Microsoft Visual Studio .NET

(C) Richard R. Eckert

TheMicrosoft NET

Framewor k

*The Common Language Runtime

*Common Language Specification
—Programming Languages

*C#, Visual Basic, C++, lots of others

*Managed Modules (Assemblies)
*MSIL

*The .NET Framework Class Library
—Namespaces

(C) Richard R. Eckert

.NET Architecture

l:..'.n".icr'ua ::--F'r' .NET. F'rum.awurk ;‘.lr.'chi.ha:.:i'ur'a i

i

AT kGl e

Common Language Speclfication

Framework Class Library

Common Language Runtime

Windows LINUX

Compilation in the .NET
Framework

CVBNETS C_CED N NET

|:l:| EeEs [
-

Armembhe s

ct —————
| i Usmasmaged Uele >
e

—
5

[osumon Langnage Bnstans JIT Compider |

-.":_Efa_mm Coelis

| Win32AFE + Opesating Sysiem

Namespaces

A group of classes and their methods

FCL iscomposed of namespaces
Namespaces are stored in DLL filescalled
assemblies
Included in a C# program with the using
keyword
— If not included, you must give the fully qualified

name of any class method or property you use

« System.Windows.FormsM essageBox.Show(...)

Something like packagesin Java

(C) Richard R. Eckert

Some | mportant .Net Namespaces

* System Core data/auxiliary classes
« System.Collections
« System.Data

* System.Drawing

e System.lO

» System.Net

* System.Threading
« System.Web

* System.Web.Services Classes for writing web services
* System.Web.UI
* System.Windows.Forms Classes for Windows GUI apps

Resizable arrays + other containers
ADO.NET database access classes
Graphical Output classes (GDI+)
Classes for file/stream I/O

Classes to wrap network protocols
Classes to create/manage threads
HTTP support classes

Core classes used by ASP.NET

» See online help on ‘Class Library’

(C) Richard R. Eckert

C#
» A new component & object oriented language
— Emphasison the use of classes
Power of C plusease of use of Visual Basic
» Combinesthe best aspects of C++ and Java
— Conceptually simpler and more clear than C++
— More structured than Visua Basic
— More powerful than Java
e Syntax very similar to C/C++
— No header files
» Managed pointersonly
—“Almost no pointers’ & “amost no bugs’

(C) Richard R. Eckert

C# Classes

» Can contain:

— “Fields’: Datamembers (like C++ variables)

— “Methods’: Code members (like C++ functions)

— “Properties’: In-between members that expose data
« To user program they look like datafields

« Within the class they look like code methods
« Often provide controlled access to private datafields
— Vdlidity checks can be performed
— Values can be obtained or set after validity checks
» Using Accessor methods get() and set()
— “Events’: Define the notifications aclassis capable of
firing in response to user actions

(C) Richard R. Eckert

Example: Squar e class
public class Square
{
private intside_length = 1; 11 A Field

public int Side_length Il A Property
{
get{returnside_length; }
set
{
if (value>0)
side_length = value;
else
throw (new ArgumentOutOfRangeException());

}

public intarea() Il A Method
{
return (side_length * side_length);

}
public Square(intside) 1/ The Constructor method

side_length = side;

(C) Richard R. Eckert

Instantiating and Using the Square Class

Square sq = new Square(10); /I Construct a Square object of

/I side_length = 10

/I Instantiates the object and invokes

/I the class constructor
/I Retrieve object’s Side_Length Property
/I Change object’s Side_length Property
/I Define an integer variable and use

/I the class area() method to compute

/I the area of the square
MessageBox Show(“Area=“ + sg_area.ToString());

/I Display result in a Message Box

int x = sq.Side_length;
sq.Side_length = 15;
int sq_area = sg.area();

- =i /I Note use of ToString () method
) /l to convert an integer to a string.
Hram = 725 /I Show() is a static method of MessageBox
Il class

Windows Forms
A Windows Form: just awindow
Forms depend on classes in namespace ‘ System.Windows.Forms'
Form classisin ‘ System.Windows.Forms':
— Theheart of every Windows Forms applicationisaclass derivedfrom Form,
« Aninstance of this derived class represents the application’s mein window

