Bitmaps,
Animation,
Timers,
DirectX

Introduction to Windows
Bitmaps

= See CS-360, CS-460/560 Notes &

Programs:
http:/AMww. cs. binghamton.edu/~reckert460/bitmaps. htm
http:/AMww. cs. binghamton.edu/~reckert360/class4a. htm
http:/mww. cs. binghamton.edu/~reckert?360/bitmap1_cpp. htm
http:/AMww. cs. binghamton.edu/~reckert360/bitmap3_cpp. htm

Bitmap: An Off-screen Canvas

= Rectangular image, can be created with almost
any paint program

=« Data structure that stores a matrix of pixel
values in memory

= Pixel value stored determines color of pixel

= Windows supports 4-bit, 8-bit (indirect) and 16
or 24-bit (direct) pixel values

=« Can be stored as .bmp file (static resource data)
= Can be edited; can save any picture
= Takes up lots of space (no compression)

k< A GDI object, must be selected into a DC to be
used

k- Think of as the canvas of a DC upon which
drawing takes place

L= Must be compatible with a video display or
printer

L« Can be manipulated invisibly and apart from
physical display device

I Fast transfer to/from physical device ==> flicker

free animation

l- Does not store info on drawing commands

Using Device Dependent
Bitmaps

A. Create and save bitmap using a paint editor -->
image.bmp file
Add to program's resource script file
—e.g.: IDB_HOUSE BITMAP "HOUSE.BMP"

— easier to select: “Project | Add Resource |
Bitmap | Import”

B. In Program, Instantiate a CBitmap object
CBitmap bmp1,;
C. Load it from the program's resources:

[MVaYETal W

- D. Display the bitmap
0. Get a ptr to the screen DC (as usual), pDC
1. Create a memory device context compatible
with the screen DC
CDC dcMem;
dcMem.CreateCompatibleDC(pDC);
2. Select bitmap into the memory DC
CBitmap* pbmpold = dcMem.SelectObject(&bmp1l);
3. Copy bitmap from memory DC to device DC
using BitBIt() or StretchBlIt()

k. 1.1 ARt VATmY o)
OO T oAt TOC)

4. Select bitmap out of memory DC

Uging Bitmaps

Hitnep
FEL
mEmoCE

A a
-E_ 2] ™, ———
Le ke | #alecTObact | CreacsConpak LbleDo]
o :'-3_]

Eirwap in H‘_Nl ¥ BiCELC LY Joresn
pEDETAm' 3 DC tacioin R
reEourcEs r
T

() Fates|
0. hADC=GerDC (hikd)) Soreen
1. hMDC=Cr=stsCompstiblsns (hDo)y windowo
2+ hBN=Losdlitmep (hInak, "hop*) 2 aliewkk
3. Jeleccobjecc |WADC, hEA) ares
G. BITBIC(ADC; cuiy BHDC, . a2

A Memory DC

. Like a DC for a physical device, but not
tied to device

.- Used to access a bitmap

L Bitmap must be selected into a memory
DC before displayable on physical device

.- CreateCompatibleDC(pDC) --> memory
DC with same attributes as device DC

.- SelectObject() selects bitmap into DC

— Subsequent copying from memory DC is fast
since data sequence is same as on the device

Bit Block Transfer in Windows

= pDC->BitBIt (x, y, w, h, &dcMem,
xsrc, ysrc, dwRop)

— Copies pixels from bitmap in source DC
(dcMem) to destination DC (pDC)

— X,y: upper left hand corner of destination
rectangle

—w,h: width, height of rectangle to be copied

— Xxsrc, ysrc - upper left hand corner of source
bitmap

— dwRop -- raster operation for copy

Raster Ops

= How source pixel colors combine with
current pixel colors

= Boolean logic combinations (AND, NOT,
OR, XOR, etc.)

— Currently-selected brush pattern also can
be combined

— So 256 different possible combinations
— 15 are named
= Useful for special effects

Named Raster Ops

« (S=source bitmap, D=destination, P=currently-
selected brush, i.e., the current Pattern)

BLACKNESS 0 (all bl ack) DSTINVERT ~D

MERGECCPY P & S MERGEPAINT ~S | D
NOTSROCCPY ~S NOTSRCERASE ~(S | D)
PATCOPY P PATINVERT P~ D
PATPAINT (~S| P) | D SRCAND S&D
SROOCPY S SRCERASE S & ~D
SRONVERT S~ D SRCPAINT S| D

VH TENESS 1 (all white)

“‘ Raster Ops (first time)

i Bitmap 3 Program | _[Of x|
Show Quit

BLACKMES ST DS TINVE R TeraaE RGE COP=rE RGEPAIN TEENO TSRCCOFTE

= .

