
1

Child Window Controls

Child Window Controls
? Windows created by a parent window
? An app uses them in conjunction with parent
? Normally used for simple I/O tasks
? Properties, appearance, behavior determined by

predefined class definitions
– But behavior can be customized
– Easy to set them up as common Windows objects

• buttons, scroll bars, etc.

? Can also define custom Child Window Controls

? Allow user to display/select info in standard ways
? Windows Environment does most of work in:

– painting/updating a Control's screen area
– determining what user is doing

? Can do the "dirty work" for the main window
? Often used as input devices for parent window
? Are the "working components" of Dialog Boxes
? Windows OS contains each control's WinProc

– so messages to controls are processed in predefined way

? Parent window communicates with controls by
sending/receiving messages

Six “Classic” Control Types
? Go back to first versions of Windows
? Implemented in User.exe

Type Window Class MFC Class
--
Static Text “STATIC” CStatic
Button “BUTTON” CButton
Edit Control “EDIT” CEdit
List Box “LISTBOX” CListBox
Combo Box “COMBOBOX” CComboBox
Scroll Bar “SCROLLBAR” CScrollBar

? All are windows

? Windows Environment automatically repaints a
Control upon exposure

? Example: NotePad ("File"|“Page Setup")
– Contains most of “classic” controls

– There are 20 other predefined "Common Controls”
– Most first appeared in Windows 95

– Some came with Internet Explorer
– Implemented in Comctl32.dll

The Common Controls
TYPE WINDOW CLASS MFC CLASS

Animation “SysAnimate32” CAnimateCtrl
ComboBoxEx “ComboBoxEx32” CComboBoxEx
Date-Time “SysDateTimePick32” CDateTimeCtrl
Header “SysHeader” CHeaderCtrl
Hotkey “msctls_hotkey32” CHotKeyCtrl
Image List N/A CImageList
IP Address “SysIPAdress32” CIPAddressCtrl
List View “SysListView32” CListCtrl
Month Calendar “SysMonthCal32” CMonthCalCtrl
Progress “msctls_progress32” CProgressCtrl
Property Sheet N/A CPropertySheet
ReBar “ReBarWindows32” CReBarCtrl

2

TYPE WINDOW CLASS MFC CLASS

Rich Edit “RichEdit20A” CRichEditCtrl
Slider “msctls_trackbar32” CSliderCtrl
Spin Button “msctls_updown32” CSpinButtonCtr
Status Bar “msctls_statusbar32” CStatusBarCtrl
Tab “SysTabControl32” CTabCtrl
Toolbar “ToolbarWindow32” CToolBarCtrl
ToolTip “tooltips_class32” CToolTipCtrl
Tree View “SysTreeView32” CTreeCtrl

Classic Window Controls
? Static

– Primarily to display text

– Can also display icon images and rectangles
– Automatically redrawn if exposed

– Often used as labels for other controls

? Button
– “Clicked” by user to indicate desired actions or choices

made

– Lots of different styles (e.g., pushbutton, check, radio,
group)

– Typically notify parent window when user chooses the
button

? List Box
– Contains lists of items that can be selected
– Entire list is shown

– User selects items
– Selected item is highlighted

? Combo Box
– Edit box combined with a list box

– List box can be displayed at all times or pulled down

– User selects item from list & item is copied to edit box
– One type allows user to type into edit box

• If text matches item in list, it is highlighted & scrolled into view

– Another type doesn’t allow user to type in edit box

? Scroll Bar
– Lets user choose direction/distance to move a “thumb”
– Two types:

• Control attached to edge of a parent window
• Allows user to "scroll" the information in a parent

window's client area
– Stand-alone child window control

• Allows user to enter/change a value by moving
scroll bar "thumb ”

? Edit
– To enter/view/edit/delete text
– Single or multiline control
– Lots of word processing capability
– Also Clear/Copy/Cut/Paste/Undo capability

Creating Controls--Win32 API

? CreateWindow()
– For any kind of window, including a control
– Typically called in response to WM_CREATE

? Parameters:
– 1. Predefined control class names:

• "STATIC", "BUTTON", “EDIT”, “LISTBOX”,
“COMBOBOX”, ”SCROLLBAR”, others

– 2. Name of the window
• BUTTON, EDIT, STATIC classes:

– text in center of control

• COMBOBOX, LISTBOX, SCROLLBAR classes:
– ignored (use "")

? 3. Window style
WS_, SS_, BS_, ES_, LBS_, CBS_, SBS_ (see

CreateWindow help)
– Several styles can be combined with the bitwise or

operator (|)

– All controls should include WS_CHILD style

? Parameters 4-7:
– X,Y position (Relative to the upper left corner of parent

window client area)

– Width & Height

? 8. Handle to the parent window

3

? 9. Handle to “menu”
– Controls don’t have menus

– So hMenu parameter used to hold control’s integer ID
– ID value passed with WM_COMMAND message

generated when user interacts with the control
– Allows program to identify which control was activated

? 10. Handle to instance of program creating control
– GetWindowLong() usually used to get this value

? 11. Pointer to window creation data
– Normally NULL

Example (Win32 API)

? In response to WM_CREATE in Main Window’s
WndProc():

