
1

The Mouse and Keyboard

Mouse

? A pointing device with one or more buttons
? Important input device, but optional
? User moves physical mouse =>

– Windows moves small bitmapped image (mouse
cursor) on display

– "Hot spot" points to a precise location on display

– Hot spot position constantly updated by low-level logic
inside Windows

Mouse Actions
? Button Down, Button Up
? Wheel movement
? Moving mouse
? Clicking

– Pressing and releasing a mouse button

? Dragging
– Moving mouse while a button is pressed down

? Double Clicking
– Clicking a button twice in succession
– Must occur within a set period of time and with mouse cursor

in approximately the same place
? Form’s SystemInformation class has two properties that give this

information:
– int DoubleClickTime
– Size DoubleClickSize

Information about Mouse

?More Form’s SystemInformaton Properties:
– bool MousePresent
– int MouseButtons

? Specifies which button was pressed
? Enumeration values: None, Left, Right, Middle

– bool MouseButtonsSwapped
– bool MouseWheelPresent
– int MouseWheelScrollLines

Mouse Events

– The “Control” Class defines 9 mouse events and 9
corresponding protected event handler methods
? Form class is derived from Control class

– Only one control or form receives mouse events
? The one that has its Enabled and Visible properties set to

true
? If multiple controls are stacked, the enabled visible control

on top receives the event
? A Form object receives mouse events only when mouse is

over its client area
– But mouse can be “captured” by a control => it can receive mouse

events when mouse is not over it

Some Basic Mouse Events
and Handler Methods

? MouseDown OnMouseDown()
? MouseUp On MouseUp()
? MouseMove OnMouseMove()
? MouseWheel On MouseWheel()

– Delegate for each event: MouseEventHandler
– 2nd argument for each handler: MouseEventArgs

? Click OnClick()
? DoubleClick OnDoubleClick()

– Delegate for each event: EventHandler
– 2nd argument for each handler: EventArgs

2

MouseEventArgs Properties

? Give access to read-only data that comes with
mouse event
– int X Horizontal position of mouse
– int Y Vertical position of mouse
– MouseButtons Button

? Enumeration possibilities:
– None, Left, Right, Middle
– Indicate(s) which button or buttons are currently pressed
– Each button corresponds to a bit set

– int Clicks
– int Delta

Click/DoubleClick EventArgs
Static Properties

?Give access to read-only data that comes
with mouse Click and DoubleClick events
– Point MousePosition

? Result in screen coordinates

? To convert to client area coordinates, use
PointToClient()

– MouseButtons MouseButtons

Sketching Example Program
? Sketch-dotNet

– Sketching revisited
? Using C# and the .NET Framework Class Library

? But if window is exposed, the sketch
disappears

? Two ways to avoid this:
1. Save the points in each sketch and redraw all

line segments in response to Paint event
2. Draw the sketch on a shadow bitmap that the

program draws on while it’s drawing on the
screen

– Then redraw the bitmap in response to Paint event

Saving the Sketch points
? Could use an array:

– Point[] apts = new Point[?????]
? But how big?

? Better to use a C# dynamic “ArrayList ”
– A class defined in System.Collections namespace

? Also has data structures like: Queue, Stack, SortedList, HashTable
– To create a new ArrayList:

? ArrayList arrlst = new ArrayList();
– Could hold any data type(s)

– To add elements, e.g., a Point p:
? arrlst.Add(p);
? Can also Insert() and Remove()elements

– Accessing an element: use an indexer as for an ordinary array
? Point p = (Point) arrlst[2];
? Note typecast

– Needed because indexer returns an object of type Object

– Number of objects in an Arraylist: arrlst.Count

New Sketch-dotNet using an ArrayList
? A single run can have many sketches

– One for each time left mouse button goes down
– So use one ArrayList to store the points for each sketch

? When finished (when mouse button goes up), convert to an array of Points

– Use a second ArrayList to store the array of points for each
sketch (i.e., an ArrayList of sketches)

? Each time left mouse button goes down, start a new
sketch’s ArrayList

? Each time mouse moves with left button down, draw line
segment and add the point to current sketch’s ArrayList

? In response to Paint event, use DrawLines(…) to draw all
the line segments in each ArrayList
g.DrawLines (Pen pen, Point[] a_pts); // a_pts is an array of Points

? See Sketch-dotNet -ArrayList example program
– Here we’re really storing the drawing in a Metafile format

