
1

(C) Richard R. Eckert

Microsoft Visual Studio .NET
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The Microsoft .NET 
Framework

•The Common Language Runtime
•Common Language Specification

–Programming Languages
•C#, Visual Basic, C++, lots of others

•Managed Modules (Assemblies)
•MSIL
•The .NET Framework Class Library

–Namespaces
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.NET Architecture
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Compilation in the .NET 
Framework
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Namespaces
• A group of classes and their methods
• FCL is composed of namespaces
• Namespaces are stored in DLL files called 

assemblies
• Included in a C# program with the using

keyword
– If not included, you must give the fully qualified 

name of any class method or property you use
• System.Windows.Forms.MessageBox.Show(…)

• Something like packages in Java
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Some Important .Net Namespaces
• System Core data/auxiliary classes
• System.Collections Resizable arrays + other containers
• System.Data ADO.NET database access classes
• System.Drawing Graphical Output classes (GDI+)
• System.IO Classes for file/stream I/O
• System.Net Classes to wrap network protocols
• System.Threading Classes to create/manage threads
• System.Web HTTP support classes
• System.Web.Services Classes for writing web services
• System.Web.UI Core classes used by ASP.NET
• System.Windows.Forms   Classes for Windows GUI apps

• See online help on ‘Class Library’
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C#
• A new component & object oriented language

– Emphasis on the use of classes
• Power of C plus ease of use of Visual Basic
• Combines the best aspects of C++ and Java

– Conceptually simpler and more clear than C++
– More structured than Visual Basic
– More powerful than Java

• Syntax very similar to C/C++
– No header files

• Managed pointers only
– “Almost no pointers” ? “almost no bugs”
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C# Classes

• Can contain:
– “Fields”: Data members (like C++ variables)
– “Methods”: Code members (like C++ functions)
– “Properties”: In-between members that expose data

• To user program they look like data fields
• Within the class they look like code methods
• Often provide controlled access to private data fields

– Validity checks can be performed
– Values can be obtained or set after validity checks

» Using Accessormethods get() and set()

– “Events”: Define the notifications a class is capable of 
firing in response to user actions
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Example: Square class
public class Square
{

private i n tside_length = 1;                                               // A Field

public int Side_length          // A Property
{

get { return side_length; }

set
{

if (value>0)
side_length = value;

else
throw (new ArgumentOutOfRangeException());

}
}

public int area()            // A Method
{

return (side_length * side_length);

}

public Square(i n tside)                                                          // The Constructor method
{

side_length = side;
}

}
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Instantiating and Using the Square Class
Square sq = new Square(10);       // Construct a Square object of 

// side_length = 10
// Instantiates the object and invokes
// the class constructor

int x = sq.Side_length;                  // Retrieve object’s Side_Length Property
sq.Side_length = 15;          // Change object’s Side_length Property
int sq_area = sq.area();               // Define an integer variable and use

// the class area() method to compute
// the area of the square

MessageBox.Show(“Area= “ + sq_area.ToString());
// Display result in a Message Box
// Note use of ToString() method 
// to convert an integer to a string.
// Show() is a static method of MessageBox 
// class
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Windows Forms
• A Windows Form: just a window
• Forms depend on classes in namespace ‘System.Windows.Forms’

• Form class is in ‘System.Windows.Forms’: 
– The heart of every Windows Forms application is a class derived from Form

• An instance of this derived class represents the application’s main window

• Inherits many properties and methods from Form that determine the look and 
behavior of the window

– E.g., Text property to change window’s caption

• Application: Another important class from ‘System.Windows.Forms'
– Its static method Run() drives the Windows Form application

• Argument is the Form to be run

– Invoked in the program’s entry point function:  Main()
– Causes the program to enter the message loop 
– Form passed to Run() has code to post a quit message when form is closed
– Returns to Main() when done and program terminates properly
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A Simple Windows Form App in C# --
HelloWorld

using System.Windows.Forms;    // the namespace containing
// the Form class

public class HelloWorld : System.Windows.Forms.Form
{                                                    // our class derived from Form

public HelloWorld()                     // our class constructor
{

this.Text = "Hello World";   // Set this form’s Text Property
}

static void Main()                         // Application’s entr y point 
{

Application.Run(new HelloWorld());   // Run our form
}

}
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Compiling a C# Application from the 
Command Line

• Start a Command Window with the proper paths to the 
compiler/linker set
– Easiest way: From Task Bar:

• ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio .NET’ | ‘Visual Studio 
.NET Tools’ | ‘Visual Studio .NET Command Prompt’

• Starts the DOS Box Command Window

– Navigate to the directory containing the source code file(s)
– From the command prompt Invoke the C# compiler and linker
– For example, to build an executable from the C# source file 

myprog.cs, type one of the following:
csc myprog.cs                          (easiest way, creates a console app)
csc /target:exe myprog.cs       (also creates a console application)

csc /t:winexe myprog.cs          (creates a Windows executable)
csc /t:winexe /r:System.dll,System.Windows.Forms.dll,System.Drawing.dll 

myprog.cs                             (to provide access to needed .NET DLLs)   
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Using Visual Studio to Develop a 
Simple C# Application “Manually”

