
1

MFC Windows Programming:
Document/View

Approach

MFC Windows Programming:
Document/View Approach

l App/Window approach creates application and
window objects

l Mirrors Win32 API program organization

l Main difference--MFC automates & masks details

l But data & rendering of data are intertwined
l Frequently, data members exist in window class

– Example in MSG1.CPP: Output string & position both
defined in window-based class

• Output string is data
• Position is user defined

l Conceptually data is different from
rendering of data

l In an App/Window they are mixed
together in same window class

l Frequently need to have different views
of same data
– (e.g., displaying data in a window or on a

printer)

l So it would be good to separate data
and data presentation

Doc/View Achieves Separation

l Encapsulates data in a CDocument class
object

l Encapsulates data display mechanism data in
a CView class object

l Classes derived from CDocument
– Should handle anything affecting an application's

data

l Classes derived from CView
– Should handle display of data and user

interactions with that display

Other Classes still Needed

l Still need to create CFrameWnd and
CWinApp classes

l But their roles are reduced

Documents

l Document
– Contain any forms of data associated with

the application (pure data)

– Not limited to text

– Could be anything
• game data, graphical data, etc.

2

l Single Document interface (SDI) application
– Program that deals with one document at a time
– All our programs to date have been SDI apps

l Multiple Document Interface (MDI)
application
– Program organized to handle multiple documents

simultaneously

– Multiple open documents can be of same or
different types

– Example of an MDI application: Microsoft Word

Document Interfaces Views

l A rendering of a document; a physical
representation of the data

l Provides mechanism for displaying data
stored in a document

l Defines how data is to be displayed in a
window

l Defines how the user can interact with it

Frame Window
l Window in which a view of a document

is displayed
l A document can have multiple views

associated with it
– different ways of looking at the same data

l But a view has only one document
associated with it

MFC Template Class Object

l Handles coordination between documents,
views, and frame windows

l In general:
– Application object creates a template...

– which coordinates display of document's data…

– in a view…

– inside a frame window

Template/Document/View/Window

3

Serialization

l Provides for storage/retrieval of
document data

l Usually to/from a disk file
l CDocument class has serialization built

into it
– So in DOCUMENT/VIEW apps,

saving/storing data is straightforward

Dynamic Creation
l In Doc/View approach, objects are dynamic
l Doc/View program is run

– Its frame window, document, and view are created
dynamically

– Doc/View objects synthesized from file data

– Need to be created at load time
– To allow for dynamic creation, use dynamic

creation macros
• in classes derived from CFrameWnd, CDocument, and

CView)

Dynamic Creation Macros

l DECLARE_DYNCREATE(class_name)
– in declaration (.h file)

l IMPLEMENT_DYNCREATE(class_name,
parent_class_name)
– (in .cpp file)

l After IMPLEMENT_DYNCREATE() macro is
invoked:

– Class is enabled for dynamic creation
– Now a template can be created

Document/View Programs
l Almost always have at least four classes

derived from:
– CFrameWnd
– Cdocument

– Cview
– CWinApp

l Usually put into separate declaration (.h) and
implementation (.cpp) files

l Because of template and dynamic creation,
there’s lots of initialization

l Could be done by hand, but nobody does it
that way

Microsoft Developer Studio
AppWizard and ClassWizard

Tools

AppWizard
l Tool that generates a Doc/View MFC program

framework automatically

l Can be built on and customized by programmer

l Fast, efficient way of producing Windows Apps

l Performs required initialization automatically

l Creates functional CFrameWnd, CView,
CDocument, CWinApp classes

l After AppWizard does it's thing:
– Application can be built and run

– Full-fledged window with all common menu items,
tools, etc.

