
1

Child Window Controls:
List Boxes, Combo Boxes,
Scroll Bars, Edit Controls

 Custom Child Windows

List Box Controls
l Lots of styles: see on-line help on LBS_

– LBS_STANDARD very common
• can send messages to parent

l Program communicates with list box by sending it
messages; some common button messages:
– LB_RESETCONTENTS, LB_ADDSTRING,

LB_GETCURSEL, LB_GETTEXT, LB_DELETESTRING

l Some List Box Notification codes:
– LBN_SELCHANGE, LBN_DBLCLK

l Combo boxes much like list boxes (CBS_, CB_, CBN_)
l Program examples: listbox, combo

Messages from Most Controls
l Most work as follows:

– User interacts with the control
– WM_COMMAND message sent to parent

window
– LOWORD(wParam) = Control ID
– lParam = control’s window handle
– HIWORD(wParam) = notification code

• identifies what the user action was

l Scroll Bars are a bit different

Scroll Bar Controls
l User interacts with a scroll bar

– WM_HSCROLL or WM_VSCROLL message
– Not WM_COMMAND as for other controls

• lParam=scroll bar window handle (for stand-alone)
• lParam=0 (for attached scroll bar)
• LOWORD(wParam)=notification code: user action

– SB_LINEUP (up/left arrow pressed)
– SB_PAGEUP (scroll area above/left of “thumb”)
– SB_LINEDOWN (down/left arrow pressed)
– SB_PAGEDOWN (scroll area beneath/right of “thumb”)
– SB_THUMBTRACK (scroll “thumb” pressed)
– SB_THUMBPOSITION (scroll “thumb” released)

– For either, HIWORD(wParam)=current thumb position

l Lots of Scroll bar styles when creating it
– See online help on SBS_
– Default alignment for attached scroll bar: right side and

bottom of window

l Some Useful Scrollbar Functions:
– GetScrollPos()--retrieve current position of thumb

GetScrollRange()--Retrieve min/max value range
SetScollPos() --Set position of thumb
SetScrollRange()--Set min/max value range
ShowScrollBar ()--Display scroll bar

• 1st params: hWnd or hScrollBar
• 2nd param: SB_CTL (standalone) or

SB_VERT/SB_HORZ (attached scroll bar)
• Others: position, range (2 values), etc…, visibility flag

Scroll Bar Notification Codes

2

The SCROLL1 Example
l Win32 API Application
l Stand-alone scrollbar allows user to enter an

integer value between 0 and 50
l Current value is continually displayed in a

static control
l Message box shows current value when

user chooses menu item "Get Value”
l See Scroll1 code on Example Programs web

page

The SCROLL2 Example
l Win32 API Application
l Scroll Bar Attached to a Window
l Creates a window with a vertical scroll bar
l Puts 3 lines of text in client area
l User can scroll through the client area using

scroll bar
– Opposite direction from “normal” scrolling

l See Scroll2 code on Example Programs web
page

CScrollbar Class for Standalones
l In Create() member function, include SB_HORZ

or SB_VERT style
l Make calls to member functions:

– ,SetScollPos(), SetScrollRange(), etc.

l Include ON_WM_HSCROLL or
ON_WM_VSCROLL message mapping macros

l Override Handler, e.g.:
afx_msg void OnHScroll (UINT nCode, UINT nPos,

CScrollBar* pScrollBar);
• nCode= SB _*** notification code (user action)
• nPos=latest thumb position for drags/releases
• pointer to the scroll bar

Attached Vertical Scroll Bar
in Doc/View MFC Apps

l Override View class’s OnCreate(...) member
function to set range and position of vertical
scroll bar

l Use Class Wizard to add:
ON_WM_VSCROLL() message mapping
macro and OnVScroll(...) handler function in
View class
– Add switch/case statements to handle SB_codes

of interest…in OnVScroll() handler function

l See Scroll2_mfc Example Program

EDIT CONTROLS
l For viewing and editing text
l Current location kept track of with a "carat”

– A small vertical line
l Backspace, Delete, arrow keys, highlighting

work as expected
l Scrolling possible (use WS_HSCROLL,

WS_VSCROLL styles
l No ability to format text with different

fonts, sizes, character styles, etc.
– Use Rich Edit Control for this

Edit Control Styles

l Some common styles
– ES_LEFT, ES_CENTER, ES_RIGHT,

ES_MULTILINE, ES_AUTOVSCROLL,
ES_PASSWORD

• See Online Help on “Edit Styles”

3

Edit Control Text

l Text in an edit control stored as one long
character string

l Carriage return <CR> is stored as ASCII
code (0x0D,0x0A)

l <CR> inserted automatically if a line
doesn’t fit and wraps

l NULL character inserted only at end of last
line of text

Edit Control Messages
l User interacts with edit control,

– WM_CONTROL message to parent
– LOWORD(wParam) = Control ID
– lParam = control’s window handle
– HIWORD(wParam) = EN_** notification code

