Child Window Controls

predefined class definitions

— But behavior can be customized

* buttons, scroll bars, etc.

Child Window Controls

= Windows created by a parent window

=« An app uses them in conjunction with parent

= Normally used for simple I/O tasks

= Properties, appearance, behavior determined by

— Easy to set them up as common Windows objects

« Can also define custom Child Window Controls

= Allow user to display/select info in standard ways
= Windows Environment does most of work in:
— painting/updating a Control's screen area
— determining what user isdoing
& Can do the"dirty work" for the main window
= Often used as input devices for parent window
= Arethe "working components" of Dialog Boxes
= Windows OS contains each control's WinProc
— S0 messages to controls are processed in predefined way
& Parent window communicates with controls by
sending/receiving messages

« Implemented in User.exe

Six “Classic” Control Types

= Goback tofirst versions of Windows

Type Window Class MFC Class

Static Text “ STATI C’
But t on “BUTTON'
Edit Control “EDIT"

Li st Box “ LI STBOX”
Conmbo Box “ COVBOBOX”
Scrol | Bar “ SCROLLBAR’

« All are windaws

Cxatic
CBut t on
CEdi t

CLi st Box
CConboBox
CScrol | Bar

= Windows Environment automatically repaints a
Control upon exposure

= Example: NotePad ("File"| Page Setup")
— Contains most of “classic” controls
— There are 20 other predefined "Common Controls”
— Most first appeared in Windows 95
— Some came with Internet Explorer
— Implemented in Comctl32.dlI

Mont h Cal endar “ SysMont hCal 32"
Progress
Property Sheet NA

TYPE W NDOW CLASS

Ani mati on “ SysAni mat e32”
ConmboBoxEx “ ConboBoxEx32”

Dat e- Ti me “SysDat eTi mePi ck32”
Header “SysHeader”

Hot key “msct| s_hot key32”

| mage List N A

| P Address “Sysl PAdr ess32”
List View “SysLi st Vi en32”

“mect | s_progress32”

The Common Controls

MFC CLASS

CAni mateCtrl
CConboBoxEx
CDat eTi neCtrl
CHeaderCtr
CHot KeyCtr |

Cl magelLi st

Cl PAddressCrl
CListCrl
Cvont hCal Ctrl
CProgressCirl
CPr oper t ySheet

| Refar———— Rebar WThovss:

CReRAT O T

TYPE W NDOW CLASS MFC CLASS Classic Window Controls
--- « Static
Rich Edit “Ri chEdi t 20A" CRichEditCirl — Primarily to display text
Slider “nsct| s_trackbar 32" CSliderQrl i i .
Spin Button “msct| s_updown32” CSpi nBut t onCt r - Canalsoldlsplay fcon |rT1agesand rectangles
Status Bar “msct | s_stat ushar32” CStatusBarCtrl — Automatically redrawn if exposed
Tab SysTabCont rol 32 CTabarl — Often used aslabelsfor other controls
Tool bar “Tool bar W ndow32" CTool BarCirl
Tool Ti p “tool tips_cl ass32” CTool Ti pCtrl =« Button
Tree View SysTreevi ews2 ClreeQrl — “Clicked” by user to indicate desired actions or choices
made
— Lotsof different styles (e.g., pushbutton, check, radio,
group)
— Typically notify parent window when user chooses the
button
__—
=« List Box « Scroll Bar
_ Contains lists of itemsthat can be selected — Letsuser choose direction/distance to move a“ thumb”
— Entirelistisshown — Twotypes: .
- Vs secsiens e
— Selected item ishighlighted owsuser to "Scrofi™ the information In a parel

window'sclient area

= Combo Box — Stand-alone child window control

— Edit box combined with alist box « Allows user to enter/change a value by moving
— List box can be displayed at all times or pulled down scroll bar "thumb
— User selectsitem from list & itemis copied to edit box = Edit
— Onetype allows user to typeinto edit box — Toenter/view/edit/delete text
« If text matchesitemin ligt, it is highlighted & scrolled into view — Single or multiline control
— Another type doesn’t allow user to typein edit box — Lotsof word processing capability

— Also Clear/Copy/Cut/Paste/Undo capability

Creating Controls--Win32 API ~ 3. Window style
WS, SS ,BS ,ES ,LBS , CBS , SBS_(see

& CreateWindow() CreateWindow help)

— For any kind of window, including a control — Several styles can be combined with the bitwise or

— Typically called in responseto WM_CREATE operator (|)
= Parameters: — All controlsshouldinclude WS_CHILD style

— 1. Predefined control class names: = Parameters4-7.

« "STATIC","BUTTON", “EDIT”, “LISTBOX”, _ o ;
«“COMBOBOX”," SCROLLBAR" , others X,Y position (Relative to the upper left corner of parent

! window client area)
— 2. Name of the window

« BUTTON, EDIT, STATIC classes: — Width & Height
— textin center of control « 8. Handle to the parent window
+ COMBOBOX, LISTBOX, SCROLLBAR dlasses:
— ignored (use"")

= 9. Handleto “menu”
— Controlsdon’t have menus
— So hMenu parameter used to hold control’ sinteger ID
— |ID value passed with WM_COMMAND message
generated when user interacts with the control
— Allows program to identify which control was activated
= 10. Handle to instance of program creating control
— GetWindowL ong() usually used to get thisvalue
= 11. Pointer to window creation data
— Normally NULL

Example (Win32 API)

= In responseto WM_CREATE in Main Window’s
WndProc():

HWND hMyButton;