« Inherits many properties and methods from Form that determine the look and
behavior of the window

— E.g., Text property to change window’s caption
Application: Another important class from ‘ System.Windows.Forms'
— Itsstatic method Run() drives the Windows Form application
 Argument is the Eorm to be run

— Invoked in the program'’ s entry point function: Main()

— Causesthe program to enter the message loop

— Form passed to Run() has code to post a quit message when form isclosed

— Returnsto Main() when done and program terminates properly

(C) Richard R. Eckert

A Simple Windows Form App in C# --
Helloworld

using System.Windows.Forms; // the namespace containing
/I the Form class
public class HelloWorld: System.Windows.Forms.Form
Il our class derived from Form
public HelloWorld() /I our class constructor
{
this. Text = "Hello World"; // Set this form’s Text Property
}

static void Main()

{
}

/I Application’s entr y point
Application.Run(new HelloWorld()); // Run our form

}

(C) Richard R. Eckert

Compiling a C# Application from the
Command Line

« Start a Command Window with the proper paths to the
compiler/linker set
— Easiest way: From Task Bar:
« ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio .NET’ | ‘Visual Studio
.NET Tools’ | ‘Visual Studio .NET Command Prompt’
« Starts the DOS Box Command Window
— Navigate to the directory containing the source code file(s)
— From the command prompt Invoke the C# compiler and linker
— For example, to build an executable from the C# source file
myprog .cs, type one of the following:

csc myprog.cs (easiest way, creates a console app)

csc /target:exe myprog.cs (also creates a console application)

csc /t:.winexe myprog.cs (creates a Windows executable)

csc/t:.winexe /r:Systemdll,System.Windows.Forms.dll,System.Drawing.dll
myprog.cs (to provide access to needed .NET DLLs)

(C) Richard R. Eckert

Using Visual Studio to Develop a
Simple C# Application “Manually”
¢ Start Visual Studio as usual
« ‘File’ | ‘New’ | ‘Project’ | ‘Visual C# Projects’ | ‘Empty Project’
« To create the program
— ‘Project’ | ‘Add New Item’
« Categories: ‘Local Project Items’
« Templates: ‘Code File’
— This will bring up the code editor
— Type in or copy and paste the C# source code
« But you must also provide access to some additional .NET
Common Language Runtime DLLs
« Do this by adding ‘References’:
— ‘Project’ | ‘Add Reference’
— Select: System.dIl and System.Windows.Forms.dll

« Build project as usual (‘Build’ | ‘Build Solution’)
(C) Richard R. Eckert

Using Visual Studio’sDesigner to Develop a
Simple C# Application

« Start Visual Studio as usual
« ‘File’ | ‘New’ | ‘Project’ | ‘Visual C# Projects’ | ‘Windows Application’
— Gives a “designer view” of the Windows Form the project will create
— Also skeleton code: Right click on form & select ‘View Code’ to see it
« Note how it's broken up into ‘Regions’ (+ and - boxes on the left)
* These can be expanded and contracted
Expand the ‘Windows Form Designer generated code’ Region
— Note the Form properties that have been preset
— Change the ‘Text' property to “This is a Test"
Reactivate the Designer View by clicking on the ‘Form1.cs [design] tab
— Note how the caption of the form has changed
Look at the ‘Properties’ window
Find the ‘Text’ Property and change it by Typing ‘Hello World’
Resize the form (drag its corners) — note how the Size property changes
Change the Background Color in the Properties Box to red:
— Click on BackColor’ | down arrow | “custom” tab | red color box

Go back to ‘Code View’ and note changes that have been made
— Build and run the app

(C) Richard R. Eckert

.NET Managed M odules (Assemblies)

* The result of building a program with any of the compilers
capable of generating MSIL

— Microsoft provides: C#, J#, Visual Basic, Managed C++, Jscript

— Also ILASM (Intermediate Language Assembler)

— Third parties provide other compilers that generate MSIL
‘Executables’ (assemblies) designed to be run by the CLR
Contain 4 important elements stored in the “Manifest”:

— A Windows Portable Executable (PE) file header
— A CLR header containing important information about the module