• identifies what the user action was
• e.g., EN_CHANGE
• See Online Help EN_***

l MFC: Add to message map and add handler:
• ON_Notification(id, memberFtn)

• afx_msg void memberFtn();

Sending Messages to an Edit Box
l As with other controls use SendMessage()
l Some important messages

– EM_GETLINECOUNT(multiline edit boxes)
• Returns number of lines in the control

– EM_GETLINE: Copy a line to a buffer
– EM_LINEINDEX: Get a line’s character index

• Number of characters from the beginning of
edit control to start of specified line

– EM_LINELENGTH to get length of line
l See Edit1 example program

MFC’s CEdit Class
l Some important member or inherited

functions
– SetWindowText(LPSTR)

• Place text in the control

• Replaces current contents

• Could be a CString

– GetWindowText(LPSTR)
• Returns all the lines in the control

• Could be a Cstring

– Lots of others, see Online Help on CEdit

Child and Popup Windows

l Child Window Controls are predefined
window controls (buttons, static text, etc.)
– These are examples of child windows

l OK if controls have exact features required
l But sometimes we need custom child

windows
– Where we can have a WndProc() that does

exactly what we want it to

Child Window
l Most common type of custom window
l Always attached to parent window

– Always on top of parent
– Parent minimized è child disappears
– Reappears when parent restored
– Parent destroyed è child also destroyed

l Used to deal with a specific task
– e.g., getting user input

l Each has its own message-processing
function

4

Popup window

l Same general properties as child window,
but:

l Not physically attached to parent
l Can be positioned anywhere on screen
l Handy if the user needs to move things

around on client area

Creating and Using a Child
Window

l 1. Register a new window class for child
using RegisterClass()
– Could be done in WinMain(() or when needed

in WndProc()

l 2. Create child window using
CreateWindow()
– Should have WS_CHILD style

l 3. Write separate message-processing
function for child window

Sending Messages to a Child
Window

l Use SendMessage() and specify:
– Child window's handle

• Obtained when the child window was created

– Message ID & parameters

WM_USER Messages
l Defined in Windows.h as a number not used by

predefined messages
l All higher numbers also unused by Windows
l Can use WM_USER + # for any type of activity
l Example--could have a header file containing:

#define WM_MYKILLCHILD WM_USER
// tell child window to vanish

#define WM_MYMAXCHILD WM_USER+1
// tell child window to maximize

Use in child's WndProc() function’s switch/case
l Child windows can send messages to parent or to

other child windows

CHILD EXAMPLE PROGRAM
l User clicks "Create" menu itemè

– Child window appears with "Destroy Me"
button and some text

l User clicks "Send Message" menuè
– Caption on child window changes

l User clicks "Destroy Me" button in child
windowè
– Child window disappears

l Both parent and child window have a line
of text displayed in client areas

Details of CHILD Application
l 1.Register Child Window Class with

RegisterClass()
– Message processing function: ChildProc()
– Will receive messages from any windows based

on this class
– Class Icon: IDI_APPLICATION icon
– Cursor shape: Load standard IDC_CROSS

cursor
– Background: LTGRAY_BRUSH background

brush
– Menu: None to be used here

5

l 2. Create Child Window using CreateWindow()
l 3. Menu item response

– User clicks "Create" menu item
(WM_COMMAND, IDM_CREATE)è

• Program's WndProc() executes:
if(!hChild)

hChild = CreateWindow ("ChildClass",
"Child Window", WS_CHILD |
WS_THICKFRAME | WS_MINIMIZEBOX |

 WS_MAXIMIZEBOX | WS_CAPTION |
WS_SYSMENU, 10, 30, 200, 150, hWnd,
NULL, hInstance, NULL);

– Logic allows only one child window at a time

Sending Messages

l In Main Window’s WndProc()
– User clicks "Send Message" menu itemè
– WndProc() uses SendMessage() to send a

WM_USER msg to child window

l In Child’s ChildProc()
– ChildProc()'s response to WM_USER from parent:

• Uses SetWindowText() to set its caption bar

– Response to creation:
• CreateWindow() to create a "Destroy Me" pushbutton
• 3-deep nesting of windows: Parent (main window), Child

Window, Button Control

– Response to expose event:
• Output a line of text to child window client area

– Response to user clicking the pushbutton:
• Use GetParent (hChild) to get the parent's window handle
• Destroys itself with a call to DestroyWindow(hChild)

• Send USER+1 message to parent

l Main Window’s WndProc()'s response to
this (WM_USER+1):
– Set hChild to NULL so another child can be

created
– WndProc() also responds to expose events by

outputting a line of text to main window's client
area

– So text in both windows is visible whenever
either is exposed

POPUP WINDOWS
l Not restricted to the parent window's client area
l Can appear anywhere on screen
l Handy for small utility programs

– e.g., Window that shows current cursor position in a painting
program

l Ideal for applications with multiple independent
sections, e.g.:
– Communications program with simultaneous terminal

sessions in different popup windows

l Create with CreateWindow()
– WS_POPUP style (mutually exclusive with WS_CHILD)
– Coordinates are screen coordinates

