
1

MFC Windows Programming:
Document/View

Approach

?More detailed notes at:
http://www.cs.binghamton.edu/~reckert/360/class15.htm

MFC Windows Programming:
App/Window vs. Document/View

Approach
? An App/Window approach program creates

application and window objects
? Mirrors Win32 API program organization
? Main difference--MFC automates and masks

details … and does many other necessary tasks
? But data & rendering of data are intertwined
? Frequently, data members exist in window class

– Example in MSG2005.CPP: Output string defined in
window-based class

• But output string is data
• Really has nothing to do with window it’s being displayed in

2

? Conceptually data is different from rendering
of data

? In an App/Window approach program they
are mixed together in same window class

? Frequently we need to have different views of
same data
– (e.g., displaying data in a window or on a printer)

? So it’s a good idea to separate data and data
presentation

Doc/View Achieves Separation of
Data and Data Presentation

? Encapsulates data in a CDocument class
object

? Encapsulates data display and user
interaction with it in a CView class object

? Classes derived from CDocument
– Should handle anything affecting an application's

data
? Classes derived from CView

– Should handle display of data and user
interactions with that display

3

Other Classes are Still
Needed

?Still need to create CFrameWnd and
CWinApp classes

?But their roles are reduced

Documents

?Document
– Contain any forms of data associated with

the application (pure data)
– Not limited to text
– Could be anything

• game data, graphical data, etc.

4

Views

?A rendering of a document; a physical
representation of the data

?Provides mechanism for displaying data
stored in a document

?Defines how data is to be displayed in a
window

?Defines how the user can interact with it

Frame Window
?Window in which a view of a document

is displayed
?A document can have multiple views

associated with it
– different ways of looking at the same data

?But a view has only one document
associated with it

5

MFC Template Class Object
? Handles coordination between documents,

views, and frame windows
? In general:

– Application object creates a template...
– which coordinates display of document's data…
– in a view…
– inside a frame window

? i.e., our CWinApp object creates a Document
Template which creates a CDocument object and
a CFrameWnd object
– The CFrameWnd object creates a CView object
– Which displays the document data

6

Template/Document/View/Window

Dynamic Creation
? In Doc/View approach, objects are dynamic
? Doc/View program is run

– Its frame window, document, and view are created
dynamically

– Often Doc/View objects are synthesized from file
data

• They need to be created at load time (run time)

– To allow for dynamic creation, use dynamic
creation macros

• in classes derived from CFrameWnd, CDocument, and
CView)

7

Document/View Programs
? Almost always have at least four classes derived

from:
– CFrameWnd
– CDocument
– CView
– CWinApp

? Usually put into separate declaration (.h) and
implementation (.cpp) files

? Because of template and dynamic creation, there’s
lots of initialization

? Could be done by hand, but nobody does it that way

Microsoft Developer Studio
AppWizard and ClassWizard

Tools

8

AppWizard
? Tool that generates a Doc/View MFC program

framework automatically
? Can be built on and customized by programmer
? Fast, efficient way of producing Windows Apps
? Performs required initialization automatically
? Creates functional CFrameWnd, CView,

CDocument, CWinApp classes
? After AppWizard does it's thing:

– Application can be built and run
– Full-fledged window with all common menu items,

tools, etc.

ClassWizards
? Facilitate message handling in a framework-

based MFC application
? Tools that connect resources and user-generated

events to program response code
? Write C++ skeleton routines to handle messages
? Insert code into appropriate places in program

– Code then can then be customized by hand
? Can be used to create new classes or derive

classes from MFC base classes
– Add new member variables/functions to classes

? In .NET many “class wizards” are available
through Properties window

9

SKETCH Application
?Example of Using AppWizard and

ClassWizard
?User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

?Left mouse button up:
– sketching stops

?User clicks "Clear" menu item
– window client area is erased

? Sketch data (points) won't be saved
– So leave document (CSketchDoc) class

created by AppWizard alone
? Base functionality of application (CSketchApp)

and frame window (CMainFrame) classes are
adequate
– Leave them alone

? Use ClassWizard to add sketching to CView
class

10

Sketching Requirements

? If left mouse button is down:
– Each time mouse moves:

• Get a DC
• Create a pen of drawing color
• Select pen into DC
• Move to old point
• Draw a line to the new point
• Make current point the old point
• Select pen out of DC