— Metadata describing everything inside the module and its external
dependencies

+ Means every managed module is “self describing”
+ One of the keys to language interoperability
— The MSIL instructions generated from the source code
« Can examine Assemblies with a tool called ILDASM

(C) Richard R. Eckert

The ILDASM Disassembler

« Used to examine an assembly’s metadata and code

¢ Start a Command Window with proper path to
ILDASM set
— Easiest way: From Task Bar:

« ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio .NET" | ‘Visual
Studio .NET Tools' |

« Starts the DOS Box Command Window

— Navigate to the directory containing the assembly (.exe)
— Invoke ILDASM
« e.g., for HelloWorld program:
ILDASM HelloWorld.exe

« Displays a window showing the assembly’s Manifest and the
classes in the assembly

(C) Richard R. Eckert

A Session with ILDASM

« Double Click on ‘Manifest’

— List of assemblies that module depends on
— Assembly name

— Modules that make up the assembly
« Because HelloWorld is a single -file assembly, there is only one

« Expand HelloWorld class

— Class contains two methods:
« A constructor (.ctor)
* Main ('S’ means it's a static method)
— Expand Main
« .entrypoint a directive indicating it's where execution starts

« Code instantiates a HelloWorld object and calls Application.Run for the
form

— Expand .ctor
« Calls parent Form's constructor

« Puts “Hello World” string on stack and calls set_Text to set the form’'s
Text property
(C) Richard R. Eckert

Events, Delegates, and Handlers

— Events: Results of user actions
— But in .NET events are also “class notifications”
— Classes define and publish a set of events that other
classes can subscribe to
* When an object changes its state (the event occurs), all other
objects that subscribe to the event are notified
— Events are processed by event handler methods

— The arguments to an event handler must match those of
a function prototype definition called a delegate:
« A method to whom event handling is delegated
« Atype-safe wrapper around a callback function
« Can be thought of as a managed (safe) function pointer
— Not a raw memory address, but wraps the function’s address
* Helps avoid program crashes when the function is called back
« Permits any number of handler methods for a given event
(C) Richard R. Eckert

Events, Delegates, Handlers

Events. Delegates. and Hamdlers in NET
[Clany defimes;
An Event fr.g. Paini]

A public Dielsgate - protope for handler [e.g., PainiEveatHandlen-,- |

Swbecribing class:
difinas 3 bhamdler etk
mast fallow protorype defised is delogate
| g MlvPaisaHaadliat--1 |

Delegate attaches hadler o the sveal:” thimevegi-+=Delegabslhandle |
[#.g., this.Faint += PxisiEveatHandieri Ay PaintBaadler) |

(C) Richard R. Eckert

An Example — Handling a Paint Event
* FEormclasshas aPaint event to handle window exposures
« The delegate isPaintEventHandler, defined as:
public delegate void PaintEventHandler(object objSender,
PaintEventArgs pea);
— First argument: sender object (where event ocurred)
— Second argument: provides event data
« A classwith properties‘ Graphics’ and‘ ClipRectangle’
— Graphics containsinstantiation of Graphics class (GDI+)
» The class used to draw on aform (like aDevice
Context)
— ClipRectangle: Specifies areaof window that needsto be
redrawn
« Any Paint handler method must have these arguments
¢ And the Paint handler must be “attached” to the Paint event of the
Form class (i.e., delegated to the handler)

(C) Richard R. Eckert

Defining the Event Hander and Attachingit to
the Fvent

Defining the form’s Paint event handler method:
private void MyPaintHandl ject objsender, PaintEventArgs pea)
«

{

/I event handling code goes here

b

Attaching the handler to the form’s Hvent

(delegating it to the event handler):
form.Paint += new PaintEventHandler (MyPaintHandler);

A handler can also be “detached” from an event:
object.event -= new delegate(method);

(C) Richard R. Eckert

Drawing Text in response to a Paint Event
» Drawing hamespace contains many classes and
structures for drawing on a window
* Some of them:
— Bitmap, Brush, Brushes, Color, Font, Graphics, Icon,
Image, Pen, Pens, Point, Rectangle, Size
— See online help: ‘ClassName class’ ‘all members’
» Graphics Class
— Represents a GDI+ drawing surface
« Like a device context
— Contains many graphics drawing methods
» See Help on ‘Graphics class’, ‘all members’
— Obtaining a graphics object:
« In Paint event handler, use second argument:
— PaintEventArgs is a Graphics object

