
1

Windows Multimedia

Some Multimedia Devices
? Some multimedia devices:

– Waveform audio device (sound card)
? converts microphone & other analog audio to digitized samples
? can be stored as .WAV files
? can be played back
? Usually has a MIDI device

– Musical Instrument Digital Interface
– plays music from short binary messages (MIDI codes)
– can be attached to a MIDI input device (music keyboard)

– CD Audio through the CD -ROM drive
– Video for Windows device (AVI video device)

? plays movie/animation files (.AVI)
– Video capture boards (different compression schemes)
– Laserdisc players & video cassette recorders
– Others (DVD)

Win32 MM Support & Documentation

? Extensive Win32 API support for multimedia devices
– Low-level support

– High-level support

? MSDN online documentation:
– Platform SDK/Graphics & Multimedia Services/Multimedia

Reference

– Platform, SDK, & DDK/Platform SDK/Reference/Multimedia
Command Strings

– Visual Studio .NET Help (Index):

? VS Help on “MCI Command Strings”

Media Control Interface

?MCI (Media Control Interface)
– High level multimedia control functions
– Has commands common to all multimedia

hardware
? Possible since most use record/play metaphor

– Open a device for input or output
– If input, record; If output, play

? When done, close

Two Forms of MCI

?Send command messages (like Windows
messages) to MCI
– (need to include bit-encoded flags and C data

structures)

?Send text strings to MCI
– Good for use from scripting languages with

string functionality and simple to use
– MCI converts them to command messages

Sending Strings to MCI
? mciSendString() function:

error = mciSendString(sCmd , sRetStr, iReturn, hCallback);
? sCmd--the mci command string (specifies command & device)
? sRetStr--return string buffer (NULL if none used)
? iReturn--size of return string buffer (0 if none used)
? hCallback--Handle to Callback window (NULL if none used)

– Returns 0 if command is successful, error code if not
? Can be used as a parameter tomciGetErrorString()

– Many command strings possible

? See MSDN online help
? In .NET, see help on:

– mciSendString, mciGetErrorString
– MCI Command Strings

2

Using Win32 Functions (like MCI)
From .NET

?MCI is not directly accessible from .NET
?Also mciSendString() is C++, not C#
?Can still use MCI and other Win32 API

functions from .Net languages
?Key is to use “Platform Invocation Services”

– “Interop Services”
– A generalized mechanism that allows calling

functions that are imported from DLLs
– Drawbacks:

? Code is no longer managed code
? And it’s no longer platform independent

Win32 from .NET, continued
? Must include: System.Runtime.InteropServices;
? And then prefix any declarations of Win32 API

functions to be used with:
[DllImport (“xxx.dll”)]
– DllImport: A storage-class attribute:

? A Microsoft-specific extension to C/C++
? Enables importing functions, data, objects from a DLL

– Where xxx.dll is the DLL that contains the function
? For MCI functions that DLL is winmm.dll

? Also the declaration must include public, static,
extern to be usable from a .NET application

? And then use equivalent .NET language data types
for the parameters and for the type returned by the
function

mciSendString() in .NET
Unmanaged Code

? Its VC++ Parameter types are:
– LPCTSTR, LPTSTR, UINT, HANDLE

? And it returns MCIERROR: a C++ DWORD
? Corresponding C# parameter types would be:

– string, string, uint , intPtr
– In C# DWORD is implemented as an int

? So declare mciSendString as:
[DllImport("winmm.dll")]
public static extern int mciSendString

(string sCmd , string sRetStr, uint iReturn , intPtr hCallback);

Some MCI Command String Commands:
? open -- initializes a multimedia device
? play– starts playing an open device
? stop -- stops playing from an open device
? record -- starts recording to a device
? seek -- move to a specified position on device
? save -- saves an MCI file
? close -- closes a device and associated resources
? set -- establish control settings for the device
? status -- returns information in 2nd parameter
? Some device types:

– cdaudio -- Audio CD played on system's CD-ROM
– waveaudio -- .WAV audio files
– AVIVideo -- .AVI video files

Some Example Command Strings
“open cdaudio”
“play cdaudio”
“close cdaudio”
"open new type waveaudio aliasmysound“
“record mysound”
"stop mysound"
"save mysound mysound.wav"
"open AVIVideo!myclip.avi alias vidclip"

– the ! separates dev_name from file_name
“play vidclip”
“stop vidclip”
“set mysound time format milliseconds”
“status mysound length” -- Returns duration of mysound in milliseconds
“set cdaudio time format tmsf”

– tmsf means tracks, minutes, seconds, frames (default format is msf)
“play cdaudio from 01:00:00:00 to 02:05:06:00”

– tt=track (1 -99), mm=minute (0 -59), ss=second (0 -59), ff=frame (0-74)
– a frame is 1/75 of a second

“status cdaudio position” -- Returns position on audio CD in current-time-format
“status cdaudio length track xx” -- Returns current-time-format length of CD track xx

Examples
? MCI-PlayCD

– “Play” Button
? Opens and plays cdaudio device

– ”Stop” Button
? Stops and closes cdaudio device

? mciSendString-Test
– User can enter different command strings in a text tox

? MCI-Record-Play
– Must have a microphone attached to the computer
– “Begin Recording” and “End Recording” buttons

? Open, record, and save microphone input to a .WAV file
– “Begin Playback” and “End “Playback” buttons

? Plays back the .WAV file

3

Retrieving Data from MM Commands
? Some mciSendString() commands provide data

– Returned in second, szRetStr, parameter
– Example: “status” command

? Also mciGetErrorString(err,errStr,lengErrStr);
– err was returned by mciSendString()
– errStr will contain text describing the error

? Problem: a C# string cannot grow dynamically
– Need another “dynamic” string-like data type to hold the data

returned in the 2 nd parameter
– StringBuilder class (in System.Text) does the job

? An instance of this class represents a string-like object whose value is
a “mutable” sequence of characters

– So it can be used to “receive” a return string object in a metho d

? One constructor:
StringBuilder sb = new StringBuilder(initLength);

Using StringBuilder with MM in .NET
? Declare 2nd parameter as type StringBuilder
? For example:

[DllImport("winmm.dll")]
public static extern int mciSendString
(string sCmd , StringBuilder sRetStr, int iLength, intPtr

hCallback);

? Then use it, for example:
StringBuilder sb = new StringBuilder(256);
string s = “status cdaudio”
int error = mciSendString(s, sb, 256, IntPtr.Zero);

? Then Convert returned StringBuilder object to a string
to be able to display it or use it, for example:
string sRet = sb.ToString();

? Don’t forget using System.Text; at top of application