HOTSRCE RASETPATCOPY: TINVE RTTEEPAT PAINT: F Cash D

- 5 =

SRCCOPY: SACERASE S H CINYE R T oo S FCPAIN Toemw/HI TENE S50

HHHHI

Raster Ops (second time)

i Bitmap 3 Program =] ES
Show Quit

HHHHI

H I

BLACKNE 5 522D S TINYE R TraE FGE COPY 2 MER GEPAINT 2N 0T SRCCOF S

StretchBlt()

= Same as BitBIt() except size of copied
bitmap can be changed

= Source & destination width/height given
pDC->StretchBIt (x,y,w,h,&dcMem,
Xsrc,ysrc wsrc ,hsrc, RasterOp);

NOTSRCERASETPAT COFY PATINYVER TP T PAINT. SRCAN Dot
SRECOFY: SRCERASE P CIWE i Terme 5 i CPAI M TEreadHI TE ME S50

= pDC->PatBlt(x,y,w,,h,dwRop);
— Paints a bit pattern on specified DC

— Pattern is a combination of currently-selected
brush and pattern already on destination DC

—X,Y,w,h determine rectangular area

— dwRop (raster op) specifies how pattern
combines with destination pixels:
BLACKNESS (0), DSTINVERT (~D), PATCOPY
(P), PATINVERT (P~D), WHITENESS (1)

— Pattern is tiled across specified area

Examples of BitBIt & StretchBIt

CBitmap bmpHouse; CDC dcMem;

BITMAP bm; int w,h;

bmpHouse LoadBitmap(IDB_HOUSE);
bmpHouse.GetBitmap(&bm);

w = bm.bmWidth; h = bm.bmHeight;
dcMem.CreateCompatibleDC(pDC);

CBitmap* pbmpOIld= dcMem.SelectObject(&mpHouse);
pDC->BitBI{(0, 0, w/2, h/2, &dcMem, 0, 0, SRCCOPY);
pDC->BitBI{(50, 0, w, h, &dcMem, 0, 0, SRCCOPY);
pDC->BitBI{(150, 0, w/2, h/2, &dcMem, w/2, h/2, SRCCOPY);
pDC->StretchBIt(0,100,w/2,h/2,&dcMem,0,0,w,h,SRCCOPY);
pDC->StretchBIt(50,100,w,h,&dcMem,0,0,w,h, SRCCOPY);
pDC->StretchBlt(150,100,2*w,2*h,& dcMem,0,0,w/2,h/2, SRCCOPY);
deMem SelectOhject(pbmpQld) -

i Bitmap1 Program M= &3
Show Quit

&EE
==

Animated Graphics

Notes from CS-360 Web Pages

Course Notes:
Class 4 -- Windows Bitmaps.Animation, and Timers
http://mmww. cs. binghamton.edu/~reckert360/class4a. htm

Sample Programs:

Example 4-3: AP| Bouncing Ball Animation using
PeekMessaqge()

http:/Aww. cs. binghamton.edu/~reckert’360/ball_cpp.htm
Example 4-4: AP| Bouncing Ball Animation with Bitblt() to
Preserve Background

http:/AMww. cs. binghamton.edu/~reckert’360/ballblt_cpp.htm
Example 4-5: API Bouncing Ball Animation using a Timer.
http:/AMww. cs. binghamton.edu/~reckert360/balltime_cpp.htm
Example 4-6: MFC Bouncing Ball Animation Using a Timer
http:/Aww. cs. binghamton.edu/~reckert’360/mfcballtime _cpp.htm

Animated Graphics

.- Creating a moving picture

— Give illusion of motion by continual

draw/erase/redraw

— If done fast, eye perceives moving image
.- In a single-user (DOS) application, we

could do the following:
Do Forever{

/* compute new location of object */

/* erase old object image */

/* draw object at new location */ }

= In Windows, other programs can’t run while
this loop is executing

= Need to keep giving control back to
Windows so other programs can operate

= Two methods:

— Use PeekMessage() Loop (for Win32 API)
» Override Onldle() (for MFC)

— Use a Windows Timer

PeekMessage() vs. GetMessage()

= GetMessage() only returns control if a
messageiswaiting for calling program

=« PeekMessage() returns (with O value) if no
active messages arein the system

= PeekMessage() oop can take action
(redraw image) if PeekMessage() returns 0

=« PeekMessage() doesn't return zero for
WM_QUIT (like GetMessage())
— So App must explicitly check foraWM_QUIT

messageto exit the program
v =7

= PeekMessage(IpMsg, hWnd, uFilterFirst,
uFilterLast, wRemove);

= Thefirst 4 parametersare same as
GetMessage.

