Timers, Animation, | mages,
Bitmaps

Windows Timer

Input device that periodically notifies an application
each time a specified time interval has elapsed
Using atimer guarantees that a program can regain
control periodically
Three different Timer classesin:

— System.Timers

— System.Threading

— System.Windows.Forms
WE' || use the last one — The same one that is available
in Win32 APl and MFC

— It'sintegrated with other Windows events and is easiest to use

Timer applications

Implementing a clock

Multitasking

Maintaining updated status report

| mplementing autosave feature

Terminating demo versions of programs
Activation of a screen saver after certain time
Pacing movement — animation

Others

The Timer Class
Creating a Timer object:
Timer timer = new Timer();
Timer class has one event:
— Event: Tick

— Delegate: EventHandler

— Defining a Timer Tick event handler:
Void TimerOnTick(object obj, EventArgs ea) {...};

— Attaching it to the Tick event:
timer.Tick += new EventHandler(TimerOnTick);

Timer read/write Properties:

int Interval, Tick time in milliseconds
bool Enabled, Trueif timer is running
Timer Methods:

void Start();

void Stop();

Some Timer Examples
CloselnTen:

— A program that sets a “one-shot” timer that closes the application
after ten seconds

— Could be used to implement a “demo” version of a program that
allows the user to try it for awhile

— Note use of obj argument in TimerOnTick() handler to get the
timer that sent the message
» Or simply declare a class-level timer in the Form class
RandomRectangles-timer:
— Draws a new random rectangle once every 2 seconds
* We must use CreateGraphics() to create a Graphics object to draw with

Note that atimer can be programmed manualy...
Or by using the Designer

— Just drag atimer into the Form and double click on it to add the
Timer Tick event handler

— Set the Enabled and Interval properties in the Properties window

Animated Graphics

» Creating a moving picture
— Giveillusion of motion by continual draw/erase/redraw
— If done fast, eye perceives moving image

* Inasingle-user (DOS) application, we could do the
following:
Do Forever

{
/I compute new location of object
/I erase old object image
/I draw object at new location

}

* In Windows, other programs can’t run while this
loop is executing

* Need to keep giving control back to Windows
SO other programs can operate

» Ways of doing it:
— Use PeekMessage() Loop -- (for Win32 API)
— Override Onldle() -- (for MFC)

— Use aWindows Timer (any Windows platform)

* Erase old frame and draw new frame each time thereisa
timer ‘tick’ event

Bouncing Ball Example Program

Draws ared ball that moves inside window’'s client areaat a
given velocity and bounces off its borders

Responds to form’'s Resize event to reset ball’ s position
when window is resized

Responds to Timer Tick event to draw next animation frame

Class level variables (accessible to all class methods):

— XC, yC: current coordinates of ball’ s center

— xDelta, yDdta: x,y components of velocity

— iXSize, iYSze: dimensions of window’s client area

Helper function DrawBall()

— Uses the Form's CreateGraphics() method to get a Graphics object

— Draws BackColor élipse in old position and red one in new posn
« After each timer tick and after window is resized

— Checksfor collisions with sides of window and adjusts ball’s path

DateTime Structurein .NET

» To keep track of time and date

» Some Constructors:
DateTime(int year, int month, int day);
DateTime(int year, int month, int day, int hour, int
minute, int second);

DateTime(int year, int month, int day, int hour, int
minute, int second, int msec);
* year: 1-9999, month: 1-12, day: 1- #days in month, hour: O-
23, minute: 0-59, second: 0-59, msec: 0-999

DateTime Properties

» Some Read-only Properties

— Year, Month, Day, Hour, Minute, Second,
Millisecond, DayOfWeek, DayOfY ear

» Animportant Static Property

— Now
* Returns a DateTime structure filled with current
local date and time

* E.g., to get current date and time:
DateTime dt = DateTime.Now;
» dt then contains the current date/time

Some DateTime M ethods

— string ToString()
 dt. ToString ();
* Returns something like: “10/1/2004 10:30:01 A.M.”

