Child Window Controls

Child Window Controls
e Windows created by a parent window
e An app uses them in conjunction with parent
e Normally used for simple 1/O tasks

@ L et user choose commands, view status,
view/edit text, etc.

@ Properties, appearance, behavior determined
by predefined class definitions
— But behavior can be customized

— Easy to set them up as common Windows objects
* buttons, scroll bars, etc.

o Allow user to display/select info in standard ways
® Windows Environment does most of work in:
— painting/updating a Control's screen area
— determining what user is doing
e Can do the "dirty work" for the main window
e Often used asinput devicesfor parent window
e Arethe "working components" of dialog boxes
e Windows OS contains each control's WinProc
— s0 messages to controls are processed in predefined way

e Parent window communicates with controls by
sending/receiving messages

Six “Classic” Control Types
® Go back to first versions of Windows
o Implemented in User.exe
Type Window Class MFC Class

Static Text “ STATI C’ Cxatic
But t on “BUTTON" CBut t on
Edit Control “EDIT” CEdi t

Li st Box “LI STBOX" CLi st Box
Conmbo Box “ COVBOBOX” CConmboBox
Scrol | Bar “ SCROLLBAR’ CScrol | Bar

o All are windows

e Windows Environment automeaticaly
repaints a Control upon exposure

e Example WordPead ("File"|"Open™)
— Conatains most of “classic” controls

— There are 20 other predefined "Common
Controls’

— Most first appeared in Windows 95
— Some came with Internet Explorer
— Implemented in Comctl32.dl

The Common Controls

TYPE W NDOW CLASS MFC CLASS

Ani mati on “ SysAni mat e32” CAni mateCtrl
ConmboBoxEx “ ComboBoxEx32” CComboBox Ex
Dat e- Ti me “ SysDat eTi mePi ck32” Chat eTi meCtr|
Header “ SysHeader” CHeader trl
Hot key “msct| s_hot key32” CHot KeyCtr |

| mage Li st N A Cl mageli st

| P Address “Sys| PAdr ess32” Cl PAddressCirl
Li st View “SysLi st Vi en32” CListCtrl

Mont h Cal endar “ Syshont hCal 32" Chvont hCal Crr
Progress “msctls_progress32” CProgressCtrl
Property Sheet NA CPr oper t ySheet

ReBar “ReBar W ndows32” CReBarCtrl

— User selectsitems
— Selected item is highlighted
e Combo Box
— Edit box combined with alist box
— List box can be displayed at all times or pulled down
— User selectsitem from list & item is copied to edit box

— Onetype allows user to type into edit box
« If text matchesitemin list, it is highlighted & scrolled into view

— Another type doesn’t allow user to type in edit box

TYPE W NDOW CLASS MEC CLASS Classic Window Controls

TTTTTTTTTmTmTmososooooossssosees ST o Static

Rf:h Edi t Ri chEdi t 20A CRnf:hEdMCtrI — Primarily to display text

Slider “nmsct | s_trackbar 32" CSliderCirl Can also disolay i . d rectanales

Spin Button “msct | s_updown32” CSpi nButtonCt r — Lanaso dispiay fcon images an 9

Status Bar “msctls_statusbar32” CStatusBarCtrl — Automatically redrawn if exposed

Tab - SysTabCont r ol 327 ClabGrl — Often used as labels for other controls

Tool bar “Tool bar W ndow32” CTool BarCirl

Tool Ti p “tool ti ps_cl ass32” CTool Ti pCrl @ Button

Tree View SysTreeVi ews2 Clreeqr! — “Clicked” by user to indicate desired actions or choices
made

— Lots of different styles (e.g., pushbutton, check, radio,
group)
— Typically notify parent window when user chooses the
button
; o Scroll Bar
o List Box N
o . — Lets user choose direction/distance to move a “thumb”
— Contains lists of items that can be selected
T — Two types:
— Entirelistis shown

« Control attached to edge of a parent window

« Allows user to "scroll" the information in a parent
window'sclient area

— Stand-alone child window control

« Allows user to enter/change avalue by moving
scroll bar "thumb

o Edit
— To enter/view/edit/del ete text
— Single or multiline control
— Lots of word processing capability
— Also Clear/Copy/Cut/Paste/Undo capability

Creating Controls-Win32 API

e CreateWindow()

— For any kind of window, including a control

— Typically caled in responseto WM_CREATE
o Parameters:

— 1. Predefined control class names:

« "STATIC", "BUTTON", “EDIT”, “LISTBOX",
“COMBOBOX”, "SCROLLBAR", others
— 2. Name of the window

« BUTTON, EDIT, STATIC classes:
— text in center of control

« COMBOBOX, LISTBOX, SCROLLBAR:
— ignored (use"")

o 3. Window style

WS_, SS_,BS_,ES_, LBS_,CBS_, SBS_(see
CreateWindow help)

— Several styles can be combined with the bitwise or
operator (|)

— All controls should include WS_CHILD style
o Parameters4-7:

— X,Y position (Relative to the upper left corner of parent
window client area)

— Width & Height
o 8. Handle to the parent window

e 9. Handleto “menu”
— Controls don’t have menus
— So hMenu parameter used to hold control’ sinteger ID

— ID value passed with WM_COMMAND message
generated when user interacts with the control

— Allows program to identify which control was activated
e 10. Handle to instance of program creating control
— GetWindowL ong() usually used to get this value
e 11. Pointer to window creation data
— Normally NULL

Example (Win32 API)

® In response to WM_CREATE in Main Window's
WndProc():