= Last one: specifieswhether message should
be removed from the Queue

Peek M essage() message |oop
hile (TRUE) // Do forever

if (PeekMessage (& msg, NULL, 0, 0, PM_REMOVE))
{ // non-zero (TRUE) means we must handle msg
if (msg.message = = WM_QUIT)
return (int)msgwParam;
elsef
TranslateM essage (& msg);
DispatchMessage (& msg); }

else//{ zero(idle); do other stuff - draw next animation frame }

BALL Example Animation App
= AWin32 APl -- (Ball bouncing off walls)
«BALL.H

— Define menu item constants

— Define ball constants: (VELOCITY,
BALLRAD, MINRAD)

« BALL.CPP
— Global variables:

e _dDrawOn: toggle animation on or off

* _nXSize_nY Size: window width, height--to
determineif ball isinside

MFC Onldlg) Virtual Function

= In CWinThread:Run() thereis code like:
Do forever
while {!::PeekMessage(...)}
if (1onide (IldleCount++))
bldle=FALSE;

PumpMessage loop
= Onldl&() is called whenever program isidle
= S0 aderived app class can override Onldle() to

enact its own idle-processing functionality

WM _SIZE message

= Sent anytimewindow isresized by the user

« Vertica/horizonta sizeof client area
encoded inlParam

— Least significant two bytes = horizontal sizein
pixels

— Most significant two bytes = vertical size
& Helper function DrawBall()

— Draws ball in new position for each new frame
— Called each time PeekMessage() returns O

—_——————————————————————————————1

=« Parameter |Count: # of times Onldle() has been
called since last message was processed
— Framework doesits processing when |Count isO or 1
= Return value: norzero means Onldle() will be called
again if message queueis still empty
=« So structure the override asfollows:
BOOL CMyApp::Onldie(LONG ICount)
{ CWinApp:Onide (ICount);
if (ICount= = 2)

1/ Do our own idle processing (i.e., next fame of anim ation)
return TRUE }

— Note call to base class function so framework can do
necessary idle processing first

Timers -- Another Way to do
Windows Animation

= An input device that notifies an app
when a time interval has elapsed
— Application tells Windows the interval

— Windows sends WM_TIMER message
each time interval elapses

Using a Timer
= Allocate and set a timer with:
SetTimer (hWnd, timerID, interval, NULL);
* Win32 API
CWnd::SetTimer (timerlID, interval, NULL);
« MFC
— Interval in milliseconds
— Last parameter the address of a “timer procedure”
that will receive the WM_TIMER messages

« NULL means message goes to application’s queue
« l.e., to application’s WndProc()

= From that point on, timer repeatedly
generates WM_TIMER messages and
resets itself each time it times out

— Could be used to signal drawing the next
frame of an animation!!!

= WM_TIMER handler: OnTimer(timerlD)

= When app is done using a timer, stop
timer messages and remove it with:
KillTimer(timerID);

BALLTIME MFC Application

= Same as BALL, but using MFC Doc/View

= All the action in CView derived class

« Menu item “Ball On/Off” handler: OnShow/()
— Toggles BOOL m_bDrawOn

=« WM_CREATE handler: OnCreate()
— Calls SetTimer() to start timer
= WM_SIZE handler: OnSize()
— Sets m_nXSize, m_nYSize
= WM_DESTROY handler: OnDestroy()

— Calls KillTimer() to stop timer

= WM_TIMER handler: OnTimer()

— Calls helper function DrawBall() to draw ball in
new position if m_bDrawOn is TRUE
« Gets a pointer to a DC using GetDC()

« Constructs a broad white pen for exterior of ball
using CPen

* Constructs a red brush for interior of ball using
CBrush

* pDC->SelectObject() to select pen an brush into DC

« PDC->Ellipse() to draw ball in new position

* pDC->SelectObject() to select pen/brush out of DC

Disadvantages to Using
Timers

= WM_TIMER message are very low
priority
« Fastest: 18 times per second (55 msec.)