• Start Visual Studio as usual
• ‘File’ | ‘New’ | ‘Project’ | ‘Visual C# Projects’ | ‘Empty Project’
• To create the program

– ‘Project’ | ‘Add New Item’ 
• Categories: ‘Local Project Items’
• Templates: ‘Code File’

– This will bring up the code editor
– Type in or copy and paste the C# source code

• But you must also provide access to some additional .NET 
Common Language Runtime DLLs

• Do this by adding ‘References’:
– ‘Project’ | ‘Add Reference’
– Select: System.dll and System.Windows.Forms.dll

• Build project as usual (‘Build’ | ‘Build Solution’)
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Using Visual Studio’s Designer to Develop a 
Simple C# Application

• Start Visual Studio as usual
• ‘File’ | ‘New’ | ‘Project’ | ‘Visual C# Projects’ | ‘Windows Application’

– Gives a “designer view” of the Windows Form the project will create
– Also skeleton code: Right click on form & select ‘View Code’ to see it

• Note how it’s broken up into ‘Regions’ (+ and - boxes on the left)
• These can be expanded and contracted
• Expand the ‘Windows Form Designer generated code’ Region

– Note the Form properties that have been preset
– Change the ‘Text’ property to “This is a Test”

• Reactivate the Designer View by clicking on the ‘Form1.cs [design]’ tab
– Note how the caption of the form has changed

• Look at the ‘Properties’ window 
• Find the ‘Text’ Property and change it by Typing ‘Hello World’
• Resize the form (drag its corners) – note how the Size property changes
• Change the Background Color in the Properties Box to red:

– Click on ‘BackColor’ | down arrow | “custom” tab | red color box
• Go back to ‘Code View’ and note changes that have been made

– Build and run the app (C) Richard R. Eckert

.NET Managed Modules (Assemblies)
• The result of building a program with any of the compilers 

capable of generating MSIL
– Microsoft provides: C#, J#, Visual Basic, Managed C++, Jscript
– Also ILASM (Intermediate Language Assembler)
– Third parties provide other compilers that generate MSIL

• ‘Executables’ (assemblies) designed to be run by the CLR
• Contain 4 important elements stored in the “Manifest”:

– A Windows Portable Executable (PE) file header
– A CLR header containing important information about the module
– Metadata describing everything inside the module and its external 

dependencies
• Means every managed module is “self describing”
• One of the keys to language interoperability

– The MSIL instructions generated from the source code
• Can examine Assemblies with a tool called ILDASM
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The ILDASM Disassembler
• Used to examine an assembly’s metadata and code
• Start a Command Window with proper path to 

ILDASM set
– Easiest way: From Task Bar:

• ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio .NET’ | ‘Visual 
Studio .NET Tools’ | 

• Starts the DOS Box Command Window

– Navigate to the directory containing the assembly (.exe)
– Invoke ILDASM

• e.g., for HelloWorld program:
ILDASM HelloWorld.exe

• Displays a window showing the assembly’s Manifest and the 
classes in the assembly
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A Session with ILDASM
• Double Click on ‘Manifest’

– List of assemblies that module depends on
– Assembly name
– Modules that make up the assembly

• Because HelloWorld is a single -file assembly, there is only one

• Expand HelloWorld class
– Class contains two methods:

• A constructor (.ctor)
• Main (‘S’ means it’s a static method)

– Expand Main
• .entrypoint a directive indicating it’s where execution starts
• Code instantiates a HelloWorld object and calls Application.Run for the 

form
– Expand .ctor

• Calls parent Form’s constructor
• Puts “Hello World” string on stack and calls set_Text to set the form’s 

Text property
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Events, Delegates, and Handlers
– Events: Results of user actions
– But in .NET events are also “class notifications”
– Classes define and publish a set of events that other 

classes can subscribe to
• When an object changes its state (the event occurs), all other 

objects that subscribe to the event are notified 
– Events are processed by event handler methods
– The arguments to an event handler must match those of 

a function prototype definition called a delegate:
• A method to whom event handling is delegated
• A type-safe wrapper around a callback function
• Can be thought of as a managed (safe) function pointer

– Not a raw memory address, but wraps the function’s address
• Helps avoid program crashes when the function is called back
• Permits any number of handler methods for a given event
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Events, Delegates, Handlers
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An Example – Handling a Paint Event
• Form class has a Paint event to handle window exposures
• The delegate is PaintEventHandler, defined as:

public delegate void PaintEventHandler(object objSender, 
PaintEventArgs pea);

– First argument: sender object (where event ocurred)
– Second argument: provides event data

• A class with properties ‘Graphics’ and ‘ ClipRectangle’
– Graphics contains instantiation of Graphics class (GDI+)

