
1

MFC Windows Programming:
Document/View

Approach

?More detailed notes at:
http://www.cs.binghamton.edu/~reckert/360/class15.htm

MFC Windows Programming:
Document/View Approach

? App/Window approach creates application and
window objects

? Mirrors Win32 API program organization
? Main difference--MFC automates & masks details
? But data & rendering of data are intertwined
? Frequently, data members exist in window class

– Example in MSGNEW.CPP: Output string defined in
window-based class

• But output string is data
• Really has nothing to do with window it’s being displayed in

?Conceptually data is different from
rendering of data

? In an App/Window they are mixed
together in same window class

? Frequently need to have different views
of same data
– (e.g., displaying data in a window or on a

printer)

? So it would be good to separate data
and data presentation

Doc/View Achieves Separation of
Data and Data Presentation

? Encapsulates data in a CDocument class
object

? Encapsulates data display mechanism and
user interaction with it in a CView class object

? Classes derived from CDocument
– Should handle anything affecting an application's

data

? Classes derived from CView
– Should handle display of data and user

interactions with that display

Other Classes are Still Needed

? Still need to create CFrameWnd and
CWinApp classes

? But their roles are reduced

Documents

?Document
– Contain any forms of data associated with

the application (pure data)
– Not limited to text
– Could be anything

• game data, graphical data, etc.

2

? Single Document interface (SDI) application
– Program that deals with one document at a time
– All our programs to date have been SDI apps

? Multiple Document Interface (MDI)
application
– Program organized to handle multiple documents

simultaneously
– More than one document can be displayed in a

window at the same time
– Example of an MDI application: Microsoft Word

Document Interfaces Views

? A rendering of a document; a physical
representation of the data

? Provides mechanism for displaying data
stored in a document

?Defines how data is to be displayed in a
window

?Defines how the user can interact with it

Frame Window
?Window in which a view of a document

is displayed
? A document can have multiple views

associated with it
– different ways of looking at the same data

? But a view has only one document
associated with it

MFC Template Class Object

?Handles coordination between documents,
views, and frame windows

? In general:
– Application object creates a template...
– which coordinates display of document's data…
– in a view…
– inside a frame window

Template/Document/View/Window

3

Serialization

? Provides for storage/retrieval of
document data

?Usually to/from a disk file
?CDocumentclass has serialization built

into it
– So in DOCUMENT/VIEW apps,

saving/storing data is straightforward

Dynamic Creation
? In Doc/View approach, objects are dynamic
? Doc/View program is run

– Its frame window, document, and view are created
dynamically

– Doc/View objects synthesized from file data

– Need to be created at load time
– To allow for dynamic creation, use dynamic

creation macros
• in classes derived from CFrameWnd, CDocument , and

CView)

Dynamic Creation Macros

? DECLARE_DYNCREATE(class_name)
– in declaration (.h file)

? IMPLEMENT_DYNCREATE(class_name,
parent_class_name)
– (in .cpp file)

? After IMPLEMENT_DYNCREATE() macro is
invoked:
– Class is enabled for dynamic creation
– Now a template can be created

Document/View Programs
? Almost always have at least four classes

derived from:
– CFrameWnd
– CDocument
– CView
– CWinApp

? Usually put into separate declaration (.h) and
implementation (.cpp) files

? Because of template and dynamic creation,
there’s lots of initialization

? Could be done by hand, but nobody does it
that way

Microsoft Developer Studio
AppWizard and ClassWizard

Tools

AppWizard
? Tool that generates a Doc/View MFC program

framework automatically
? Can be built on and customized by programmer
? Fast, efficient way of producing Windows Apps
? Performs required initialization automatically
? Creates functional CFrameWnd, CView,

CDocument, CWinApp classes
? After AppWizard does it's thing:

– Application can be built and run
– Full-fledged window with all common menu items,

tools, etc.

