MFC Windows Programming:
Document/View
Approach

MFC Windows Programming:
Document/View Approach
o App/Window approach creates application and
window objects
@ Mirrors Win32 API program organization
o Main difference--MFC automates & masks details
o But data & rendering of data are intertwined

o Frequently, data members exist in window class

— Example in MSG1.CPP: Output string & position both
defined in window-based class
« Output string is data
« Position is user defined

e Conceptually data is different from
rendering of data

e In an App/Window they are mixed
together in same window class

e Frequently need to have different views
of same data
— (e.g., displaying data in a window or on a

printer)

e So it would be good to separate data

and data presentation

Doc/View Achieves Separation

o Encapsulates data in a CDocument class
object

o Encapsulates data display mechanism data in
a CView class object

o Classes derived from CDocument

— Should handle anything affecting an application's
data

@ Classes derived from CView

— Should handle display of data and user
interactions with that display

Other Classes still Needed

e Still need to create CFrameWnd and
CWinApp classes

e But their roles are reduced

Documents

o Document

— Contain any forms of data associated with
the application (pure data)

— Not limited to text

— Could be anything
« game data, graphical data, etc.




Document Interfaces

e Single Document interface (SDI) application
— Program that deals with one document at a time
— All our programs to date have been SDI apps
o Multiple Document Interface (MDI)
application
— Program organized to handle multiple documents
simultaneously

— Multiple open documents can be of same or
different types

— Example of an MDI application: Microsoft Word

Views

e A rendering of a document; a physical
representation of the data

e Provides mechanism for displaying data
stored in a document

e Defines how data is to be displayed in a
window

o Defines how the user can interact with it

Frame Window

e Window in which a view of a document
is displayed

e A document can have multiple views
associated with it
— different ways of looking at the same data

e But a view has only one document
associated with it

Document

Frame Window

::ﬁ Viewl

Data

7al

RN

ViewZ

Documents, Views, & Frames

MFC Template Class Object

e Handles coordination between documents,
views, and frame windows

e In general:
— Application object creates a template...

— which coordinates display of document's data..

—inaview...
—inside a frame window

Template/Document/View/Window

Relationship between Application, Document
Template, Document, Frame Window, & View
in a D JView Apg MEC g




Serialization

e Provides for storage/retrieval of
document data

e Usually to/from a disk file
e CDocument class has serialization built
into it
— So in DOCUMENT/VIEW apps,
saving/storing data is straightforward

Dynamic Creation

e In Doc/View approach, objects are dynamic
e Doc/View program is run
— Its frame window, document, and view are created
dynamically
— Doc/View objects synthesized from file data
— Need to be created at load time

— To allow for dynamic creation, use dynamic
creation macros

« in classes derived from CFrameWnd, CDocument, and
CView)

Dynamic Creation Macros

e DECLARE_DYNCREATE(class_name)
—in declaration (.h file)

e IMPLEMENT_DYNCREATE(class_name,
parent_class_name)

— (in .cpp file)

o After IMPLEMENT_DYNCREATE() macro is
invoked:

— Class is enabled for dynamic creation
— Now a template can be created

Document/View Programs
o Almost always have at least four classes
derived from:

— CFrameWnd
— Cdocument
— Cview
— CWinApp

o Usually put into separate declaration (.h) and
implementation (.cpp) files

® Because of template and dynamic creation,
there’s lots of initialization

o Could be done by hand, but nobody does it
that way

Microsoft Developer Studio

AppWizard and ClassWizard
Tools

AppWizard

e Tool that generates a Doc/View MFC program
framework automatically

o Can be built on and customized by programmer
o Fast, efficient way of producing Windows Apps
o Performs required initialization automatically
@ Creates functional CFrameWnd, CView,
CDocument, CWinApp classes
o After AppWizard does it's thing:
— Application can be built and run

— Full-fledged window with all common menu items,
tools, etc.




