Child Window Controls:
List Boxes, Combo Boxes,
Scroll Bars, Edit Controls

Custom Child Windows

List Box Controls
e Lotsof styles: see on-line help on LBS
—LBS_STANDARD very common
« can send messages to parent

® Program communicates with list box by sending it
messages; some common button messages:
— LB_RESETCONTENTS, LB_ADDSTRING,
LB_GETCURSEL, LB_GETTEXT, LB_DELETESTRING
® Some List Box Notification codes:
— LBN_SELCHANGE, LBN_DBLCLK
o Combo boxes much like list boxes (CBS_, CB_, CBN_}

® Program examples:listbox, combo

M essages from Most Controls

® Most work asfollows:
— User interacts with the control

— WM_COMMAND message sent to parent
window

— LOWORD(wParam) = Control ID
— IParam = control’s window handle
— HIWORD(wParam) = notification code
« identifies what the user action was
e Scroll Barsare abit different

Scroll Bar Controls
® User interactswith ascroll bar
— WM_HSCROLL or WM_VSCROLL message
— Not WM_COMMAND as for other controls
« |Param=scroll bar window handle (for stand-alone)
« |Param=0 (for attached scroll bar)
+ LOWORD(wParam)=notification code: user action
— SB_LINEUP (up/left arrow pressed)
— SB_PAGEUP (scroll area abovelleft of “thumb™)
— SB_LINEDOWN (dowrVleft arrow pressed)
— SB_PAGEDOWN (scroll area beneath/right of “thumb™)
— SB_THUMBTRACK (scroll “thumb” pressed)
— SB_THUMBPOSITION (scroll “thumb” released)
— For either, HIWORD Param)=current thumb position

@ Lotsof Scroll bar styles when creating it
— See online help on SBS
— Default alignment for attached scroll bar: right side and
bottom of window
o SomeUseful Scrollbar Functions:

— GetScrollPos()--retrieve current position of thumb
GetScrollRange()--Retrieve min/max value range
SetScollPog)--Set position of thumb
SetScrollRange()--Set min/max value range
ShowScrollBar ()--Display scroll bar

* 1st params hwnd or hScrollBar
¢ 2nd param: SB_CTL (standalone) or
SB_VERT/SB_HORZ (attached scroll bar)

« Others: position, range (2 values), etc..., visibility flag

Scroll Bar Notification Codes

O st s oo - WiaidPed
Bbr E ew fumi Fawel Heo .- SB_LINEUP
7| =58 _PAGETF
e -
7 7| FB_THUMBTRACK
ot ; et] : (Freszed)
PTG -, §B_THUMEPOSITION
o .| Makased)
i I «n pacEnOwN
e T — ﬁ—:ﬁi"—“‘m_mﬂmmm

Seroll Bar Nanficatss codes — LOWORD (IParamp

The SCROLL1 Example

e Win32 APl Application

e Stand-aone scrollbar alows user to enter an
integer value between 0 and 50

e Current value is continualy displayed in a
datic control

e Message box shows current value when
user chooses menu item "Get Value'’

@ See Scroll1 code on Example Programs web
page

The SCROLL 2 Example

e Win32 APl Application

e Scroll Bar Attached to aWindow

o Crestes awindow with avertical scroll bar

e Puts3linesof textin client area

@ User can scroll through the client areausing
scroll bar
— Opposite direction from “normal” scrolling

@ See Scrall2 code on Example Programs web
page

CScrollbar Classfor Standalones

@ In Create() member function, include SB_HORZ
or SB_VERT gtyle

o Make callsto member functions:
— ,SetScollPos(), SetScrollRange(), etc.

® Include ON_WM_HSCROLL or
ON_WM_VSCROLL message mapping macros

e® OverrideHandler, eg.:

afx_msg void OnHScroll (UINT nCode, UINT nPos,
CsScrollBar* pScrollBar);

» nCode= SB_*** notification code (user action)
* nPos=latest thumb position for drags/releases
« pointer to the scroll bar

Attached Vertical Scroll Bar
in Doc/View MFC Apps

o Override View class’s OnCreate(...) member
function to set range and position of vertical
scroll bar

® Use Class Wizard to add:
ON_WM_VSCROLL() message mapping
macro and OnVScroll(...) handler function in
View class
— Add switch/case statements to handle SB_codes

of interest...in OnVScroll() handler function

@ See Scroll2_mfc Example Program

EDIT CONTROLS

e For viewing and editing text

e Current location kept track of with a"carat”
— A small vertica line

e Backspace, Delete, arrow keys, highlighting
work as expected

e Scrolling possible (use WS HSCROLL,
WS _VSCROLL styles

e No ability to format text with different
fonts, sizes, character styles, etc.
— Use Rich Edit Control for this

Edit Control Styles

® Some common styles
—ES LEFT, ES CENTER, ES RIGHT,
ES MULTILINE, ES AUTOVSCROLL,
ES PASSWORD
« See Online Help on “Edit Styles’

Edit Control Text

e Text in an edit control stored as one long
character string

e Carriage return <CR> is stored as ASCI|
code (0x0OD,0x0A)

e <CR> inserted automaticaly if aline
doesn't fit and wraps

@ NULL character inserted only at end of last
line of text

Edit Control M essages
o User interacts with edit control,
—WM_CONTROL message to parent
— LOWORD(wParam) = Control ID
— |Param = control’s window handle
— HIWORD(wParam) = EN_** notification code
« identifies what the user action was
« e.g., EN_CHANGE
¢ See Online Help EN_***
o MFC: Add to message map and add handler:
« ON_Notification(id, memberFtn)
« afx_msg void memberFtn();