HINSTANCE hlnstance;

hinstance = (HINSTANCE) GetWindowL ong (hWnd,
GWL_HINSTANCE);

hMyButton = CreateWindow (“BUTTON”, “Push Me”,
WS_CHILD |BS_PUSHBUTTON, 10, 10, 130, 60, hwnd,
(HMENU)ID_MYBUTTON, hinstance, NULL);

ShowWindow (hMyButton, SW_SHOWNORMAL);

Creating Controls--MFC

Using a Child Window

— CWnd isthe parent class of controls

Control, MFC
— Definecontrol in arelated class or handler, e.g.:

Cstatic myCtri; = Manipulate the control using its (and CWnd

— Usethecontrol'soverride of CWnd::Create() to create the parent cl &) member functions
control (typically inOnCreate() handler) .
» Mostly same parameters as CreateWindow(), e.g.: — See Online hEIp

RECT™; = When finished with the control, use
r.left = r.right = 10; r.right = 200; r.bottom = 30; CWnd::DegroyWi ndow() to degroy the
myCitrl.Create (“Hello”, WS_CHILD | WS_VISIBLE | COﬂtrOl

SS_LEFT, r, this, ID_MYSTATIC);
« Last parameter the control ID (defined in a .h file)

Win32 API Control Message
Handlers
= Put Control message handlersin same

switch/case statement with menu handlers
(WM_COMMAND)

=« Donejust asfor menu handlers

M essages from Controls

= Most work as follows:
— User interacts with the control
— WM_COMMAND message sent to parent window
— LOWORD(wParam) = Control ID
— IParam= control’ swindow handle
— HIWORD(wParam) = notification code
* identifieswhat the user action was
= Scroll Bars are a bit different

MFC Control Message
Handlers

=« Set up message macro for each notification
code of interest

— e.g., for button’s BN_CLICKED notification
« ON_BN_CLICKED (ID, OnClickHandler)

« Declare the handler functions in the .h file

« Write the handler functions in .cpp file, e.g.
void CMyProgView::OnClickHandler()
{ /Il code goes here };

Sending Messages to
Controls, Win32 API
« SendMessage()--sends message to awindow’'s
WinProd)
= Doesn't return until message has been processed
= Parameters:
— Handle of destination window
— ID of message to send

— wParamand | Paramval ues containing message data, if
any

Example, Win32 API

= Send amessagetohMyControl
SendMessage (hMyControl, WM_SETTEXT, O,
(LPARAM) “Hello") ;
— Here messageis WM_SETTEXT
— When received, control'sWndProc() changes control’s
window name (text string displayed)
— For this message wParam must be 0;
= There are many messages that can be sent to a
control

= Depend on type of control, See online help

Sending M essagesto Controals,
MFC

= Use the Contral’ s SendMessage() function
to send the control amessage
= For example, assumem_myStatic isa
CStatic control object that hasbeen created
= Tochangethetext displayed:
char cBuf[] =“Hello”;
m_myStatic.SendMessage (WM _SETTEXT, O,
(LPARAM)cBUf);

Alternatives to SendM essage()

« Could use other class member functions
= For most messages that can be sent to a control,
there is a corresponding function
= Most are members of CWnd parent class
= Example sending WM_SETTEXT to astatic
control
— SetWindowText(), for example:
m_myStatic.SetWindowText (“Hello");
= Could also use PostMessage()
— Returnsimmediately

Static Controls

= Lotsof styles, see online help on “ Static Control
Styles’. Some examples:
—SS BITMAP, SS CENTER,
SS GRAYFRAME, SS ICON, SS SIMPLE,
SS WHITEFRAME, etc.
« Change text with WM_SETTEXT message or
SetWindowText()
— May need to format values with wsprintf()
« Retrieve text with WM_GETTEXT message or
GetWindowText ()

L« Program examples. static_static mfc

Button Controls

= Some Styles: BS_PUSHBUTTON,
BS_RADIOBUTTON, BS_CHECKBOX,
BS_OWNERDRAW, BS_GROUPBOX, etc.
= Button notification codes:
— BN_CLICK, BN_DOUBLECLICK

= Some messages you can send to buttons:
— BM_SETCHECK, BM_GETCHECK,
BM_SETSTATE, BM_GETSTATE, etc.
& Corresponding CButton member functions:
— SetCheck(), GetCheck(), SetState(), GetState()

= Program examples: button, button_mfc

Graphical Push Buttons

= One way: use CBitmapButton class

=« Assume we have a CBitmapButton object called
m_bitmapbut and two bitmapsin the resources:
— IDB_BMUP: “up state” bitmap
— IDB_BMDOWN: “down state” bitmap

« Some code:

m_bitmapbut.Create (",WS_CHILD | WS_VISIBLE |
BS_OWNERDRAW, rect, this,
BITMAP_BUTTON);

m_bitmapbut.LoadBitmap (IDB_BMUP,
IDB_BMDOWN, 0, 0);

= Program Example: button_bitmap_mfc

List Box Controls

Lots of styles: seeon-linehelponLBS
— LBS_STANDARD very common
« can send messages to parent
k- Program communicates with list box by sending it
messages; some common button messages:

— LB_RESETCONTENTS, LB_ADDSTRING,
LB_GETCURSEL, LB_GETTEXT, LB_DELETESTRING

L Some List Box Notification codes:

— LBN_SELCHANGE, LBN_DBLCLK

L= Combo boxes much like list boxes (CBS_, CB_, CBN_)
< Program examples: listbox, combo

