
1

Child Window Controls

Child Window Controls
l Windows created by a parent window
l An app uses them in conjunction with parent
l Normally used for simple I/O tasks
l Let user choose commands, view status,

view/edit text, etc.
l Properties, appearance, behavior determined

by predefined class definitions
– But behavior can be customized
– Easy to set them up as common Windows objects

• buttons, scroll bars, etc.

l Allow user to display/select info in standard ways

l Windows Environment does most of work in:
– painting/updating a Control's screen area

– determining what user is doing

l Can do the "dirty work" for the main window

l Often used as input devices for parent window

l Are the "working components" of dialog boxes

l Windows OS contains each control's WinProc
– so messages to controls are processed in predefined way

l Parent window communicates with controls by
sending/receiving messages

 Six “Classic” Control Types
l Go back to first versions of Windows

l Implemented in User.exe

 Type Window Class MFC Class
--
Static Text “STATIC” CStatic
Button “BUTTON” CButton
Edit Control “EDIT” CEdit
List Box “LISTBOX” CListBox
Combo Box “COMBOBOX” CComboBox
Scroll Bar “SCROLLBAR” CScrollBar

l All are windows

l Windows Environment automatically
repaints a Control upon exposure

l Example: WordPad ("File"|"Open")
– Conatains most of “classic” controls

– There are 20 other predefined "Common
Controls”

– Most first appeared in Windows 95
– Some came with Internet Explorer

– Implemented in Comctl32.dll

The Common Controls
TYPE WINDOW CLASS MFC CLASS

Animation “SysAnimate32” CAnimateCtrl
ComboBoxEx “ComboBoxEx32” CComboBoxEx
Date-Time “SysDateTimePick32” CDateTimeCtrl
Header “SysHeader” CHeaderCtrl
Hotkey “msctls_hotkey32” CHotKeyCtrl
Image List N/A CImageList
IP Address “SysIPAdress32” CIPAddressCtrl
List View “SysListView32” CListCtrl
Month Calendar “SysMonthCal32” CMonthCalCtrl
Progress “msctls_progress32” CProgressCtrl
Property Sheet N/A CPropertySheet
ReBar “ReBarWindows32” CReBarCtrl

2

 TYPE WINDOW CLASS MFC CLASS

 Rich Edit “RichEdit20A” CRichEditCtrl
 Slider “msctls_trackbar32” CSliderCtrl
 Spin Button “msctls_updown32” CSpinButtonCtr

Status Bar “msctls_statusbar32” CStatusBarCtrl
Tab “SysTabControl32” CTabCtrl
Toolbar “ToolbarWindow32” CToolBarCtrl
ToolTip “tooltips_class32” CToolTipCtrl
Tree View “SysTreeView32” CTreeCtrl

Classic Window Controls
l Static

– Primarily to display text

– Can also display icon images and rectangles

– Automatically redrawn if exposed

– Often used as labels for other controls

l Button
– “Clicked” by user to indicate desired actions or choices

made

– Lots of different styles (e.g., pushbutton, check, radio,
group)

– Typically notify parent window when user chooses the
button

l List Box
– Contains lists of items that can be selected

– Entire list is shown

– User selects items

– Selected item is highlighted

l Combo Box
– Edit box combined with a list box

– List box can be displayed at all times or pulled down

– User selects item from list & item is copied to edit box

– One type allows user to type into edit box
• If text matches item in list, it is highlighted & scrolled into view

– Another type doesn’t allow user to type in edit box

l Scroll Bar
– Lets user choose direction/distance to move a “thumb”

– Two types:

• Control attached to edge of a parent window

• Allows user to "scroll" the information in a parent
window's client area

– Stand-alone child window control

• Allows user to enter/change a value by moving
scroll bar "thumb”

l Edit
– To enter/view/edit/delete text

– Single or multiline control

– Lots of word processing capability

– Also Clear/Copy/Cut/Paste/Undo capability

Creating Controls--Win32 API
l CreateWindow()

– For any kind of window, including a control

– Typically called in response to WM_CREATE

l Parameters:
– 1. Predefined control class names:

• "STATIC", "BUTTON", “EDIT”, “LISTBOX”,
“COMBOBOX”, ”SCROLLBAR”, others

– 2. Name of the window
• BUTTON, EDIT, STATIC classes:

– text in center of control

• COMBOBOX, LISTBOX, SCROLLBAR:
– ignored (use "")

l 3. Window style
WS_, SS_, BS_, ES_, LBS_, CBS_, SBS_ (see

CreateWindow help)

– Several styles can be combined with the bitwise or
operator (|)

– All controls should include WS_CHILD style

l Parameters 4-7:
– X,Y position (Relative to the upper left corner of parent

window client area)

– Width & Height

l 8. Handle to the parent window

3

l 9. Handle to “menu”
– Controls don’t have menus

– So hMenu parameter used to hold control’s integer ID

– ID value passed with WM_COMMAND message
generated when user interacts with the control

– Allows program to identify which control was activated

l 10. Handle to instance of program creating control
– GetWindowLong () usually used to get this value

l 11. Pointer to window creation data
– Normally NULL

Example (Win32 API)

l In response to WM_CREATE in Main Window’s
WndProc():

HWND hMyButton;

