– Right click on class name

– Select “Add to Gallery”

l Displaying all available controls on computer:
– Main menu: “Project | Add to Project | “Components

and Controls” --> Component Gallery dialog box

– Select Registered ActiveX Controls from list box

Adding an ActiveX Control to
Dialog Box Editor

l So you can use it like any of the other
standard controls
– Select desired ActiveX control icon

– Click “Insert” button
– Click “OK” on resulting message box

– Click “OK” to resulting list box containing the
classes that will be added to your project

– Click “Close” to get rid of Gallery dialog box

l Now control will appear in Dialog box editor
tool box and can be added by dragging and
dropping

3

Configuring ActiveX Control w/
Class Wizard

l Just as with other controls, use Class Wizard
to add message-handling functions and
associate it with an MFC object

l Add member variables just as though it were
a standard control

l Most controls will have many properties
exposed as variables

An Example: Using the Microsoft
Hierarchical Flex Grid Control

l Grid Control
– Like a mini spread sheet
– Divided into rows and columns --> cells

– Tracks active cells, size & contents of each cell
– Data in a cell obtained through a member function call

– You can:
• Retrieve current row, cell, column information
• Set attributes (font, size, contents) for current cell
• Retrieve attributes of current cell

The GridCtrl App
Preparing the App

l New MFC AppWizard (exe) application
– Choose Dialog-based
– Makes sure ActiveX Controls check box is

selected

l Add the grid control to the app (see above)
– Then open ResourceView and double-click on

IDD_GRIDCTRL_DLG

– Drag and drop the the new grid control from the
tool bar to the dialog-app

l Right click on grid control; select “Properties”
“General” Tab:
– ID: IDC_GRID

l “Control” tab:
– Rows: 5, Fixed Rows: 1

– Cols: 5, Fixed Cols: 1
– ScrollBars: 0-None

l Add an edit control
– ID: IDC_EDIT

l Add a “Calculate” button
– ID: IDC_CALC

l Use Class Wizard to attach member variables to
edit and grid controls in the CGridCtrlDlg class:

Resource ID Category Type Variable name

 IDC_EDIT Control Cedit m_edit

 IDC_GRID Control CMSFlexGrid m_grid

l Add protected member variables to
CGridCtrlDlg class:
– BOOL m_bEditing
– int m_nRow

– int m_nCol

4

l Add initialization code to
CGridCtrlDlg::OnInitDialog
– See listing

l Use Class Wizard to add a “Click” handler for
the Grid control
– Class: CGridCtrlDlg
– Tab: Message Maps

– Object ID: IDC_GRID
– Message: Click

– Handler Function: default OnClickGrid()

l Add code to OnClickGrid() -- See listing

l Recomputing the totals
l Use Class Wizard to a message handler to

the “Calculate” button
– Object ID: IDC_CALC

– Class: CGridCtrlDlg
– Message: BN_CLICKED

– Function: default OnCalc()

l Add code to OnCalc() -- See listing

l Build the Application

