The Mouse and K

& A pointing device with one or mor
& |mportant input device, but optional
& User moves physical mouse =>
— Windows moves small bitmapped image (mouse
cursor) on display
— "Hot spot" pointsto a precise location on display

— Hot spot position constantly updated by low4evel logi
inside Windows

= Button Down, Button Up
= Wheel movement
= Moving mouse
& Clicking

— Pressing and rel easing a mouse button
= Dragging

— Moving mouse while abutton is pressed down
« Double Clicking

— Clicking abutton twicein succession

— Must occur within a set period of time and with mouse cu
in approximately the same place
= Form's Systeminformation class has two properties that give this
information:
— int DoubleClickTime
— Size DoubleClickSize

Information about Mouse

« More Form’s Systeminformaton
— bool MousePresent
—int MouseButtons

~ Specifies which button was pressed
~ Enumeration values: None, Left, Right, Middle

— bool MouseButtonsSwapped
— bool MouseWheel Present
—int MouseWheelScrollLines

Mouse~Ekvents

corresponding protected event handl
= Form classis derived from Control class

~ The one that hasits Enabled and Visible properti
true

= If multiple controls are stacked, the enabled visible
on top receives the event

=~ A Form object receives mouse events only when mou:
over itsclient area

— But mouse can be “captured” by acontrol => it can receive molyse
eventswhen mouseisnot over it

Some Basi ouse Events

= MouseDown

= MouseUp On MouseUp(
= MouseMove OnMouseMove()
= MouseWheel On MouseWhesl()

— Delegate for each event: MouseEventHandler
— 2" argument for each handler: MouseEventArgs
« Click onClick()
& DoubleClick OnDoubleClick()
— Delegate for each event: EventHandler
— 2" argument for each handler: EventArgs

MouseEventArgs Properties

= Give access to read-only data thef comes with
mouse event
—int X Horizontal position of mouse
—int Y Vertica position of mouse
— MouseButtons Button
«~ Enumeration possibilities:

— None, Left, Right, Middle

— Indicate(s) which button or buttons are currently pressed

— Each button corresponds to a bit set

—int Clicks
—int Delta

Sketching

& Sketch-dotNet
— Sketching revisited
=~ Using C# and the .NET Framewor Library
« Butif window is exposed, the skexch
disappears
= Twowaystoavoidthis:
1. Savethe pointsin each sketch and redraw
line segments in response to Paint event

2. Draw the sketch on a shadow bitmap that the
program draws on while it’ s drawing on the
screen

- Thenredraw the bitmap in response to Paint event

mple Program

New Sketch-

et using an ArrayList

sketch (i.e., anArrayList of sketches)
= Each time left mouse button goes down, start a
sketch’s ArrayList

& Each time mouse moves with |eft button down, dr:

& Inresponse to Paint event, use DrawLines(...) to dr
the line segmentsin each ArrayList
g.DrawLines(Pen pen, Point[] a_pts); // a_ptsisan array of Points
= See Sketch-dotNet-Arraylist example program
— Herewe'rereally storing the drawing in aMetafile format

Click/Dou lick EventArgs
Static Properti

« Give accessto read-only datath
with mouse Click and DoubleClic
— Point MousePosition
- Result in screen coordinates

~ To convert to client area coordinates, use
PointToClient()

— MouseButtons MouseButtons

= Could use an array:
— Point[] apts = new Point[?????
= But how big?
« Better to use a C# dynamic “ ArrayLi
— A classdefined in System.Collections nam
« Also has data structures like: Queue, Stack, SortedLi
— TocreateanewArrayList
= ArrayList arrlst= new ArrayList();
— Could hold any datatype(s)
— To add elements, e.g., aPaint p:
= arrlst.Add(p);
= Can also |nsert() and Remove() elements
— Accessing an element: use an indexer as for an ordinary ar
= Point p = (Point) arrls{2];

= Note typecast
— Needed because indexer returns an object of type Object

— Number of objectsin anArraylist arrlst.Count

= Storethewindow client area shadow
bitmap

— Draw on it and on screen when mouse oV
with its left button down

— Draw the shadow bitmap on the screen wheg a
Paint event occurs

— Notethat with thistechnique all of the
information on the original pointsislost