4

ClassWizard
? Facilitates message handling in a framework-

based MFC application
? A tool that connects resources & user-generated

events to program response code
? Writes C++ skeleton routines to handle messages
? Inserts code into appropriate places in program
? Code then can then be customized by hand
? Can be used to create new classes or derive

classes from MFC base classes
? Add new member variables/functions to classes
? In .NET many “class wizards” are available

through Properties window

SKETCH Application
? Example of Using AppWizard and

ClassWizard
?User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

? Left mouse button up:
– sketching stops

?User clicks "Clear" menu item
– window client area is erased

? Sketch data (points) won't be saved
– So leave document (CSketchDoc) class

created by AppWizard alone
? Base functionality of application (CSketchApp)

and frame window (CMainFrame) classes are
adequate
– Leave them alone

? Use ClassWizard to add sketching to CView
class

Sketching Requirements

? If left mouse button is down:
– Each time mouse moves:

• Get a DC
• Create a pen of drawing color

• Select pen into DC
• Move to old point

• Draw a line to the new point
• Make current point the old point

• Select pen out of DC

Variables

? BOOLEAN m_butdn
?CPoint m_pt, m_ptold
?COLORREF m_color
?CDC* pDC

Steps in Preparing SKETCH
? 1. “File / New / Project”

– Project Type: “Visual C++ Projects”
– Template: “MFC Application”
– Enter name: Sketch

? 2. In “Welcome to MFC Application Wizard”
– Choose “Single Document” Application Type

? 3. Build App --> Full-fledged SDI App with
empty window and no functionality

? 4. Add member variables to CSketchView
– Can do manually in .h file

5

? 4. Easier to:
– Select Class View pane in Properties window
– Select and expand (+) SketchView class

• Note member functions & variables
– Right click on CSketchView class

• Choose “Add / Variable”
– Launches “Member Variable Wizard” Dialog Box

• Variable Type: enter CPoint
• Name: m_pt
• Access: Public (default)

– Repeat for other variables:
• CPoint m_ptold
• bool m_butdn
• COLORREF m_color
• CDC* pDC

? 4. Add message handler functions:
– Select CSketchView in Class View
– Select “Messages” icon in Properties window

• Results in a list of WM_ messages
– Scroll to WM_LBUTTONDOWN & select it
– Add the handler by clicking on “<Add>

OnLButtonDown” in resulting combo box
• Note that the function is added in the edit window and the

cursor is positioned over it:
– After “TODO…” enter following code:

m_butdn = TRUE;
m_ptold = point;

?Repeat process for WM_LBUTTONUP
handler
– Scroll to WM_LBUTTONUP
– Click: “<Add> OnLButtonUp”,
– Edit Code by adding:

m_butdn = FALSE;

? Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE
– Click: “<Add> OnMouseMove”
– Edit by adding code:

if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo(m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

}

6

? 5. Initialize variables in CSketchView
constructor
– Double click on CSketchView constructor

(in Class View)
– After “TODO…”, Add code:

m_butdn = FALSE;
m_pt = m_ptold = CPoint (0,0);
m_color = RGB(0,0,0);

? 6. Build Project and Run

Menus and Command Messages
? User clicks on menu item
? WM_COMMAND message sent
? IDM_XXX identifies which menu item
? No predefined handlers
? So message mapping macro is different
? ON_COMMAND(IDM_XXX, OnXxx)

– OnXxx() is the handler function

– Must be declared in .h file and defined in .cpp file

Adding Color and Clear Menu
Items to SKETCH App

? Resource View (sketch.rc folder)
– Double click Menu folder
– Double click IDR_MAINFRAME menu
– Add: “Drawing Color” popup menu item with items:

• “Red” (ID_DRAWINGCOLOR_RED)
• “Blue” (ID_DRAWINGCOLOR_BLUE)
• “Green” (ID_DRAWINGCOLOR_GREEN)
• “Black” (ID_DRAWINGCOLOR_BLACK)

– Add another main menu item:
• “Clear Screen” (ID_CLEAR)

Add Menu Item Command
Handler Function

– One way: Use “Event Handler Wizard”
– In “Resource View” bring up menu editor
– Right click on “Red” menu item
– Select “Add Event Handler” ? “Event Handler Wizard”

dialog box
• Class list: CSketchView
• Message type: COMMAND
• Function handler name: accept default

– OnDrawingColorRed
• Click on “Add and edit”
• After “TODO…” in editor enter following code:

m_color = RGB(255,0,0);

–In Class View Select CSketchView
–In Properties window select Events

(lightning bolt) icon
–Scroll down to:

ID_DRAWINGCOLOR_RED
–Select “Command”
–Accept “OnDrawingColorRed” handler
–Edit code by adding:

m_color = RGB(255,0,0);

Another Method of Adding a
Menu Item Command Handler

7

Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