New Sketch-dotNet using a Shadow
Bitmap

?Store the window client area as a shadow
bitmap
– Draw on it and on screen when mouse moves

with its left button down
– Draw the shadow bitmap on the screen when a

Paint event occurs
– Note that with this technique all of the

information on the original points is lost
?See the Sketch-dotNet-Bitmap example

program

3

Some Other Mouse Events and
Event Handlers

? MouseEnter OnMouseEnter()
– Mouse cursor has been moved onto form’s client area

? MouseLeave OnMouseLeave()
– Mouse cursor is no longer on top of client area

? MouseHover OnMouseHover()
– Mouse cursor has entered client area and has stopped

moving
– Only happens once between MouseEnter and

MouseLeave events

? Delegate for each: EventHandler
? Argument for each: EventArgs
? See Mouse-Enter-Leave-Hover example program

The Mouse Cursor
? A little bitmap on screen that indicates the location of the

mouse
? Can change its appearance
? It’s an object of type ‘Cursor’ defined in

System.Windows.Forms
? Get a mouse cursor from the ‘Cursors’ class

– Consists of 28 static read-only properties that return predefined objects
of type ‘Cursor’, e.g.:
? Arrow, Cross, Default, Hand, Help, Ibeam, WaitCursor, etc.

? Some Static read/write Properties of ‘Cursor’ class:
– Cursor Current
– Point Position
– For example to display the hourglass cursor on the form:

? Cursor.Current = Cursors.WaitCursor;

? Some Static Cursor methods:
– Show(); Hide();

? See MouseCursors example program

The Keyboard
? A shared resource in Windows

– All applications receive input from same keyboard
– But any keystroke has a single destination

? The destination is always a ‘Control’ (e.g. a Form)

– Object that receives a keyboard event has the “input focus”
– the active Form
? Usually the topmost form
? If form has a caption bar, it is highlighted

– Form.ActiveForm static property returns the active form

– this.Activate() method can be used to make this form the
active form

Keys and Characters

?Think of keyboard in two ways:
– A collection of distinct physical keys

? Code generated by a key press or release identifies the key

– A means of generating character codes
? Code generated identifies a character in a character set

– Traditionally 8-bit ASCII code
– In Windows, extended to 16-bit Unicode
– Keyboard combinations (Shift, etc.) taken into account

Types of Keys
? Keyboard divided into four general groups of keys

– Toggle keys: Pressing key changes state
? Caps Lock, Num Lock, Scroll Lock, Insert

– Modifier keys: Pressing key affects interpretation of
other keys
? Shift, Ctrl, Alt

– Noncharacter keys: Not associated with displayable
characters; direct a program to carry out certain actions
? Function keys, PgUp, PgDn, Home, End, Insert, Delete, Arrow

keys

– Character keys: Letters, numbers, symbol keys,
spacebar, Backspace, Tab key
? Generate ASCII/Unicode codes when pressed

Keyboard Events & Data
? KeyDown, KeyEventArgs

– When a key is pressed (WM_KEYDOWN)

? KeyPress, KeyPressEventArgs
– When a character-generating key is pressed (WM_CHAR)
– Occurs after a KeyDown event

? KeyUp, KeyEventArgs
– When a key is released (WM_KEYUP)

? Note KeyUp/KeyDown and KeyPress event data is
different
– KeyUp/KeyDown events provide low -level information about

the keystroke – which key
– KeyPress provides the character code

? Keyboard combinations taken care of

4

KeyDown/KeyUp Events
?KeyEventArgs Properties

– Keys KeyCode Identifies which key
– Keys Modifiers Identifies shift states
– Keys KeyData Combines KeyCode & Modifiers

? Keys: a huge enumeration, some examples:
– Keys.A, Keys.z, Keys.D0 (zero key), Keys.F1, Keys.Add,

Keys.Home, Keys.Left, Keys.Back, Keys.Space, Keys.LShiftKey
– See Online Help on “Keys enumeration”

– bool Shift True if Shift key is pressed
– bool Alt True if Alt key is pressed
– bool Handled Set by event handler (initially false)
– int KeyValue Returns KeyData as an integer

KeyPress Event

?When key(s) pressed correspond to character
codes

?KeyPressEventArgs Properties:
– char KeyChar Unicode/ASCII character code
– bool Handled Set by handler (initially false)

Two Example Programs
?Key:

– Assembles incoming characters from keyboard
into a string that is displayed on the form’s
client area
? Handles Backspace key by removing last character

from string

– Handles KeyPress event
?KeyArrow:

– Moves an image on the form’s client area in
response to keyboard Left/Right/Up/Down
arrow key presses

– Handles KeyDown event

