Menus

=Windows provides support for complex menus
- Popup menus
—Menu items that are graphics images
— Enabled/disabled/grayed-out menu items
— Checked/unchecked menu items

—Menu items that change dynamically as program
runs

« Good for programs that operate in more than one state
« Or to support beginner/advanced versions of menu

Creating Menus

« Can write source .RC resource script file
containing menu definition

& Or use Visua Studio's menu editor to create menu
visually
=« Simple Menu Syntax—
MenuName MENU
BEGIN
/* menu definition goeshere*/
END

Menu Syntax

= MenuName string used to find menu datain
program resources

= Menu Items
— Go between BEGIN and END
— Canonly be MENUITEM or POPUP

= Menu ltem Syntax—
MENUITEM string, MenulD options or
MENUITEM SEPARATOR

L atter Causes horizontal line between
previous and following menu items

Menu Item Syntax

= MENUITEM string, MenulD, Option
— String: Menuitem'scharactersenclosedin“ "
— MenulD: Number passed as LOWORD (wParam) with
WM_COMMAND msg
« Usually given aconstant name
— Option:
* Appearance/Status. ENABLED, GRAYED, or INACTIVE

* Check State: CHECKED, UNCHECKED
— Refersto check mark next to menu item

Popup Menus

= Popup menus
— Used when number of menu items gets too big
— Can have nested popups (up to 8 levels)
= Popup syntax
— POPUP string options
— string:
« Gives popup title--what will appear on menu bar
» No ID needed since popup titles not selectable & don't
generatemessages
— Some options:
« MENUBARBREAK
« MENUBREAK
L —Example-mendts

Changing Menu Item Status

= 1. Get handle to entire menu GetMenu(hWnd)
— Returns handle to menu attached to specified window

= 2. Change Status (activate/deactivate an item)
— EnableMenultem(hMenu, item_id, ActionFlag);
— hMenu=handle to menu containing item
« item_id: whichitem
« ActionFlag: how & what action
* Examples:
1.MF_BYCOMMAND |MF_ENABLED«s
Eneble menu item whose ID is given in 2nd parameter
2. MF_BYPOSITION | MF_DISABLED &«
Disable menu item whose position given in 2 parameter
— Position number relative to top |eft item (position 0)

— Hard to keep track of positions, sonot used often

Examples

« 1. EnableMenultem(hMenu, IDM_SEL3,
MF_BYCOMMAND | MF_ENABLED);
= 2. EnableMenultem(hMEnu, 5,
MF_BYPOSITION | MF_GRAYED);
= Possible actions:
— MF_ENABLED
— MF_DISABLED (seldom used, since confusing to user)
- MF_GRAYED

Changing Check State

= CheckMenultem()
— Checks/unchecks specified item
— Workslike EnableMenul tem()
— Action flag values:
* MF_CHECKED or MF_UNCHECKED
= Can use bitmaps for checked/unchecked state
SetMenultemBitmaps (hMenu, item_id, action flags,
h_unchecked bitmap, h_checked bitmap);
Action flags:
MF_BYCOMMAND or MF_BYPOSITION

Getting Menu Item State

GetMenuState (h(Menu, menu_id, MF_Flags)
— Returns UINT that encodes menu item status

— A combination of MF_CHECKED,
MF_ENABLED, etc.

The MENU1 program

= Selection 1 ==> Enables Selection 3 (no longer
grayed out) & creates a MessageBox

=« Selection 2 ==> Toggles the checked status of
Selection 2

« Selection 3 ==> Nothing if disabled; Creates
MessageBox confirming Selection 3 is enabled

= Right ==> Disables Selection 3. Left ==> Beeps
— Both create MessageBoxes

& Quit ==> Exits Windows

= Help ==> Creates aMessageBox entitled “ not
much help”; says“ Select any menu item”

M essageBox()

int M essageBox(HWND hWnd, // handle to owner window

LPCTSTR IpText, /1 text in message box
LPCTSTR IpCaption, /I message box title
UINT uType /I message box style);

« Displaysa popup child window
« Containsan application-defined message & title
* Behavior & buttons determined by uType
+ MB_ABORTRETRYIGNORE: Abort, Retry, |gnore buttons.
MB_OK: OK button (default)
* MB_OKCANCEL: OK and Cancel buttons
+ MB_RETRYCANCEL: Retry and Cancel buttons
¢ MB_YESNO: Yesand No buttons
+ MB_YESNOCANCEL: Yes, No, Cancel buttons
+ Others (see online help)
« Retunsan identifier of button pressed

= _Good debugging taol

Creating Dynamic Menus
(on fly as program oper ates)

.- Rationale:
— Operations may become impossible or irrelevant,
so delete them from menu
— Other operations may become possible or relevant,
%0 add them to menu
— May want to use bitmap images as menu items
* e.g., tool selection (picking a brush image for painting)
« Graphical menu items can’t be defined in resource script