= See the Sketch-dotNet-Bitmap example
program

Some

= Mousel eave
— Mouse cursor isno longer on top of client ar
= MouseHover OnMouseHover ()

— Mouse cursor has entered client areaand has stop
moving

— Only happens once between MouseEnter and
Mousel eave events

« Delegate for each: EventHandler
= Argument for each: EventArgs
= See Mouse-Enter-Leave-Hover example program

= A shared resource in Windows

— All applications receive input from
— But any keystroke has a single destination

= Thedestinationisalwaysa‘ Control’ (e.g. aForm)
— Object that receives akeyboard event hasthe “i

—the active Form

= Usually the topmost form

« If form hasacaption bar, it is highlighted
— Form.ActiveForm static property returns the active for|
this.Activate() method can be used to make thisform th
activeform

= Keyboard divided into four g

— Toagale keys Pressing key changes st
= Caps Lock, Num Lock, Scroll Lock, Insert
— Modifier keys: Pressing key affectsinterpretason of
other keys
= Shift, Ctrl, Alt
— Noncharacter keys Not associated with displayabl
characters; direct aprogram to carry out certain acti
= Function keys, PgUp, PgDn, Home, End, Insert, Delete, Arr
keys
— Character keys: L etters, numbers, symbol keys,
spacebar, Backspace, Tab key
~ Generate ASCII/Unicode codes when pressed

groups of keys

ouse Cursor

= A little bitmap on screen that
mouse

« Can changeits appearance
= |t'san object of type ‘Cursor’ defined in
System.Windows.Forms

= Get amouse cursor from the ‘ Cursors' class

— Consists of 28 static read-only properties that return predefi
of type ‘Cursor’, e.g.:

- Arrow, Cross, Default, Hand, Help, Ibeem, WaitCursor, etc.
= Some Static read/write Properties of ‘ Cursor’ class:
— Cursor Current
— Point Position
— For exampleto display the hourglass cursor on the form:
~ Cursor.Current = Cursors.WaitCursor,
« Some Static Cursor methods:
- Show(); Hide();
« SeeMouseCursors example program

icates the location of the

& Think of keyboard in two ways:
— A collection of distinct physical keys
~ Code generated by akey press or release identifi

— A means of generating character codes

-~ Code generated identifies acharacter in a character
— Traditionally 8-bit ASCII code
— In Windows, extended to 16-bit Unicode
— Keyboard combinations (Shift, etc.) taken into account

Keyboard nts & Data

= KeyDown, KeyEventArgs
— When akey ispressed (WM_KEYDOW
= KeyPress, KeyPressEventArgs
— When acharacter-generating key is pressed (WMNCH
— Occurs after akeyDown event
= KeyUp, KeyEventArgs
— When akey isreleased (WM_KEYUP)
= Note KeyUp/KeyDown and KeyPress event datais
different
— KeyUp/KeyDown events provide low-level information abolt
the keystroke — which key
— KeyPress provides the character code
= Keyboard combinations taken care of

« KeyEventArgs Properties
- Keys KeyCode Identifies wh
— Keys Modifiers Identifies shift

- Keys KeyData Combines KeyCode

= Keys: ahuge enumeration, some examples:
— KeysA, Keys.z, Keys.DO (zero key), Keys.F1, Keys. Add,

Keys.Home, Keys.Left, Keys.Back, Keys.Space, Keys.LXii

— See Online Help on “Keys enumeration”

— bool Shift Trueif Shift key is pressed
- bool Alt Trueif Alt key is pressed

—bool Handled Set by event handler (initially false)
—int KeyVaue ReturnsKeyData as an integer

into astring that isdisplayed on th
client area

-~ Handles Backspace key by removing last ¢
from string

— Handles KeyPress event
= KeyArrow:
— Moves an image on the form’s client areain

response to keyboard Left/Right/Up/Down
arrow key presses

— Handles KeyDown event

« KeyPressEventArgs Properties:
—char KeyChar Unicode/ASCII character §pde
—bool Handled Setby handler (initialy fa

