MFC Windows Programming:
Document/View
Approach

= More detailed notes at:
http://www. cs.binghamton.edu/~reckert/360/class15. htm

MFC Windows Programming:
Document/View Approach
k- App/Window approach creates application and
window objects
L Mirrors Win32 API program organization
l- Main difference--MFC automates & masks details
I But data & rendering of data are intertwined

I« Frequently, data members exist in window class

— Example in MSGNEW.CPP: Output string defined in
window-based class
< But output string is data
« Really has nothing to do with window it's being displayed in

= Conceptually data is different from
rendering of data

= In an App/Window they are mixed
together in same window class

= Frequently need to have different views
of same data
— (e.g., displaying data in a window or on a

printer)

= S0 it would be good to separate data

and data presentation

—_——m—————————————————————————————|

Doc/View Achieves Separation of
Data and Data Presentation

=« Encapsulates data in a CDocument class
object

= Encapsulates data display mechanism and
user interaction with it in a CView class object

« Classes derived from CDocument
— Should handle anything affecting an application's

data
=« Classes derived from CView

— Should handle display of data and user
interactions with that display

Other Classes are Still Needed

« Still need to create CFrameWnd and
CWinApp classes

« But their roles are reduced

Documents

=« Document
— Contain any forms of data associated with
the application (pure data)
— Not limited to text
— Could be anything
« game data, graphical data, etc.




Document Interfaces

=« Single Document interface (SDI) application
— Program that deals with one document at a time
— All our programs to date have been SDI apps
=« Multiple Document Interface (MDI)
application
— Program organized to handle multiple documents
simultaneously
— More than one document can be displayed in a
window at the same time

— Example of an MDI application: Microsoft Word

Views

« A rendering of a document; a physical
representation of the data

= Provides mechanism for displaying data
stored in a document

= Defines how data is to be displayed in a
window

« Defines how the user can interact with it

Frame Window

= Window in which a view of a document
is displayed

= A document can have multiple views
associated with it
— different ways of looking at the same data

= But a view has only one document
associated with it

Document

Frame Window

Data

Viewl

ﬁ ViewZ

Documents, Views, & Frames

il
Al

RN

MFC Template Class Object

= Handles coordination between documents,
views, and frame windows

& In general:
— Application object creates a template...

—inaview...
— inside a frame window

— which coordinates display of document's data...

[View Object

Relationship between Application, Document
Template, Document, Frame Window, & View
in a Document/View Approach MFC Program.




Serialization

= Provides for storage/retrieval of
document data
= Usually to/from a disk file
= CDocument class has serialization built
into it
— So in DOCUMENT/VIEW apps,
saving/storing data is straightforward

Dynamic Creation

= In Doc/View approach, objects are dynamic
== Doc/View program is run

— Its frame window, document, and view are created
dynamically

— Doc/View objects synthesized from file data

— Need to be created at load time

— To allow for dynamic creation, use dynamic
creation macros

+ in classes derived from CFrameWnd, CDocument, and
CView)

Dynamic Creation Macros

= DECLARE_DYNCREATE(class_name)
— in declaration (.h file)

= IMPLEMENT_DYNCREATE(class_name,
parent_class_name)
— (in .cpp file)

= After IMPLEMENT_DYNCREATE() macro is
invoked:

— Class is enabled for dynamic creation
— Now a template can be created

Document/View Programs

« Almost always have at least four classes
derived from:
— CFrameWnd
— CDocument
— CView
— CWinApp

= Usually put into separate declaration (.h) and
implementation (.cpp) files

« Because of template and dynamic creation,
there’s lots of initialization

« Could be done by hand, but nobody does it

that way

Microsoft Developer Studio

AppWizard and ClassWizard
Tools

AppWizard

=« Tool that generates a Doc/View MFC program
framework automatically

= Can be built on and customized by programmer

=« Fast, efficient way of producing Windows Apps

« Performs required initialization automatically

=« Creates functional CFrameWnd, CView,
CDocument, CWinApp classes

« After AppWizard does it's thing:
— Application can be built and run

— Full-fledged window with all common menu items,
tools, etc.