ClassWizard

@ Message handling in a framework-based MFC
application facilitated by using ClassWizard

e A tool that connects resources & user-generated
events to program response code

® Writes C++ skeleton routines to handle
messages

e Inserts code into appropriate places in program
o Code then can then be customized by hand

@ Can be used to create new classes or derive
classes from MFC base classes

o Add new member variables/functions to classes

SKETCH Application
o Example of Using AppWizard and
ClassWizard
e User can use mouse as a drawing pencil
Left mouse button down:
— lines in window follow mouse motion
e Left mouse button up:
— sketching stops
@ User clicks "Clear" menu item
—window client area is erased

e Sketch data (points) won't be saved

— So leave document (CSketchDoc) class
created by AppWizard alone

e Base functionality of application (CSketchApp)
and frame window (CMainFrame) classes are
adequate
— Leave them alone

® Use ClassWizard to add sketching to CView
class

Sketching Requirements

o If left mouse button is down:
— Each time mouse moves:
« GetaDC
« Create a pen of drawing color
« Select pen into DC
« Move to old point
« Draw a line to the new point
« Make current point the old point
« Select pen out of DC

Variables

e BOOLEAN m_butdn
e CPoint m_pt, m_ptold
o COLORREF m_color
e CDC*pDC

Steps in Preparing SKETCH

e 1. File / New / MFC AppWizard (exe)
— Enter name: Sketch
— Step 1: Choose “Single Document” (SDI App)
— Take defaults for Steps 2-6

e 2. Build App --> Full-fledged SDI App with
empty window and no functionality

e 3. Add member variables to CSketchView
— Can do manually in .h file




e 3. Easier to:

— Select ClassView tab and expand (+)
» Note member functions & variables
— Right click on CSketchView
* Choose “Add member variable”
* Type: CPoint
* Name: m_pt
» Access: Public (default)
— Repeat for:
* CPoint m_ptold
* BOOL m_butdn
*« COLORREF m_color
« CDC* pDC

e 4. Use ClassWizard (Icon or Ctrl-w) to
set up message map and handler
function
— Message Maps tab
— Class name: CSketchView
— Object ID: CSketchView highlighted
— Messages:

+ Scroll to WM_LBUTTONDOWN
« Click: Add Function, Edit Code:
— After “TODO..." enter following code:
m_butdn = TRUE;

m_ptold = point;

e Repeat process for WM_LBUTTONUP
handler
— Scroll to WM_LBUTTONUP
— Click: Add Function, Edit Code:
— Enter:
m_butdn = FALSE;

e Repeat for WM_MOUSEMOVE
— Scroll to WM_MOUSEMOVE

— Click: Add Function, Edit Code:
if (m_butdn)
{
pDC = GetD();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

e 5. Initialize variables in CSketchView
constructor
— Double click on CSketchView constructor
(Classview)
— After “TODO..."”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);
e 6. Build Project and Run

Menus and Command Messages

e User clicks on menu item

e WM_COMMAND message sent

e IDM_XXX identifies which menu item

e No predefined handlers

e S0 message mapping macro is different
o ON_COMMAND(IDM_XXX, OnXxx)

— OnXxx() is the handler function

— Must be declared in .h file and defined in .cpp
file




Adding Color and Clear Menu
Items to SKETCH App

e 1. Resource View (Sketch resources)
— Double click menu
— Double click IDR_MAINFRAME menu

— Add: “Drawing Color” popup menu item with items:

* IDM_RED: “Red”

* IDM_BLUE: “Blue”

* IDM_GREEN: “Green”

* IDM_BLACK: “Black”

* IDM_CLEAR: “Clear Screen”

® 2. Add menu item command handler functions

(message map)
— ClassWizard (Ctrl-w or icon)

* Class name: CSketchView

* ObjectID: Select IDM_BLACK

* Messages: Select COMMAND

* AddFunction/ OK / Edit Code

« After “TODO..." enter ff. Code:

m_color = RGB(0,0,0);

Repeat for IDM_BLUE, Code: m_color = RGB(0,0,255);
Repeat for IDM_GREEN, Code: m_color = RGB(0,255,0);
Repeat for IDM_RED, Code: m_color = RGB(255,0,0);
Repeat for IDM_CLEAR, Code: Invalidate();