Sending M essages to an Edit Box
o Aswith other controls use SendMessage()
® Some important messages
— EM_GETLINECOUNT (multiline edit boxes)
* Returns number of lines in the control
— EM_GETLINE: Copy alineto abuffer
— EM_LINEINDEX: Get aline's character index

» Number of characters from the beginning of
edit control to start of specified line

— EM_LINELENGTH to get length of line
@ See Editl example program

MFC’s CEdit Class

o Some important member or inherited
functions
— SetWindowText(LPSTR)
 Place text in the control
« Replaces current contents
« Could be aCString
— GetWindowText(LPSTR)
« Returnsall the lines in the control
« Could be aCstring
— Lots of others, see Online Help on CEdit

Child and Popup Windows

e Child Window Controls are predefined
window controls (buttons, static text, etc.)
— These are examples of child windows

e OK if controls have exact features required

@ But sometimes we need custom child
windows

— Where we can have a WndProq) that does
exactly what we want it to

Child Window

o Most common type of custom window
e Always attached to parent window

— Always on top of parent

— Parent minimized = child disappears

— Reappears when parent restored

— Parent destroyed =» child also destroyed
o Used to deal with aspecific task

— e.g., getting user input
e Each hasits own message-processing

function

Popup window

@ Same generd properties as child window,
but:

e Not physically attached to parent
e Can be positioned anywhere on screen

e Handy if the user needsto move things
around on client area

Creating and Using a Child
Window

o 1. Register anew window class for child
using RegisterClass()
— Could bedonein WinMain(() or when needed
in WndProc()

e 2. Create child window using
CreateWindow()

— Should have WS_CHILD style
o 3. Write separate message-processing
function for child window

Sending M essagesto a Child
Window

e Use SendMessage() and specify:
— Child window's handle
« Obtained when the child window was created
— Message ID & parameters

WM _USER M essages
o Defined in Windows.h as a number not used by
predefined messages
o All higher numbers also unused by Windows
® Canuse WM_USER + # for any type of activity

o Example--could have a header file containing:
#define WM MYKILLCH LD W USER
/1 tell child window to vanish

#def i ne WM_MYMAXCHI LD WM _USER+1
/1 tell child w ndow to maximze

Usein child's WndProc() function’s switch/case

o Child windows can send messages to parent or to
other child windows

CHILD EXAMPLE PROGRAM

@ User clicks"Create" menu iten=>

— Child window appears with "Destroy Me"
button and some text

o User clicks"Send Message" menu=>
— Caption on child window changes

e User clicks"Destroy Me" button in child
window=>»
— Child window disappears

@ Both parent and child window have aline
of text displayed in client areas

Detailsof CHILD Application
o 1.Register Child Window Classwith
RegisterClass()
— Message processing function: ChildProc()
— Will receive messages from any windows based
on this class
— Class Icon: IDI_APPLICATION icon
— Cursor shape: Load standard IDC_CROSS
cursor

— Background: LTGRAY _BRUSH background
brush

— Menu: None to be used here

@ 2. Create Child Window using CreatéWindow ()

e 3. Menu item response

— User clicks "Create" menu item
(WM_COMMAND, IDM_CREATE)=>
« Program's WhdProc () executes:
i f(!'hChild)
hChild = CreateWndow ("ChildC ass",

"Child Wndow', WS_CHILD |
WS_THI CKFRAME | WS_M NI M ZEBOX |
W5_MAXI M ZEBOX | WS_CAPTI ON |
WS_SYSMENU, 10, 30, 200, 150, hwhid,
NULL, hlnstance, NULL);

— Logic dlows only one child window at atime

Sending M essages

e In Main Window’s WindProc()
— User clicks "Send Message" menu item=>

— WhdProc() uses SendMessage() to send a
WM_USER msg to child window

e In Child's ChildProc()
— ChildProc()'s response to WM_USER from parent:
» Uses SetWindowText() to set its caption bar
— Response to creation:

» CreateWindow() to create a "Destroy Me" pushbutton
* 3-deep nesting of windows: Parent (main window), Child
Window, Button Control
— Response to expose event:
» Output aline of text to child window client area
— Response to user clicking the pushbutton:
» Use GetParent(hChild) to get the parent's window handle
* Destroys itself with a call to DestroyWindow(hChild)
* Send USER+1 message to parent

o Main Window’ s WhdProc()'s response to

this (WM_USER+1):

— Set hChild to NULL so another child can be
created

— WhdProc() also responds to expose events by
outputting aline of text to main window's client
area

— So text in both windows is visible whenever
either is exposed

POPUP WINDOWS
o Not restricted to the parent window's client area
o Can appear anywhere on screen
o Handy for small utility programs
— e.g., Window that shows current cursor position in a painting|
program
o Ideal for applications with multiple independent
sections, eg.:

— Communications program with simultaneous terminal
sessions in different popup windows

o Create with CreateWindow()
— WS_POPUP style (mutually exclusive with WS_CHILD)
— Coordinates are screen coordinates