ClassWizard

= Facilitates message handling in a framework-
based MFC application

= Atool that connects resources & user-generated
events to program response code

= Writes C++ skeleton routines to handle messages

« Inserts code into appropriate places in program

= Code then can then be customized by hand

= Can be used to create new classes or derive
classes from MFC base classes

= Add new member variables/functions to classes

= In .NET many “class wizards” are available
through Properties window

SKETCH Application
= Example of Using AppWizard and
ClassWizard
« User can use mouse as a drawing pencil
Left mouse button down:
— lines in window follow mouse motion
« Left mouse button up:
— sketching stops
= User clicks "Clear" menu item
—window client area is erased

= Sketch data (points) won't be saved

— So leave document (CSketchDoc) class
created by AppWizard alone

= Base functionality of application (CSketchApp)
and frame window (CMainFrame) classes are
adequate
— Leave them alone

= Use ClassWizard to add sketching to CView
class

Sketching Requirements

= If left mouse button is down:
— Each time mouse moves:
« Geta DC
« Create a pen of drawing color
« Select pen into DC
« Move to old point
« Draw a line to the new point
« Make current point the old point
« Select pen out of DC

Variables

= BOOLEAN m_butdn
= CPoint m_pt, m_ptold
= COLORREF m_color
= CDC* pDC

Steps in Preparing SKETCH

= 1. “File / New / Project”
— Project Type: “Visual C++ Projects”
— Template: “MFC Application”
— Enter name: Sketch

= 2. In “Welcome to MFC Application Wizard”
— Choose “Single Document” Application Type

= 3. Build App --> Full-fledged SDI App with
empty window and no functionality

= 4. Add member variables to CSketchView
— Can do manually in .h file




=« 4. Easier to:
— Select Class View pane in Properties window
— Select and expand (+) SketchView class
« Note member functions & variables
— Right click on CSketchView class
« Choose “Add / Variable”
— Launches “Member Variable Wizard” Dialog Box
« Variable Type: enter CPoint
* Name: m_pt
« Access: Public (default)
— Repeat for other variables:
« CPoint m_ptold
« bool m_butdn
+ COLORREF m_color
« CDC* pDC

=

| ‘"Mekmas ba the Add Mamber Variahis @i

g

= 4. Add message handler functions:
— Select CSketchView in Class View
— Select “Messages” icon in Properties window
« Results in a list of WM_ messages
— Scroll to WM_LBUTTONDOWN & select it
— Add the handler by clicking on “<Add>
OnLButtonDown” in resulting combo box

« Note that the function is added in the edit window and the
cursor is positioned over it:

— After “TODO..." enter following code:
m_butdn = TRUE;
m_ptold = point;

= Repeat process for WM_LBUTTONUP
handler
— Scroll to WM_LBUTTONUP
— Click: “<Add> OnLButtonUp”,
— Edit Code by adding:
m_butdn = FALSE;

=« Repeat for WM_MOUSEMOVE
— Scroll to WM_MOUSEMOVE
— Click: “<Add> OnMouseMove€’
— Edit by adding code:

if (m_butdn)

{
pDC = GetDC();
m_pt = point;

CPen newPen (PS_SOLID, 1, m_color);

pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);

m_ptold = m_pt;
pDC->SelectObject (pPenOld);

CPen* pPenOld = pDC->SelectObject (&newPen);




= 5. Initialize variables in CSketchView
constructor
— Double click on CSketchView constructor
(in Class View)
— After “TODO...", Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);
= 6. Build Project and Run

Menus and Command Messages

= User clicks on menu item

<« WM_COMMAND message sent

=« IDM_XXX identifies which menu item

=« No predefined handlers

== SO message mapping macro is different

== ON_COMMAND(IDM_XXX, OnXxx)
— OnXxx() is the handler function
— Must be declared in .h file and defined in .cpp file

Adding Color and Clear Menu
Items to SKETCH App

= Resource View (sketch.rc folder)

— Double click Menu folder

— Double click IDR_MAINFRAME menu

— Add: “Drawing Color” popup menu item with items:
» “Red” (ID_DRAWINGCOLOR_RED)
+ “Blue” (ID_DRAWINGCOLOR_BLUE)
*» “Green” (ID_DRAWINGCOLOR_GREEN)
« “Black” (ID_DRAWINGCOLOR_BLACK)

— Add another main menu item:
« “Clear Screen” (ID_CLEAR)

Add Menu Item Command
Handler Function

— One way: Use “Event Handler Wizard”
— In“Resource View" bring up menu editor
— Right click on “Red” menu item

— Select “Add Event Handler” & “Event Handler Wizard’
dialog box

« Class list: CSketchView

« Message type: COMMAND

« Function handler name: accept default
— OnDrawingColorRed

« Click on “Add and edit”

« After “TODO..." in editor enter following code:
m_color = RGB(255,0,0);

| wrelonin ta the Bunat Hardksr wizasd

T
o L e o sl 5 2 L4

Another Method of Adding a
Menu Item Command Handler

—In Class View Select CSketchView
—In Properties window select Events
(lightning bolt) icon
—Scroll down to:
ID_DRAWINGCOLOR_RED
—Select “Command”
—Accept “OnDrawingColorRed” handler
—Edit code by adding:
m_color = RGB(255,0,0);




Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();




