MFC Windows Programming:
Document/View
Approach

= More detailed notes at:
http://www.cs .binghamton.edu/~reckert/360/class15.htm

MFC Windows Programming:
App/Window vs. Document/View
Approach

= An App/Window approach program creates
application and window objects

= Mirrors Win32 API program organization

« Main difference--MFC automates and masks
details ... and does many other necessary tasks

=« But data & rendering of data are intertwined

= Frequently, data members exist in window class
— Example in MSG2005.CPP: Output string defined in
window-based class
« But output string is data
* Really has nothing to do with window it's being displayed in

= Conceptually data is different from rendering
of data

« In an App/Window approach program they
are mixed together in same window class

=« Frequently we need to have different views of
same data
— (e.g., displaying data in a window or on a printer)

S0 it's a good idea to separate data and data
presentation

Doc/View Achieves Separation of
Data and Data Presentation

= Encapsulates data in a CDocument class
object

« Encapsulates data display and user
interaction with it in a CView class object

= Classes derived from CDocument

— Should handle anything affecting an application's
data

« Classes derived from CView

— Should handle display of data and user
interactions with that display

Other Classes are Still
Needed

& Still need to create CFrameWnd and
CWinApp classes

 But their roles are reduced

Documents

= Document

— Contain any forms of data associated with
the application (pure data)

— Not limited to text

— Could be anything
* game data, graphical data, etc.

Views

=« A rendering of a document; a physical
representation of the data

=« Provides mechanism for displaying data
stored in a document

=« Defines how data is to be displayed in a
window

« Defines how the user can interact with it

Frame Window

« Window in which a view of a document
is displayed

= A document can have multiple views
associated with it
— different ways of looking at the same data

=« But a view has only one document
associated with it

Document

Frame Window

)
1]
L_'.
1]

Wiewl

:W View?

Documents, Views, & Frames

"]
xh“"'a

S

MFC Template Class Object

« Handles coordination between documents,
views, and frame windows

& In general:

— Application object creates a template...

— which coordinates display of document's data...

— in aview...

— inside a frame window

« 1.e., our CWIinApp object creates a Document

Template which creates a CDocument object and
a CFrameWnd object

— The CFrameWnd object creates a CView object

— Which displays the document data

Template/Document/View/Window

App Object

Puoints
to

Yiew Object

Relationship between Application, Document
Template, Document, Frame Window, & View
in a Document/View Approach MFC Program.

Dynamic Creation

« In Doc/View approach, objects are dynamic

=« Doc/View program is run

— Its frame window, document, and view are created
dynamically
— Often Doc/View objects are synthesized from file
data
» They need to be created at load time (run time)
— To allow for dynamic creation, use dynamic
creation macros

* in classes derived from CFrameWnd, CDocument, and
CView)

Document/View Programs

= Almost always have at least four classes derived
from:
— CFrameWnd
— CDocument
— CView
— CWinApp

= Usually put into separate declaration (.h) and
implementation (.cpp) files

« Because of template and dynamic creation, there’s
lots of initialization

=« Could be done by hand, but nobody does it that way

Microsoft Developer Studio
AppWizard and ClassWizard
Tools

AppWizard

=« Tool that generates a Doc/View MFC program
framework automatically

= Can be built on and customized by programmer
= Fast, efficient way of producing Windows Apps
= Performs required initialization automatically
« Creates functional CFrameWnd, CView,
CDocument, CWinApp classes
=« After AppWizard does it's thing:
— Application can be built and run

— Full-fledged window with all common menu items,
tools, etc.