» The class used to draw on a form (like a Device 
Context)

– ClipRectangle: Specifies area of window that needs to be 
redrawn

• Any Paint handler method must have these arguments
• And the Paint handler must be “attached” to the Paint event of t he 

Form class (i.e., delegated to the handler)
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Defining the Event Hander and Attaching it to 
the Event

• Defining the form’s Paint event handler method:
private void MyPaintHandler(object objsender, PaintEventArgs pea)
{ 

// event handling code goes here 
};

• Attaching the handler to the form’s Event 
(delegating it to the event handler):

form.Paint += new PaintEventHandler (MyPaintHandler);

• A handler can also be “detached” from an event:
• object.event -= new delegate(method);
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Drawing Text in response to a Paint Event
• Drawing namespace contains many classes and 

structures for drawing on a window
• Some of them: 

– Bitmap, Brush, Brushes, Color, Font, Graphics, Icon, 
Image, Pen, Pens, Point, Rectangle, Size

– See online help:  ‘ClassName class’ ‘all members’

• Graphics Class
– Represents a GDI+ drawing surface

• Like a device context
– Contains many graphics drawing methods

• See Help on ‘Graphics class’, ‘all members’

– Obtaining a graphics object:
• In Paint event handler, use second argument:

– PaintEventArgs is a Graphics object
– Code:       Graphics g = pea.Graphics
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Using DrawString() to Draw Text
• Graphics.DrawString() has lots of overloaded versions
• Simplest:

DrawString(string str , Font font, Brush brush, float x, float y);
– string class: an alias for System.String

• Defines a character string

• Has many methods to manipulate a string
– Font class: gives a Windows Form program access to many fonts with 

scalable sizes
• A Form has a default Font:  It’s one of the Form’s properties
• Or you can instantiate a new Font object:  Lots of possibilities (we’ll see later)

– Brush or Brushes class: color/style of characters
• Lots of different color properties, e.g.

Brushes.Black

• Or can create one of a specified Color
Brush br = new SolidBrush(Color.FromArgb(r,g,b));

Brush br = new SolidBrush(Color.Red);

– x,y : Location to draw string on window client area
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Hello_in_window Example Program

• Responds to Paint Event by displaying ‘Hello 
World’ in window’s client area using several 
different Brushes

• Manual Project
– Define Handler and Attach it to Paint event manually

• Designer Project
– Select the Paint event in the form’s Properties window

• Click on lightning bolt

– Attachment of handler done automatically
– Skeleton handler code generated automatically
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An Alternative to Installing Event Handlers

• In any class derived from ‘Control’ (e.g. ‘Form’) its 
protected OnPaint() and other event handlers can be 
overriden:
protected override void OnPaint(PaintEventArgs pea)
{ 

// Painting code goes here
};
– Avoids having to attach the handler to the event

• See HelloWorld_override example program
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A Separate Class for Main()

• An alternative way of organizing a 
Windows Form application:
– Define the Form in one class
– Place the Main() function in another class
– Must be done manually

• Designer gives the single class program template

– See SeparateMain1 example program
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Inheriting Form Classes
• Just as your Form inherits from 

‘System.Windows.Forms.Form’, you can set up a 
new Form that inherits from a previously defined 
Form

• Be sure its Main() includes keyword ‘new’
• And that Visual Studio knows which class’ Main() 

is the entry point:
– In project’s Properties box select ‘Property Pages’ icon

• ‘Common Properties’ | ‘General’ | Application’ | ‘Startup 
Object’

• Select ‘ InheritHelloWorld’

• See HelloWorld_inherit example
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Multiple Handlers
• An advantage of the delegate mechanism is that 

multiple handlers of the same event can be used
• Just attach each handler to the event

– For example:
Form.Paint += new PaintEventHandler(PaintHandler1);
Form.Paint += new PaintEventHandler(PaintHandler2);

• And then write the handlers
• Each time the event occurs, all handlers will be 

called in sequence
• See TwoPaintHandlers example
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Some other GDI+ Drawing Methods
– DrawArc( );
– DrawEllipse( );

– DrawLine( )

– DrawPolygon( );
– DrawRectangle( );

– FillEllipse( );
– FillPolygon( );

– FillRectangle( )
– Lots of others in ‘Graphics’ class

• See online help on various overloaded forms of calling these 
functions
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Random Rectangles Example Program
– Makes use of FillRectangle() GDI+ method
– ‘Random’ class contains many methods to generate 

random numbers
Random r = new Random();

– Instantiates a new Random object and seeds the pseudo-random 
number generator

• The ‘Next()’ method actually generates the number
– Many overloaded forms of Next()

• Getting a random color:
Color c = Color.fromArgb(r.Next(256), r.Next(256), r.Next(256));

– Use Form’s ClientSize Property to get width and 
height of window

– Draw filled rectangle with random size and color:
• Use FillRectangle() and Math.Min(), Math.Abs()