— string ToString(string strFormat)

* strFormat and returned values:
—“d” 10/1/2004
“D” Friday, October 01, 2004
Friday, October 01, 2004 10:30 A.M.
Friday, October 01, 2004 10:30:01 A.M.
10/1/2004
' 10/1/2004 10:30:01 A.M.
" October 1
10:30 A.M.
— “u” 2004-10-01 10:30:01

|
5 g

A Simple Digital Clock Program
(S mpleClock)

— Uses aone-second timer

— Each timer tick the handler calls Invalidate() to
force a Paint message

— Paint handler uses DateTime.Now Property to
get a DateTime object containing the exact
current time and date

» The DateTime object' s ToString() method converts
it to the appropriate string format

» DrawString() draws the string at the top of the
Form'sclient area

| mages and Bitmaps

Video display of images described by Images
and/or Bitmaps
— Rectangular arrays of “pixel values” stored in memory
— Pixel vaue determines color of a pixd in the array
— Encapsulated in .NET Image and Bitmap classes
Can be created and edited with amost any paint
program
Windows supports 4-bit, 8-bit (indirect) and 16 or
24-bit (direct) pixel values
Can be stored/retrieved as .bmp files
— Take up lots of space (no compression)
Other common file formats (some compressed):
— Jpg, Gif, Png, Tiff

Can be displayed on a device using Drawlmage()
method of the Graphics object (gr-obj) associated
with adevice, e.g.:

gr-obj.Drawlmage(lmage img, int x, int y);

gr-obj.Drawlmage(lmage img, point pt);

— Lots of other overloads available (as we’ll see)
Can be manipulated invisibly and apart from
physical display device
Fast transfer to/from physical device ==> flicker
free animation
Does not store information on drawing commands

— Windows Metafilesdo that
Y ou can aso draw on an Image or Bitmap

— Then transfer it to the screen

— One screen access ==> no flicker in animations

System.Drawing.lmage Class

» An abstract class
— Can't be instantiated with a constructor
— But has overloaded static methods that return Image
objects that can be displayed

— Can load an image or bitmap from afile
Image img = Image.FromFile(strFilename);
Bitmap btmp = (Bitmap)Image.FromFile(strFilename);
* Other overloads

— Once you ve loaded an Image, you can use a Graphics
object’'s Drawlmage(img, ...) todisplay it

Two Example Programs

— ImgFromFile

» Displaysajpg image on the window s client area
— But what if image fileis not in right directory?

— FromFile() method will throw a runtime exception and
program will die

— Our program should be able to catch that exception

» And do we need to retrieve the image -- i.e. call
FromFile() -- every time there’ s a Paint event?

— ImgFromFileBetter

» Usesatry/catchblock to avoid errors
— Putsup aMessageBox if there is an exception
» And makes only one call to FromFile() in program s
constructor

— Storesthelmagein aclasslevel variable soit’s accessible
to the Paint handler

try/catch/[finally] block
e Syntax:

try

{/I statements that could generate exceptions} ;
catch [(ExceptionType variableName)]

{/I statements for action when exception occurs}
[catch [(ExceptionType variableName)]

{/I statements for action when exception occurs}]

[finaly
{/I statements that always execute before exiting try block}]
» Some ExceptionTypes:
— Exception /I generic, variable will have info
— ArithmeticException // calculation error, e.g., divide by zero
— ArgumentOutOf RangeException

— NullReferenceException
— Lots more

Other Image Class & Image Drawing | nformation
» Some Image Properties (read-only):

- Size

» Representsthe size of the rectangular image
— Members: int Width, int Height

» Width and height of the image in pixels

» Other overloads of Drawlmage() that specify arectangular
destination and/or source region for the image:
Drawlmage (Image img, int x, inty, int w, int h);
* X,y = position; w = width, h = height of image on destination window
Drawimage (Image img, Rectangle rectDst);
* rectDst specifes rectangle on window image will be displayed in
— Some read/write properties of Rectangle class:

» X, Y Coordinates of upper left hand corner
» Width, Height
Drawlmage (Image img, Rectangle rectDst, Rectangle rectSrc, GraphicsUnit gu);
— Arguments:
» Destination and source Rectangles
 GraphicUnit enumeration value must be GraphicsUnit.Pixel
— With these we can stretch or compress all or part of an image