— Code: Graphics g = pea.Graphics
(C) Richard R. Eckert

Using DrawString() to Draw Text

¢ Graphics. DrawString() has lots of overloaded versions
o Simplest:
DrawsString (string str, Font font, Brush brush, float x, float y);
— string class: an alias for System.String
« Defines a character string
+ Has many methods to manipulate a string
— Font class: gives a Windows Form program access to many fonts with
scalable sizes
+ A Form has a default Font: It's one of the Form's properties
« Or you can instantiate a new Font object: Lots of possibilities (we'll see later)
— Brush or Brushes class: color/style of characters

+ Lots of different color properties, e.g.
Brushes Black

+ Or can create one of a specified Color
Brush br = new SolidBrush(Color FromArgb(r,g,b));
Brushbr = new SolidBrush(Color.Red);
— X,y : Location to draw string on window client area
(C) Richard R. Eckert

Hello_in_window Example Program

» Respondsto Paint Event by displaying ‘Hello
World' inwindow’ sclient areausing severa
different Brushes

* Manua Project
— Define Handler and Attach it to Paint event manually

» Designer Project
— Select the Paint event in the form’ s Properties window

« Click on lightning bolt
— Attachment of handler done automatically
— Skeleton handler code generated automatically

(C) Richard R. Eckert

An Alternative to I nstalling Event Handlers

* Inany classderived from ‘Control’ (e.g. ‘Form’) its
protected OnPaint() and other event handlerscan be
overriden:

protected override void OnPaint(PaintEventArgs pea)
{

// Painting code goes here
¥

— Avoids having to attach the handler to the event

» See HdloWorld_override example program

(C) Richard R. Eckert

A Separate Classfor Main()

« An dternative way of organizing a
Windows Form application:
—Definethe Formin one class
—Placethe Main() function in another class

—Must be done manually.
« Designer gives the single class program template
— See SeparateMainl example program

(C) Richard R. Eckert

Inheriting Form Classes

Just asyour Form inheritsfrom
‘ System.Windows.Forms.Fornt', you can set up a
new Form that inheritsfrom a previously defined
Form
Be sureits Main() includes keyword ‘ new’
And that Visual Studio knowswhich class Main()
istheentry point:
— In project’ s Properties box select ‘ Property Pages’ icon

« ‘Common Properties’ | ‘Genera’ | Application’ | ‘ Startup

Object’

« Select ‘ InheritHelloWorld'

« See Helloworld_inherit example

(C) Richard R. Eckert

Multiple Handlers

» An advantage of the delegate mechanism isthat
multiple handlers of the same event can be used
Just attach each handler to the event
— For example:
Form.Paint += new PaintEventHandler(PaintHandler1);
Form.Paint += new PaintEventHandler(PaintHandler2);
And then writethe handlers

Each timethe event occurs, al handlerswill be
calledin sequence

See TwoPaintHandlers example

(C) Richard R. Eckert

Some other GDI+ Drawing M ethods

— DrawArc();

— DrawEllipse();

— DrawLine()

— DrawPolygon();

— DrawRectangle();

— FillEllipse();

— FillPolygon();

— FillRectangle()

— Lots of others in ‘Graphics’ class

« See online help on various overloaded forms of calling these
functions

(C) Richard R. Eckert

Random Rectangles Example Program

— Makes use of FillRectangle() GDI+ method
—‘Random’ class contains many methods to generate
random numbers

Random r = new Random();

— Instantiates a new Random object and seeds the pseudo-random
number generator

* The ‘Next()’ method actually generates the number
— Many overloaded forms of Next()
« Getting a random color:
Color ¢ = ColorfromArgh(r.Next(256), r.Next(256), r.Next(256));
— Use Form’s ClientSize Property to get width and
height of window

— Draw filled rectangle with random size and color:
« Use FillRectangle() and Math.Min(), Math.Abs()

(C) Richard R. Eckert