4

ClassWizard
l Message handling in a framework-based MFC

application facilitated by using ClassWizard

l A tool that connects resources & user-generated
events to program response code

l Writes C++ skeleton routines to handle
messages

l Inserts code into appropriate places in program

l Code then can then be customized by hand

l Can be used to create new classes or derive
classes from MFC base classes

l Add new member variables/functions to classes

SKETCH Application
l Example of Using AppWizard and

ClassWizard
l User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

l Left mouse button up:
– sketching stops

l User clicks "Clear" menu item
– window client area is erased

l Sketch data (points) won't be saved

– So leave document (CSketchDoc) class
created by AppWizard alone

l Base functionality of application (CSketchApp)
and frame window (CMainFrame) classes are
adequate

– Leave them alone

l Use ClassWizard to add sketching to CView
class

Sketching Requirements

l If left mouse button is down:
– Each time mouse moves:

• Get a DC
• Create a pen of drawing color

• Select pen into DC
• Move to old point

• Draw a line to the new point
• Make current point the old point

• Select pen out of DC

Variables

l BOOLEAN m_butdn
l CPoint m_pt, m_ptold
l COLORREF m_color
l CDC* pDC

Steps in Preparing SKETCH
l 1. File / New / MFC AppWizard (exe)

– Enter name: Sketch

– Step 1: Choose “Single Document” (SDI App)

– Take defaults for Steps 2-6

l 2. Build App --> Full-fledged SDI App with
empty window and no functionality

l 3. Add member variables to CSketchView
– Can do manually in .h file

5

l 3. Easier to:
– Select ClassView tab and expand (+)

• Note member functions & variables

– Right click on CSketchView
• Choose “Add member variable”
• Type: CPoint

• Name: m_pt
• Access: Public (default)

– Repeat for:
• CPoint m_ptold

• BOOL m_butdn
• COLORREF m_color

• CDC* pDC

l 4. Use ClassWizard (Icon or Ctrl-w) to
set up message map and handler
function
– Message Maps tab
– Class name: CSketchView

– Object ID: CSketchView highlighted

– Messages:
• Scroll to WM_LBUTTONDOWN
• Click: Add Function, Edit Code:

– After “TODO…” enter following code:
m_butdn = TRUE;

m_ptold = point;

l Repeat process for WM_LBUTTONUP
handler
– Scroll to WM_LBUTTONUP

– Click: Add Function, Edit Code:
– Enter:

m_butdn = FALSE;

l Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE

– Click: Add Function, Edit Code:
if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);

CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;

pDC->SelectObject (pPenOld);

}

l 5. Initialize variables in CSketchView
constructor
– Double click on CSketchView constructor

(Classview)

– After “TODO…”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint (0,0);

m_color = RGB(0,0,0);

l 6. Build Project and Run

Menus and Command Messages
l User clicks on menu item
l WM_COMMAND message sent
l IDM_XXX identifies which menu item
l No predefined handlers
l So message mapping macro is different
l ON_COMMAND(IDM_XXX, OnXxx)

– OnXxx() is the handler function
– Must be declared in .h file and defined in .cpp

file

6

Adding Color and Clear Menu
Items to SKETCH App

l 1. Resource View (Sketch resources)
– Double click menu
– Double click IDR_MAINFRAME menu

– Add: “Drawing Color” popup menu item with items:
• IDM_RED: “Red”

• IDM_BLUE: “Blue”
• IDM_GREEN: “Green”

• IDM_BLACK: “Black”
• IDM_CLEAR: “Clear Screen”

l 2. Add menu item command handler functions
(message map)
– ClassWizard (Ctrl-w or icon)

• Class name: CSketchView
• ObjectID: Select IDM_BLACK

• Messages: Select COMMAND
• AddFunction / OK / Edit Code

• After “TODO…” enter ff. Code:
m_color = RGB(0,0,0);

Repeat for IDM_BLUE, Code: m_color = RGB(0,0,255);
Repeat for IDM_GREEN, Code: m_color = RGB(0,255,0);

Repeat for IDM_RED, Code: m_color = RGB(255,0,0);
Repeat for IDM_CLEAR, Code: Invalidate();