Mor el mage Examples

ImgCenter
— Maintains image in center of window's client area

ImgScaleToWindow

— Scales image to fit in window's client area
ImgPart

— Displays part of image

ImgPartScale

— Scales part of image to fit in window's client area

Rotating & Shearing an Image

Drawlmage(Image img, Point[] apt);
— aptis an array of three points:
» apt[0] = destination of upper left corner of image
 apt[1] = destination of upper right corner of image
» apt[2] = destination of lower left corner of image
— 4t point generated automatically completes a parallelogram
Drawlmage(Image img, Point[] aptDst, Rectangle
rectSrc, GraphicsUnit gu);
— aptDst: an array of three points specifying three corners of
the image (as in previous Drawlmage)
— rectSrc: source rectangle of original image
— gu: Source rectangle GraphicsUnit enumeration value
 Display, Inch, Millimeter, Pixel, Point, etc.
» Should be GraphicsUnit.Pixel
* Depending on the points in the array, the image will
be rotated and/or sheared

» Example Program: ImgAtPoints

10

Drawing on an Image

» Up to now we ve drawn an image on a Graphics object
— Refersto the video display

— The GDI+ isrealy drawing on a huge bitmap stored in memory
» Thisbitmap is associated with the screen’s video display adapter

» But we can draw on any bitmap

— First must get a Graphics object that refers to the image

— Use Graphics.Fromlmage(Image img) static method to get it:
Graphics g = Graphics.Fromlmage(img);

— Draw on it with GDI+ drawing functions

— Display it by getting a screen Graphics object and using one of its

Drawlmage(img, ...) methods

» Donetypically in Paint handler

— Must Dispose of image’s graphics object after using it
9-Dispose();

Example: ImgDrawOn

“Shadow” Images

— We may want to compose a complex scene off
screen — a*“ shadow bitmap” or “ shadow image”

» Draw on a graphics object that refers to the shadow image
as much as you like outside of Paint handler so you re not
accessing the physical screen

— Even draw other images on the shadow image (sprites)!

* Then in Paint handler (or in response to timer tick),
display it with asingle call to Drawlmage(bitmap, ...)

 See ImgShadowBitmap example

— Very useful in avoiding flicker in animations

 “Compose’ the next frame in the shadow image
— Draw all the objectsonit first

» Then draw the “composed” image on the physical screen
— Thus only one access per frame to the physical screen

» Thistechnique is called “double buffering”

11

Bitmap Class

— Derived from Image class, but you can do more with it
— Create a blank bitmap of a specified size with
constructor:
Bitmap bm = new Bitmap(int width, int height);
— Used like Image objectsin drawing picturesand in
double buffering

— Nice for making parts of a sprite “transparent”

» So there is no rectangular “hao” around the sprite when it is
drawn over the background

 For example for a sprite that has a white background:
Bitmap sprite = (Bitmap)l mage.FromFile(sprite-file.bmp);
sprite.MakeTransparent (Color.White);

» Then draw as usua onto a shadow bitmap’s graphic object
* See ImgShadowBitmap2 example

Garbage Collection

When using extensive off-screen images, program performance
may degrade
— For example, when you create new Graphics objects associated with
images/bitmaps every frame of an animation
— Your application could slow down or even crash!!!

Problem is the way .NET handles garbage collection
— Garbage collection: releasing unused memory
— Done automatically whenever system decidesto do it
— Soin applications creating image graphics objects every time a fast timer
times out, garbage collection may not be done frequently enough
— Evenif you'redisposing of your graphics objects associated with images,
memory is not being released fast enough
So what can be done?
— Force garbage collection
— Usethe GC class Collect static method:
GC.Caollect();
— Could be done at the end of the timer-tick handler

12

Using Images in Resour ces (a parenthesis)

» Making an image file part of your project so thefile
doesn' t have to be on the computer running the app.
— Add the image file to the project
* ‘Project’ |‘Add Existing ItenT and select theimagefile
— Embed it in the executable by:
* In Solution Explorer:
— Click on theimage object
— Inthe Properties window change “Build Action” to “Embedded
Resource’
— In code use the Bitmap class constructor:
» Bitmap(Type type, String resource);
» GetType() can be used to obtain the type
Imageimg = new Bitmap(GetType(), “flower.jpg”);
» Then use the image as usual

— See ImgEmbedded example program

13