Drawing on a Memory Bitmap
(Improving an Animation)

« If many objects are drawn during each
frame of an animation, we get flicker

— Because of multiple accesses to frame buffer
during each frame

= Best way to eliminate flicker:
— Just one access to frame buffer per frame

— Use off-screen memory bitmaps
— This is double buffering

Drawing on Off-screen
Bitmaps
= Use GDI functions to "draw" on a
bitmap selected into a memory DC
= Just like using a "real" DC
— So we can do many drawing operations
= When done, BitBlIt() result to real DC

— Only one access to fame buffer, so no
flicker in animations

Getting a Bitmap to Draw on

= Create a blank bitmap in memory with:

CBitmap:: CreateCompatibleBitmap (pDC, w, h);
— An alternative to LoadBitmap()

= After selected into a memory DC, use
GDI graphics functions to draw on it
without affecting real device screen

— All the GDI drawing operations are now
invisible to the user

.-When drawing is all done, BitBIt() it to
real device
—S0 just one screen access
—No flicker

* (drawing directly to screen device context
==> many accesses to screen
which produces flicker for complex images)

Animation of moving objects

over a stationary background
= Set up an offscreen image bitmap and select it
into a memory DC
=« Set up an offscreen background bitmap and
select it into another memory DC
= For each frame (each timer timeout):
— Calculate new positions of objects

— BitBIt() background bitmap to the offscreen image
bitmap

— Redraw objects (in new positions) on the offscreen
image bitmap

2. Drww chjrces in

r 1
Mesireil Anbiition S=quemes

_—

7

Campansd Objeois New Peliisns AMferrern Badbogreamsl By

' 1. B Erwckozrmusd Bitsig

e prilivns s ca oifeoreen mings bimap
alfaviets e e
it

e

EMBuerern lenaie Elfmap Sereen

= For a large image field, this BitBIt() covers
a large area
— could be too slow

=« Better method: compute affected area

— (rectangle encompassing old and new object
positions)

« BitBIt() to that area only

Sprites
- Little bitmaps that move on screen
I Frequently used in game programs

I Could restore background and just BitBIt() the
sprite over it

I But there's a problem

— sprite consists of desired image enclosed in a
rectangle

— so when blitting is done, background color inside
enclosing rectangle will wipe out the background area
on destination bitmap

- movmg ob]ect will have a "halo" around it
I i sha

Solution (Sprite Animation)

1. Set up a "mask bitmap" in which sprite pixels are black
and rest of enclosing rectangle is white
2. BitBIt() this over background using SRCAND (AND)
raster op
3. Set up an "image bitmap" in which sprite pixels are set to
image colors they should be (whatever colors are in the
sprite object) and rest of enclosing rectangle pixels are
black
4. BitBIt() this to the result of step 2 using the SRCINVERT
(XOR) raster op
Result will make sprite move to its new location with
the background around it intact

lmmar Eomap Barkgrama Umdrcrved Hemb

i

Womi
Al g Eackigraund
LLES}
< - [l B
_—'—"",
Dnvags ity S Dveabred Hevall

=

DirectX and Windows Game
Programming

«=Game Programming

—No "good" (fast) Windows games before
1995

—Only DOS games for PCs--

« Direct access to video memory permitted
* Fast

Windows GDiI

« Device independence
& Useful but slow functions
= No access to video hardware

= ==> High-speed games almost
impossible

Demanding Requirements
for High-resolution
Animated Graphics

= 640 X 480 X 256-color &
— 307,200 bytes

— If background changes in each frame (e.g.,
flight simulator)

— 307K bytes must be moved to screen
— At least 15 times a second
— Almost 5 Megabytes/second

L Also sprites move on a background
.- Must be transferred one-by-one to screen
memory too
L To avoid flicker--
— Compose Scene in memory
— Then transfer it to screen
twice as much data must be moved

— GDI BitBIt() and StrecthBIt() can't cope with
this task in real time

Microsoft Remedy (1995):
the "Game SDK" (DirectX)

= A series of components called “COM
objects”
— Component Object Model
— COM: an object-oriented interface
— Creating/using A COM interface closely
resembles creating/using a C++ class

Some DirectX Components

= Direct Draw
« DirectSound
« Directinput
= DirectPlay
= Direct3D

DirectDraw

= Provides direct control over the
computer's video hardware

= Enables programs to quickly transfer
graphics between memory and screen

= Takes advantage of hardware
capabilities of the video card

= Capabilities not available on video card
are emulated in software

| DirectDraw Hardware Access

I Application I
I DirectDraw l
Tumelion mol
supparied
function supporisd

HEL:

HAL

Hardwar

Ui

DirectSound

= Provides device-independent way of
directly accessing computer's sound
card

= Enables programmer to add sound
effects and music to games

& Can synchronize sound effects with
events occurring on the screen

= Can handle 3D sound effects

Directinput

= Provides for easy use of joystick/game
controller devices

= Done in a device-independent way

DirectPlay

games over a network or modem
= Transport-independent, protocol-

= Allows Windows games to communicate
with each other

= Provides for implementation of multi-user

independent, on-line-service-independent

DirectX Games Run Under
Windows

= Benefit from all the built-in Windows
functionality

« Can use:
— GDI graphics functions
— All Windows user interface capabilities

— All of fonts and other standard Windows
drawing objects

— In general, the entire Windows Win32 API

Direct3D

= Provides optimized three-dimensional
capabilities to Windows games
— polygon modeling, 3D transformations,
projections, clipping, surface properties,
lighting, texturing, shadowing, hidden
surface removal, animation
= Takes advantage of 3D acceleration
hardware, if available

=« No additional coding required of the
game developer

DirectDraw

Main purpose:

— To provide directly -accessible drawing "surfaces" in
memory

— To transfer drawing surfaces quickly to screen

& A surface:

— A block of memory used for drawing

— Separate surfaces used to hold each sprite in an
animated scene

— Another surface used to hold the background
— Surfaces are composed into a final image
— Which is transferred to the primary screen surface

Steps in Using DirectDraw
in a Windows Program

=« (Check the online help for details on the use of
each DirectDraw function)

=

w

N

B

o1

| —— Gt pomero ek uffer

. Call DirectDrawCreate() to create a DirectDraw object

Call the DirectDraw object's SetCooperativelLevel()
member function==>
Get control over screen and restrict access by other
applications

. Call DirectDraw object's SetDisplayMode() member

function==>
Set screen’s resolution and color depth

Call DirectDraw object's CreateSurface() member ftn==>
Create a primary surface object + one or more
secondary surfaces (back buffers)

Call the primary DirectDrawSurface object's
GetAttachedSurface() member function==>

10

6. Call the back buffer's DirectDrawSurface
object's Lock() member function.es
— Get a pointer to the back buffer surface's memory
7. Draw an image on the back buffer
— Access its memory directly
8. Call the back buffer's DirectDrawSurface
object's Unlock() member function==>

— Tell DirectDraw that the program is done with the
back buffer

9. Call the primary DirectDrawSurface object's
Flip() member function e
« Swap surface memory associated with the
primary surface and that of the next back buffer
surface, thus displaying the newly-drawn image
10. When terminating the application, all direct
draw objects should be removed by calling
their Release() member functions

The lineminimum DirectDraw
Example Application

= Creates a 640 X 480 X 8-bit-color primary
surface

= Draws 256 horizontal lines (using the current
palette) on a back buffer surface

= Flips surfaces so the lines are displayed on
screen

= A Win32 API program that has no menu

= Drawing action occurs in response to the user
pressing the <F1> keyboard key

%

horlines.cpp

WinMain(y

WndProc()

VK F1:

Construct CDirDraw object (1-5)
Invoke ChangeColor()
Invoke Drawlines() (6-8)
Call m_pPrimarySurface->flip() (9)
Destructor gets rid of DirDraw objects (10)

CDirDraw Class (cdirdraw.cpp, .h)

Constructor()
Destrucior()
Drawlines()
ChangeColor()

=« The Program’s CDirDraw class:

— Specification in cdirdraw .h

— Implementation in cdirdraw .cpp
» Does most of the work in this example
« Defines a pointer to a DirectDraw object and two

pointers to DirectDraw surfaces

« Its constructor performs steps 1 through 5 (above)
« Its destructor performs step 10

* Member functions ChangeColor() & DrawLines ()
do rest (steps 6 through 8)

Drawing Horlzental Cobored Lines on a DirectDraw Surface

A Surface Vides Memory
Fiich 1
MRk + 8 (P + 50
3 Wk -—
WDk | — WPich et
o 1*fick — ———
Park aiay
1 Bich —' et
[Pz il

11

= <ESC> key terminates the application

= Application keeps track of/displays time required
to draw lines on back buffer

« And time required for the surface switch
— Uses GDI TextOut() to do the display

« Program uses DirectDraw member functions in
the simplest ways possible

= A robust application would do extensive error
checking after most of function calls (Refer to
the references.)

DirectX and lineminimum Details

= See following CS-360 Web Pages:
=« Course Notes

=« Class 4x--DirectX and Windows Game
Programming

http:/Aww. cs. binghamton.edu/~reckert/360/class4x. htm

. Sample Programs
=~ Example 4-6: lineminimum DirectX Example

http://iwww. cs. binghamton.edu/~reckert360/horlines_cpp.htm
http:/Mww. cs. binghamton.edu/~reckert360/cdirdraw_cpp.htm
http:/Avww. cs. binghamton.edu/~reckert360/cdirdraw_h.htm

12

