Introduction to Microsoft
Windows MFC Programming:
the Application/Window
Approach

MFC Windows Programming
(App/Window Approach)

e TheMicrosoft Foundation Class (M FC)
Library

e A Hierarchy of C++ classes designed
to facilitate Windows programming

e Andternative to using Win32
API functions

e A Visua C++ Windows application can use
either Win32 API, MFC, or both

| C++ Windows Application

| Win32 APT |

I

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

Microsoft Foundation Classes

e About 200 MFC classes (versus 2000+ API
functions)

o Provide aframework upon which to build
Windows applications

e Encapsulate most of the Win32 APl in aset
of logically organized classes

Some characteristics of MFC:

e 1. Convenience of reusable code:

— Many tasks common to al Windows apps are
provided by MFC

— Our programs can inherit and modify this
functionality as needed

— We don't need to recreate these tasks

— MFC handles many clerical detailsin Windows
programs

MFC Characteristics, Continued

® 2. Produce smdler executables:
— Typically 1/3 the size of their APl counterparts
o 3. Can lead to faster program devel opment:
— But there's a steep learning curve--

— Especialy for newcomers to object-oriented
programming

MFC Characteristics, Continued

e 4. MFC Programs must be written in C++
and require the use of classes

e Programmer must have good grasp of:
— How classes are declared, instantiated, and used
— Encapsulation
— Inheritance
— Polymorphism--virtual functions

MFC ClassHierarchy

® (Seeonlinehelp on " Hierarchy Chart")--

Some I mportant MFC Classes

o CObject: At top of hierarchy (“"Mother of all
classes')
@ Provides features like:
— Serialization
« Streaming object’s persistent data to or from a
storage medium (disk reading/writing)

— Diagnostic & Debugging support
e All itsfunctiondity isinherited by any
classes derived from it

Important Derived Classes--

e CFile Support for file operations

o CArchive: Works with CFile to facilitate
serialization and file 1/0

o CDC: Encapsulates the device context
(Graphicd Drawing)

e CGdiObject Base classfor various drawing
objects (brushes, pens, fonts, etc.)

e CMenu: Encapsulates menu management

e CCmdTarget: Encapsulates message passing
process & is parent of:
— CWnd: Encapsulates many important windows
functions and data members
— Example: m_hwnd stores the window’ shandle
— Base class all windows are derived from
— Most common:
* CFrameWindow: Can contain other windows
—("normal" kind of window we've used)
» CView: Encapsulates process of displaying and
interacting with data
« CDialog: Encapsulates dialog boxes

® CCmdTarget aso parent of:
— CWinThread: Defines athread of execution & is
parent of:
* CWinApp: Most important class dealt within MFC
applications:
« Encapsulates an MFC application
« Controls following aspects of Windows programs:
— Startup, initialization, execution, shutdown
— An application should have one CWinApp object
— When instantiated, application begins to run
— CDocument
« Encapsulates the data associated with a program

MFC Classes and Functions

® Primary task in writing MFC program--to create
classes

o Most will be derived from MFC library classes
e MFC Class Member Functions--
— Most functions called by an application will be
members of an MFC class
o Examples:
e ShowWindow()--amember of CWnd class
e TextOut()--amember of CDC
e LoadBitmap()--amember of CBitmap

e Appscan dso cal API functions directly
— Use Global Scope Resolution Operator, for
example:
— ::Updatewindow(hWnd);
e Usualy more convenient to use MFC
member functions

M FC Global Functions--

e Not members of any MFC class
e Begin with Afx prefix (Application
FrameworK S)
o Independent of or span MFC class hierarchy
e Example:
— AfxMessageBox()
— Message boxes are predefined windows

— Can be activated independently from the rest of
an application

Some Important Global Functions

o AfxAbort() -- uconditionally terminate an app

o AfxBeginThread() -- Create & run a new thread

o AfxGetApp() -- Returns a pointer to the
application object

o AfxGetMainWnd() -- Returns a pointer to
application’s main window

o AfxGetlnstanceHandl&() -- Returns handle to
applications's current instance

o AfxRegisterWndClass() -- Register acustom
WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

o Simplest MFC programs must contain two classes
derived from hierarchy:
— An application class derived from CWinApp
« Defines the application
* provides the message loop
— A window class usualy derived from
CFramewnd
« Defines the application's main window

® These & other MFC classes brought in by using
#include<Afxwin.h>

M essage Processing under MFC
o Like APl programs, MFC programs must
handle messages from Windows
o API mechanism: big switch/case statement
o MFC mechanism: "message maps" (lookup
tables)
e Table entries:
— Message number

— Pointer to a derived class member message-
processing function
« These are members of CWnd

M essage Mapping
e Programs must:
— Declare message-processing functions
¢ e.g., OnWhatever() for WM_WHATEVER message
— Map them to messages app is going to respond to
* Mapping by "message-mapping macros’
« Bind a message to a handler function
* eg., ON_WM_WHATEVER()
® Most MFC application windows use awindow
procedure, WndProc(), supplied by the library

® Message maps enable library window procedure to
find the function corresponding to the current msg.