HWND hMyButton;
HINSTANCE hInstance;
hInstance = (HINSTANCE) GetWindowLong (hWnd,
GWL_HINSTANCE);
hMyButton = CreateWindow (“BUTTON”, “Push Me”,
WS_CHILD | BS_PUSHBUTTON, 10, 10, 130, 60, hWnd,
(HMENU)ID_MYBUTTON, hInstance, NULL);
ShowWindow (hMyButton, SW_SHOWNORMAL);

Creating Controls -- MFC
– CWnd is the parent class of controls

– Define control in a related class or handler, e.g.:
CStatic myCtrl;

– Use the control's override of CWnd::Create() to create the
control (typically in OnCreate() handler)

• Mostly same parameters as CreateWindow(), e.g.:

RECT r;
r.left = r.right = 10; r.right = 200; r.bottom = 30;
myCtrl.Create (“Hello”, WS_CHILD | WS_VISIBLE |

SS_LEFT, r, this, ID_MYSTATIC);
• Last parameter the control ID (defined in a .h file)

Using a Child Window
Control, MFC

?Manipulate the control using its (and CWnd
parent class) member functions
– See Online help

?When finished with the control, use
CWnd::DestroyWindow() to destroy the
control

Messages from Controls
? Most work as follows:

– User interacts with the control
– WM_COMMAND message sent to parent window

– LOWORD(wParam) = Control ID
– lParam = control’s window handle

– HIWORD(wParam) = notification code
• identifies what the user action was

? Scroll Bars are a bit different

Win32 API Control Message
Handlers

? Put Control message handlers in same
switch/case statement with menu handlers
(WM_COMMAND)

?Done just as for menu handlers

4

MFC Control Message
Handlers

? Set up message macro for each notification
code of interest
– e.g., for button’s BN_CLICKED notification

• ON_BN_CLICKED (ID, OnClickHandler)

? Declare the handler functions in the .h file
? Write the handler functions in .cpp file, e.g.

void CMyProgView::OnClickHandler()

{ // code goes here };

Sending Messages to
Controls, Win32 API

? SendMessage()--sends message to a window’s
WinProc()

? Doesn't return until message has been processed
? Parameters:

– Handle of destination window

– ID of message to send
– wParam and lParam values containing message data, if

any

Example, Win32 API
? Send a message to hMyControl

SendMessage (hMyControl, WM_SETTEXT, 0,
(LPARAM) “Hello”) ;

– Here message is WM_SETTEXT
– When received, control's WndProc() changes control’s

window name (text string displayed)
– For this message wParam must be 0;

? There are many messages that can be sent to a
control

? Depend on type of control, See online help

Sending Messages to Controls,
MFC

?Use the Control’s SendMessage() function
to send the control a message

? For example, assume m_ myStatic is a
CStatic control object that has been created

? To change the text displayed:
char cBuf[] = “Hello”;
m_myStatic.SendMessage (WM_SETTEXT, 0,

(LPARAM)cBuf);

Alternatives to SendMessage()

? Could use other class member functions
? For most messages that can be sent to a control,

there is a corresponding function
? Most are members of CWnd parent class
? Example sending WM_SETTEXT to a static

control
– SetWindowText (), for example:
m_ myStatic.SetWindowText (“Hello”);

? Could also use PostMessage()
– Returns immediately

Static Controls
? Lots of styles, see online help on “Static Control

Styles”. Some examples:
– SS_BITMAP, SS_CENTER,

SS_GRAYFRAME, SS_ICON, SS_SIMPLE,
SS_WHITEFRAME, etc.

? Change text with WM_SETTEXT message or
SetWindowText()
– May need to format values with wsprintf()

? Retrieve text with WM_GETTEXT message or
GetWindowText()

? Program examples: static, static_mfc

5

Button Controls
? Some Styles: BS_PUSHBUTTON,

BS_RADIOBUTTON, BS_CHECKBOX,
BS_OWNERDRAW, BS_GROUPBOX, etc.

? Button notification codes:
– BN_CLICK, BN_DOUBLECLICK

? Some messages you can send to buttons:
– BM_SETCHECK, BM_GETCHECK,

BM_SETSTATE, BM_GETSTATE, etc.

? Corresponding CButton member functions:
– SetCheck(), GetCheck(), SetState(), GetState()

? Program examples: button, button_mfc

Graphical Push Buttons
? One way: use CBitmapButton class
? Assume we have a CBitmapButton object called

m_bitmapbut and two bitmaps in the resources:
– IDB_BMUP: “up state” bitmap
– IDB_BMDOWN: “down state” bitmap

? Some code:
m_bitmapbut .Create ("",WS_CHILD | WS_VISIBLE |

BS_OWNERDRAW, rect, this,
BITMAP_BUTTON);

m_bitmapbut .LoadBitmap (IDB_BMUP,
IDB_BMDOWN, 0, 0);

? Program Example: button_bitmap_mfc

List Box Controls
? Lots of styles: see on-line help on LBS_

– LBS_STANDARD very common
• can send messages to parent

? Program communicates with list box by sending it
messages; some common button messages:
– LB_RESETCONTENTS, LB_ADDSTRING,

LB_GETCURSEL, LB_GETTEXT, LB_DELETESTRING

? Some List Box Notification codes:
– LBN_SELCHANGE, LBN_DBLCLK

? Combo boxes much like list boxes (CBS_, CB_, CBN_)
? Program examples: listbox, combo