Variables

?BOOLEAN m_butdn
?CPoint m_pt, m_ptold
?COLORREF m_color
?CDC* pDC

11

Steps in Preparing SKETCH
? 1. “File / New / Project”

– Project Type: “Visual C++ Projects”
– Template: “MFC Application”
– Enter name: Sketch

? 2. In “Welcome to MFC Application Wizard”
– Application type: “Single Document” Application
– Take defaults for all other screens

? 3. Build Application --> Full-fledged SDI App
with empty window and no functionality

? 4. Add member variables to CSketchView
– Can do manually in .h file
– Easier to:

• Select Class View pane
• Click on SketchView class

– Note member functions & variables
• Right click on CSketchView class

– Choose “Add” / “Variable”
– Launches “Add Member Variable Wizard”

– Variable Type: enter CPoint
– Name: m_pt
– Access: Public (default)

– Note after “Finish” that it’s been added to the .h file
• Repeat for other variables (or add directly in .h file):

– CPoint m_ptold
– bool m_butdn
– COLORREF m_color
– CDC* pDC

12

? 5. Add message handler functions:
– Select CSketchView in Class View
– Select “Messages” icon in Properties window

• Results in a list of WM_ messages

– Scroll to WM_LBUTTONDOWN & select it
– Add the handler by clicking on down arrow and

“<Add> OnLButtonDown”
• Note that the function is added in the edit window and the

cursor is positioned over it:
– After “TODO…” enter following code:

m_butdn = TRUE;
m_ptold = point;

13

?Repeat process for WM_LBUTTONUP
handler:
– Scroll to WM_LBUTTONUP
– Click: “<Add> OnLButtonUp”,
– Edit Code by adding:

m_butdn = FALSE;

14

? Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE
– Click: “<Add> OnMouseMove”
– Edit by adding code:

if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

}

?6. Initialize variables in CSketchView
constructor
– Double click on CSketchView constructor

• CSketchView(void) in Class View

– After “TODO…”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

15

?7. Changing Window’s Properties
– Use window’s SetWindowXxxxx() functions

• In CWinApp-derived class before window is
shown and updated

– Example: Changing the default window title
m_pMainWnd->SetWindowText (

TEXT(“Sketching Application”));

– There are many other CWnd SetWindowXxxxx()
functions that can be used to change other
properties of the window

? 8. Build and run the application

Menus and Command
Messages

? User clicks on menu item
? WM_COMMAND message is sent
? ID_XXX identifies which menu item (its ID)
? No predefined handlers
? So message mapping macro is different
? ON_COMMAND(ID_XXX, OnXxx)

– OnXxx() is the handler function
– Must be declared in .h file and defined in .cpp file

16

Adding Color and Clear Menu
Items to SKETCH App

? Resource View (sketch.rc folder)
– Double click Menu folder
– Double click IDR_MAINFRAME menu
– Add: “Drawing Color” popup menu item with items:

• “Red”, ID_DRAWING_COLOR_RED (default)
• “Blue”, ID_DRAWINGCOLOR_BLUE
• “Green”, ID_DRAWINGCOLOR_GREEN
• “Black”, ID_DRAWINGCOLOR_BLACK

– Add another main menu item:
• “Clear Screen”, ID_CLEARSCREEN
• Set Popup property to False

Add Menu Item Command
Handler Function

– One way: Use “Event Handler Wizard”
– In “Resource View” bring up menu editor
– Right click on “Red” menu item
– Select “Add Event Handler”? “Event Handler

Wizard” dialog box
• Class list: CSketchView
• Message type: COMMAND
• Function handler name: accept default

– OnDrawingcolorRed

• Click on “Add and edit”
• After “TODO…” in editor enter following code:

m_color = RGB(255,0,0);

17

– In Class View Select CSketchView
– In Properties window select Events (lightning

bolt icon)
– Scroll down to: ID_DRAWINGCOLOR_RED
– Select “COMMAND”
– Click “<Add> OnDrawingcolorRed” handler
– Edit code by adding:

m_color = RGB(255,0,0);

Another Method of Adding a
Menu Item Command Handler

18

Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

19

Destroying the Window

? Just need to call DestroyWindow()
– Do this in the CMainFrame class – usually

in response to a “Quit” menu item