User Moves Mouse

generates:

User Moves Mouse

generates:

WM_MOUSEMOVE
message

WM_MOUSEMOYE
message

Delivered to: Delivered to:
Program's WndProc() MFC's Window Procedure
switch (nessage) search message maps For

ON_WM_MOUSEMOVE ()
case WM_MOUSEMOVE: - -

Handler for message
) calle:

CHind: :OnMouseMove ()

MFC Message Handling

Win32 API Message Handling

STEPSIN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

DECLARATIONS (.h)

1. Declare awindow class derived from
CFramewnd (e.g., CMainWin)--

o ClassMembers:
— The constructor
— Message-processing function declarations
« e.g., voidOnChar ()
— DECLARE_MESSAGE_MAP() macro:

« Allowswindows based on this class to respond to messages

« Declares that amsg map will be used to map messages to
functions

« Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--
o Must override CWinApp's I nitl nstance()
virtual function:
— Called each time a new instance of application
is started
—i.e, when an object of this classisinstantiated
— Purpose is for application to initialize itself
— Perfect place to put code that does stuff that has
to be done each time program starts

IMPLEMENTATION (.CPP)
1. Define constructor for class derived from
CFrameWnd (CMainWin)

@ Should call member function Create() to create the
window

o Doeswhat CreateWindow() doesin API
2. Define message map for class derived from
CFrameWnd (CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)
List of "message macros' [e.g., ON_WM_CHAR()]
END_MESSAGE_MAP()

3. Define (implement) message-processing
functions declared in declarations (1) above
4. Define (implement) Initlnstance() overriding

function--

o Donein class derived from CWinApp (CApp):

— Should have initialization code for each new app instance:
+ Create aCMainWin object - pointer to program's main window
— (Used to refer to the window, likehwWnd in API programs)

+ Invoke object's ShowWindow() member function
« Invoke object's UpdateWindow() member function
* Must return non-zero to indicate success

— [MFC'simplementation of WinMain() callsthisfunction]

e Now Nature & form of smple window &
application have been defined

o But neither exists--

e Must instantiate an application object
derived from CWinApp (CApp)

5. Cregte an instance of the app class (CApp)
e Causes AfxWinMain() to execute

— It'snow part of MFC [WINMAIN.CPP]
o AfxWinMain() does the following:

— Cals AfxWinl nit()--

— Calls CApp:: Initlnstance() [virtual function
overridden in 4 above]--
« which creates, shows, and updates the window
— Calls CWinApp::Run()-
« which calls CWinThread:: PumpMessage()--
« which contains the GetMessage() loop

» which calls AfxRegister Clasq) to register window class

o After WinApp::Run() returns:
— (i.e., when the WM _QUIT message is received)

o AfXWinTerm() is called--
— which cleans up and exits

PROG1 Example MFC
Application:

e Just creates a skeleton frame window

Stepsin Creating and Building an MFC
Application like PROG1 “ manually”
“File| New”, “Win32 Application” as always
— Enter aProject Name and Location as usual
. “File| New | C++"
— Enter or copy/paste . cpp file text (e.g., PROG1.CPP)--see
IMPLEMENTATION above
. “File | New | C++ header”
— Enter or copy/paste .h file text (e.g., PROG1.H)--see
DECLARATION above

. “Project | Settings | General”
— From “Microsoft Foundation Classes:” combo box, choose:
— "UseMFCinaShared DLL"

5. Build the project as usual

[

N

w

N

How It Works

CApp object is created >
MFC'sWinMain() executes >
Registers class (default)
Calls our CApp::Initlnstance() >
Our override createsa CMainWin object

Our CMainWin constructor calls Create()=»window created

Our CApp::InitInstance() override calls window's
ShowWindow()=>window is displayed

Our override calls UpdateWindow()=> client area painted
WinMain () continues by calling itsRun() function=>
Call to PumpMessage ()
Which starts the message |oop

MSG1 Example MFC
Application: M ouse/Char acter
M essage Pr ocessing

o User presses mouse button=>

— Left/Right Button down string displayed at
current mouse cursor position

o Keyboard key pressed=>

— Character displayed at upper left hand corner of
client area

MSG1
e Global integers to keep track of where text
isto appear
e Global string to hold text to be displayed
e GettingaDC:
— CPaintDC dc(this)
« Constructor performs CWnd::BeginPaint ()

* Destructor performs CWnd::EndPaint ()

« ‘this': points to the object from which the
member function is called

« Hereit’'sapointer to this window
* So we construct a DC for this window