ClassWizards
= Facilitate message handling in a framework-
based MFC application
= Tools that connect resources and user-generated
events to program response code
« Write C++ skeleton routines to handle messages
« Insert code into appropriate places in program
— Code then can then be customized by hand
=« Can be used to create new classes or derive
classes from MFC base classes
— Add new member variables/functions to classes

« In .NET many “class wizards” are available
through Properties window

SKETCH Application

= Example of Using AppWizard and
ClassWizard

= User can use mouse as a drawing pencil
Left mouse button down:

— lines in window follow mouse motion
= Left mouse button up:
— sketching stops
= User clicks "Clear" menu item
—window client area is erased

= Sketch data (points) won't be saved

— So leave document (CSketchDoc) class
created by AppWizard alone

« Base functionality of application (CSketchApp)
and frame window (CMainFrame) classes are
adequate

— Leave them alone

= Use ClassWizard to add sketching to CView
class

Sketching Requirements

& If left mouse button is down:

— Each time mouse moves:
* GetaDC
» Create a pen of drawing color
» Select pen into DC
» Move to old point
» Draw a line to the new point
» Make current point the old point
» Select pen out of DC

Variables

= BOOLEAN m_ butdn
= CPoint m_pt, m_ptold
= COLORREF m_color
= CDC* pDC

10

Steps in Preparing SKETCH

« 1. “File / New / Project’
— Project Type: “Visual C++ Projects”
— Template: “MFC Application”
— Enter name: Sketch

« 2. In “Welcome to MFC Application Wizard”
— Application type: “Single Document” Application
— Take defaults for all other screens

« 3. Build Application --> Full-fledged SDI App
with empty window and no functionality

« 4. Add member variables to CSketchView
— Can do manually in .h file

— Easier to:
« Select Class View pane
 Click on SketchView class
— Note member functions & variables
» Right click on CSketchView class
— Choose “Add” / “Variable”
— Launches “Add Member Variable Wizard”
— Variable Type: enter CPoint
— Name: m_pt
— Access: Public (default)
— Note after “Finish” that it's been added to the .h file
» Repeat for other variables (or add directly in .h file):
— CPoint m_ptold
— bool m_butdn
— COLORREF m_color
— CDC* pDC

11

Add Member Variable Wizard - sketcha I x|

Welcome to the Add Member Variable Wizard
This wizard adds a member variable to your dass, struct, or union. @

Arccess:

| public
Variable type:
I CPaint

\Variable name: Control type:

fm_p |

Comment (f{ notation not required):

Finish Cancel Help

« 5. Add message handler functions:
— Select CSketchView in Class View

— Select “Messages” icon in Properties window
» Results in a list of WM_ messages

— Scroll to WM_LBUTTONDOWN & select it

— Add the handler by clicking on down arrow and
“<Add> OnLButtonDown”

* Note that the function is added in the edit window and the
cursor is positioned over it:

— After “TODO...” enter following code:
m_butdn = TRUE;
m_ptold = point;

12

B¢ Csketchaliey |
[Bases and Interfaces

Maps

AssertValid{void) const

GetDocument{void) con
GetRuntimeClass{void)
@ GefThisClass(void)

¢ OnBeginPrinting(COC

4 OnDraw(CDC *pDC) _JL‘
| 3

s [BEr. (A

Properties 1 x

| csketchaView vCCodeClass =

4 @ /[e =

WM_ICONERASE |
WM_INITMENU |
WM_INITMENUF |
WM_KEYDOWN |
WM_KEYUP |
WM_KILLFOCUS |
WM_LBUTTOND

WM_LBUTTOND OnLButtonDo'.‘-;]‘d

| wM_LBUTTONDOWN
! Indicates when left mouse button is
ipressed

Properties | @ Dy

« Repeat process for WM_LBUTTONUP
handler:
— Scrollto WM_LBUTTONUP
— Click: “<Add> OnLButtonUp”,

— Edit Code by adding:
m_butdn = FALSE;

13

« Repeat for WM_MOUSEMOVE
— Scroll to WM_MOUSEMOVE
— Click: “<Add> OnMouseMove”
— Edit by adding code:
if (m_butdn)
{
pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