HWND hMyButton;

HINSTANCE hinstance;

hinstance = (HINSTANCE) GetWindowL ong (hwnd,
GWL_HINSTANCE);

hMyButton = CreateWindow (“BUTTON”", “Push Me”",
WS _CHILD | BS_PUSHBUTTON, 10, 10, 130, 60, hwnd,
(HMENU)ID_MYBUTTON, hinstance, NULL);

ShowWindow (hMyButton, SW_SHOWNORMAL);

Creating Controls-- MFC

— CWnd isthe parent class of controls

— Define control in arelated class or handler, eg.:
CStatic myCitrl;

— Use the control's override of CWnd::Create() to

create the control (typically in OnCreate() handler)

* Mostly same parameters as CreateWindow(), e.g.:
RECTT;
r.left = r.right = 10; r.right = 200; r.bottom = 30;
myCtrl.Create (“Hello”, WS_CHILD | WS_VISIBLE |
SS_LEFT, 1, this, ID_MYSTATIC);
« Last parameter the control ID (defined in a .h file)

Using a Child Window

Control, MFC
e Manipulate the control using its (and CWnd
parent class) member functions
— See Online help
e When finished with the control, use
CWnd:: DestroyWindow() to destroy the
control

M essages from Controls

o Most work asfollows:
— User interacts with the control
— WM_COMMAND message sent to parent
window
— LOWORD(wParam) = Control ID
— |Param = control’s window handle
— HIWORD(wParam) = notification code
« identifies what the user action was

e Scroll Barsare abit different

Win32 API Control Message
Handlers

e Put Control message handlersin same
switch/case statement with menu handlers
(WM_COMMAND)

e Donejust asfor menu handlers

MFC Control Message

Handlers
e Set up message macro for each
notification code of interest

— e.g., for button’s BN_CLICKED notification.
code:
+ ON_BN_CLICKED (ID, OnClickHandler)

e Declare the handler functions in the .h file

e Write the handler functions in .cpp file, e.g.

void CMyProgView::OnClickHandler()
{ /I code goes here };

Sending Messages to

Controls, Win32 API
o SendMessagg))--sends message to a
window’ s WinProc()
e Doesn't return until message has been
processed
o Parameters:
— Handle of destination window
— ID of message to send

— wParam and | Param values containing message
data, if any

Example, Win32 API

e Send amessageto hMyControl

SendMessage (hMyControl, WM_SETTEXT, O,
(LPARAM) "Hello") ;

— Here message isWM_SETTEXT

— When received, control's WndProc() changes
control’swindow name (text string displayed)

— For this message wParam must be 0;

e There are many messages that can be sent to
acontrol

@ Depend on type of control, See online help

Sending M essages to Controls,
MFC

e Use the Control’s SendMessagg() function
to send the control amessage
e For example, assume m_myStaticisa
CStetic object that has been created
e To change the text displayed:
char cBuf[] = “Hello”;

m_myStatic.SendMessage (WM _SETTEXT, 0,
(LPARAM)cBUf);

Alternativesto SendM essage()
e Could use other class member functions

@ For most messagesthat canbesenttoa
control, there is a corresponding function
e Most are members of CWnd parent class
o Example sending WM_SETTEXT to a
datic control
— SetWindowText(), for example:
m_myStatic. SetWindowText(“ Hello");
e Could a so use PostM essage()
— Returns immediately

Static Controls
o Lotsof styles, see online help on “ Static Control
Styles’. Some examples:

- SS BITMAP, SS_CENTER,
SS GRAYFRAME, SS_ICON, SS_SIMPLE,
SS WHITEFRAME, etc.

® Change text with WM_SETTEXT message or
SetWindow Text()

— May need to format values with wsprintf()

o Retrieve text with WM_GETTEXT message or
GetWindowText()

® Program examples: static, static mfc

Button Controls
@ Some Styles: BS_PUSHBUTTON,
BS_RADIOBUTTON, BS_CHECKBOX,
BS_OWNERDRAW, BS_GROUPBOX, etc.
e Button notification codes:
— BN_CLICK, BN_DOUBLECLICK
® Some messages you can send to buttons:

— BM_SETCHECK, BM_GETCHECK,
BM_SETSTATE, BM_GETSTATE, etc.

e Corresponding CButton member functions:
— SetCheck(), GetCheck(), SetState(), GetState()

® Program examples: button, button_mfc

Graphical Push Buttons
o Oneway: use CBitmapButton class
o Assume we have aCBitmapButton object called
m_bitmapbut and two bitmaps in the resources:
— IDB_BMUP: “up state” bitmap
— IDB_BMDOWN: “down state” bitmap
® Some code:

m_bitmapbut.Create ("",WS_CHILD | WS_VISIBLE |
BS_OWNERDRAW, rect, this,
BITMAP_BUTTON);

m_bitmapbut LoadBitmaps (IDB_BMUP,
IDB_BMDOWN, 0, 0);

® Program Example: button_bitmap_mfc

List Box Controls
e Lotsof styles: seeon-linehelpon LBS_
— LBS_STANDARD very common
« can send messages to parent
e Program communicates with list box by sending it
messages; some common button messages:

— LB_RESETCONTENTS, LB_ADDSTRING,
LB_GETCURSEL, LB_GETTEXT, LB_DELETESTRING

® Some List Box Notification codes:
— LBN_SELCHANGE, LBN_DBLCLK

o Combo boxes much like list boxes (CBS_, CB_, CBN_]

® Program examples:listbox, combo