HINSTANCE hInstance;

hInstance = (HINSTANCE) GetWindowLong (hWnd,
GWL_HINSTANCE);

hMyButton = CreateWindow (“BUTTON”, “Push Me”,
WS_CHILD | BS_PUSHBUTTON, 10, 10, 130, 60, hWnd,
(HMENU)ID_MYBUTTON, hInstance, NULL);

ShowWindow (hMyButton , SW_SHOWNORMAL);

Creating Controls -- MFC
– CWnd is the parent class of controls

– Define control in a related class or handler, eg.:

CStatic myCtrl;

– Use the control's override of CWnd::Create() to
create the control (typically in OnCreate() handler)
• Mostly same parameters as CreateWindow(), e.g.:

RECT r;

r.left = r.right = 10; r.right = 200; r.bottom = 30;

myCtrl.Create (“Hello”, WS_CHILD | WS_VISIBLE |

SS_LEFT, r, this, ID_MYSTATIC);

• Last parameter the control ID (defined in a .h file)

Using a Child Window
Control, MFC

l Manipulate the control using its (and CWnd
parent class) member functions
– See Online help

l When finished with the control, use
CWnd::DestroyWindow() to destroy the
control

Messages from Controls
l Most work as follows:

– User interacts with the control

– WM_COMMAND message sent to parent
window

– LOWORD(wParam) = Control ID
– lParam = control’s window handle

– HIWORD(wParam) = notification code
• identifies what the user action was

l Scroll Bars are a bit different

Win32 API Control Message
Handlers

l Put Control message handlers in same
switch/case statement with menu handlers
(WM_COMMAND)

l Done just as for menu handlers

4

MFC Control Message
Handlers

l Set up message macro for each
notification code of interest
– e.g., for button’s BN_CLICKED notification.

code:
• ON_BN_CLICKED (ID, OnClickHandler)

l Declare the handler functions in the .h file
l Write the handler functions in .cpp file, e.g.

void CMyProgView::OnClickHandler()

{ // code goes here };

Sending Messages to
Controls, Win32 API

l SendMessage()--sends message to a
window’s WinProc()

l Doesn't return until message has been
processed

l Parameters:
– Handle of destination window

– ID of message to send
– wParam and lParam values containing message

data, if any

Example, Win32 API
l Send a message to hMyControl

SendMessage (hMyControl, WM_SETTEXT, 0,
(LPARAM) ”Hello") ;

– Here message is WM_SETTEXT

– When received, control's WndProc() changes
control’s window name (text string displayed)

– For this message wParam must be 0;

l There are many messages that can be sent to
a control

l Depend on type of control, See online help

Sending Messages to Controls,
MFC

l Use the Control’s SendMessage() function
to send the control a message

l For example, assume m_myStatic is a
CStatic object that has been created

l To change the text displayed:
char cBuf[] = “Hello”;

m_myStatic.SendMessage (WM_SETTEXT, 0,
(LPARAM)cBuf);

Alternatives to SendMessage()
l Could use other class member functions
l For most messages that can be sent to a

control, there is a corresponding function
l Most are members of CWnd parent class
l Example sending WM_SETTEXT to a

static control
– SetWindowText(), for example:
m_myStatic.SetWindowText(“Hello”);

l Could also use PostMessage()
– Returns immediately

Static Controls
l Lots of styles, see online help on “Static Control

Styles”. Some examples:

– SS_BITMAP, SS_CENTER,
SS_GRAYFRAME, SS_ICON, SS_SIMPLE,
SS_WHITEFRAME, etc.

l Change text with WM_SETTEXT message or
SetWindowText()

– May need to format values with wsprintf()

l Retrieve text with WM_GETTEXT message or
GetWindowText()

l Program examples: static, static_mfc

5

Button Controls
l Some Styles: BS_PUSHBUTTON,

BS_RADIOBUTTON, BS_CHECKBOX,
BS_OWNERDRAW, BS_GROUPBOX, etc.

l Button notification codes:
– BN_CLICK, BN_DOUBLECLICK

l Some messages you can send to buttons:
– BM_SETCHECK, BM_GETCHECK,

BM_SETSTATE, BM_GETSTATE, etc.

l Corresponding CButton member functions:
– SetCheck(), GetCheck(), SetState(), GetState()

l Program examples: button, button_mfc

Graphical Push Buttons
l One way: use CBitmapButton class

l Assume we have a CBitmapButton object called
m_bitmapbut and two bitmaps in the resources:
– IDB_BMUP: “up state” bitmap

– IDB_BMDOWN: “down state” bitmap

l Some code:
m_bitmapbut.Create ("",WS_CHILD | WS_VISIBLE |

BS_OWNERDRAW, rect, this,
BITMAP_BUTTON);

m_bitmapbut.LoadBitmaps (IDB_BMUP,
IDB_BMDOWN, 0, 0);

l Program Example: button_bitmap_mfc

List Box Controls
l Lots of styles: see on-line help on LBS_

– LBS_STANDARD very common
• can send messages to parent

l Program communicates with list box by sending it
messages; some common button messages:
– LB_RESETCONTENTS, LB_ADDSTRING,

LB_GETCURSEL, LB_GETTEXT, LB_DELETESTRING

l Some List Box Notification codes:
– LBN_SELCHANGE, LBN_DBLCLK

l Combo boxes much like list boxes (CBS_, CB_, CBN_)

l Program examples: listbox, combo