& 6. Initialize variables in CSketchView
constructor
— Double click on CSketchView constructor
» CSketchView(void) in Class View
— After “TODO...”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

14

« 7. Changing Window's Properties

— Use window's SetWindowXxxxx() functions
* In CWinApp-derived class before window is
shown and updated
— Example: Changing the default window title

m_pMainWnd->SetWindowText (
TEXT(“Sketching Application”));
— There are many other CWnd SetWindowXxxxx()
functions that can be used to change other
properties of the window

« 8. Build and run the application

Menus and Command

Messages
= User clicks on menu item
= WM_COMMAND message is sent
= |ID_XXX identifies which menu item (its ID)
=« No predefined handlers
= SO0 message mapping macro is different

= ON_COMMAND(ID_ XXX, OnXxx)
— OnXxx() is the handler function
— Must be declared in .h file and defined in .cpp file

15

Adding Color and Clear Menu
ltems to SKETCH App

= Resource View (sketch.rc folder)

— Double click Menu folder

— Double click IDR_MAINFRAME menu

— Add: “Drawing Color” popup menu item with items:
* “Red”, ID_DRAWING_COLOR_RED (default)
* “Blue”, ID_DRAWINGCOLOR_BLUE
» “Green’, ID_DRAWINGCOLOR_GREEN
» “Black”, ID_DRAWINGCOLOR_BLACK

— Add another main menu item:
» “Clear Screen’, ID_CLEARSCREEN
» Set Popup property to False

Add Menu Item Command
Handler Function

— One way: Use “Event Handler Wizard”
— In “Resource View’ bring up menu editor
— Right click on “Red” menu item

— Select “Add Event Handler’ = “Event Handler
Wizard” dialog box

* Class list;: CSketchView
* Message type: COMMAND

 Function handler name: accept default
— OnDrawingcolorRed

* Click on “Add and edit’
» After “TODO...” in editor enter following code:
m_color = RGB(255,0,0);

Event Handler Wizard - sketcha

Welcome to the Event Handler Wizard

This wizard adds & menu or accelerator command handler or dialog control event handler to the
class of your chaice,

B

Command nz

Message type: Class list:

'CsketchaApp
UPDATE_COMMAND_UI CaboutDlg
CMainFrame

Csketchaloc

Function handler name:

IOnD:'a';-.'ingcolorRed

Add and Edit Edit Cade Cancel Help

Another Method of Adding a
Menu Item Command Handler

—In Class View Select CSketchView

—In Properties window select Events (lightning
bolt icon)

— Scroll down to: ID_ DRAWINGCOLOR_RED
— Select “"COMMAND”
— Click “<Add> OnDrawingcolorRed” handler
— Edit code by adding:

m_color = RGB(255,0,0);

17

[ClassView-sketcha 2 x|
L5 |
= G:; CsketchaView :_J
B -oﬁ: Bases and Interfaces
- = Maps
1240 AssertValid(void) const
i--=4 CreateObject{void)

: p
{24 GetDocument{void) const

{4 GetRuntimeClass{void) const
Sy GetThisClass (vaid)

¢ OnBeginPrinting(CDC *pDC, CPr
i@ OrDraw{COC *phC) =

I —— C

| CsketchaView VCCodeClass

B4 8[Z= o=

_DRAWINGCOLOR_BL {Chject)

_DRAWINGCOLOR_GR {Object)

=l 0_DRAWINGCOLOR RERETES
COMMAND OnDrawingcolork
UPDATE_COMMAND_L

ID_EDIT_COPY {Object)

ID_EDIT_CUT {Object)

ID_EDIT_PASTE {Object) o

x

L

[+

o

ID_DRAWINGCOLOR_RED

5! Properties | @) Dynamic Help |

Repeat for ID_ DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_ DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

18

Destroying the Window

« Just need to call DestroyWindow()

— Do this in the CMainFrame class — usually
in response to a “Quit” menu item

19