Can-heoecroatod - actha nracranma-rnc
o O O At CO A S THC OO oS

Menu-altering Functions
= CreateMenu(); Creates new menu, ready to add items
= CreatePopupMenu(); Creates new popup menu, ready
to receive items
= SetMenu(); Attachesamenu to awindow
— Often used with LoadMenu() to switch between alt. menus
= AppendMenu(); Adds new menu item or popup to end
of amenu
= InsertMenu(); Inserts new menu item/popup into a
menu/popup menu
= DeleteMenu(); Removes menu item from amenu or

.« DestroyMenu(); Deletesan entiremenu,
removing it from memory
— Only needed if menu was loaded but not attached

to awindow

. DrawMenuBar(); Redraws the menu bar (in
menu area bel ow window caption)
— Makes any changesvisible

= LoadMenu(); Loads menu from program's
resource data
— Ready to be attached to a Window with SetMenu()

Popup menu

Basic Sequence
1. CreateMenu(): Create a new, empty menu
— Returns ahandle to the new menu
2. AppendMenu() and/or InsertMenu()
— Add menu items as needed
3. SetMenu(): Attach menu to awindow
= Popup menus must be created separately and attached
to menu as follows:
1. CreatePopupMenu(): Create a new, empty popup menu
— Returns ahandle to the new popup menu
2. AppendMenu() or InsertMenu(): Add menu items to popup
3. AppendMenu() or InsertMenu(): Add popup to main menu

Apending Item at End of Menu

AppendMenu (hMenu, MF_flags, item_id,

item_content);

— hMenu: which menu to append item to

— MF_flags, Bitwise OR of:
* What: MF_BITMAP, MF_STRING, MF_POPOP
« Appearance: MF_ENABLED, MF_GRAYED, etc.

— item_id: from resource data (IDMs) or hPopup

— item_content: what goes there: the string or hBitmap
« Example: “&Quit”, (LPSTR) himage

4. SetMenu() or DrawMenuBar(): First or subsequent times

Inserting aMenu Item in any Position
InsertMenu (hMenu, item_id, MF_flags,
new_item id, item_content);
— item_id: where (in front of thisitem)
* position or IDM_***
— MF_flags, Bitwise OR of:
« wherespec.: MF_BYCOMMAND, MF_BYPOSITION

* What: MF_BITMAP, MF_STRING, MF_POPOP
* Appearance: MF_ENABLED, MF_GRAYED, etc.

—new_item_id: IDM_*** or hPopup
— item_content: what goes there; the string or

——hBitmap

Deleting aMenu Item

DeleteMenu (hMenu, item_id, MF_flags)

DestroyMenu()

= Must destroy unattached menus
— If not, they will remain in memory for entire
Windows session
— Attached menus are destroyed automatically
when window is destroyed

InsertMenu() or DeleteMenu()

 Can be used to change existing menus
— Usually easier than creating an entire menu
from scratch
— More flexible than defining multiple menusin

program's resources and switching between
them with LoadMenu() and SetMenu()

Creating a Menu with Bitmap Images

1. Create image as bitmap (.bmp) using Dev. Studio
2. Include bitmap in program's resource data

3. UseLoadBitmap() to get bitmap data while
program is running
— Returns ahandle to the bitmap

4. Use AppendMenu() or I nsertMenu() to add the
bitmap as amenu item

5. Use SetMenu() to attach the menu to the window

6. At termination use DeleteObject() to remove
bitmap from memory

Using LoadBitmap()

LoadBitmap (hlnstance, IpBitmap);

&« Toload a bitmap from program’ s resources

& hlnstance points to resource data for thisinstance
— Must be obtained -- several ways
— Oneway: Use GetWindowL ong():

— hinstance = (HINSTANCE) GetWindowLong (hWnd,
GWL_INSTANCE);

= |pBitmap is the name of the bitmap resource

= GetWindowL ong() used to get instance handle for
loading many other kinds of resources

MENU2 Example Program

« Example of dynamic menus
= No menu defined in .rcfile
= Main menu created upon receipt of the
WM_CREATE message
« “Tools" popup menu has three bitmap images
— Clicking on each changes mouse cursor to that shapess
« Need toinclude two cursors (third is predefined ARROW cursor)

* And the three bitmaps in resource script file
* (Bitmaps & cursors have different formats, need both)

= “Add Menu Items”

— Adds a new popup menu w/ items:

« 1. “New Selection 1" toggles its check state &
activation state of following item

« 2. Item to be toggled by Selection 1; if active,
causes a beep

« 3. Delete new popup menu (& reactivate old
item)

— Also Grays out old “Add Menu Items” item

MENU2 Resour ces using

Visual Editors—
= Cursors:
— ID="CUTCURSOR", filename: cutcur.cur
— ID="GLUECUR", filename: gluecur.cur)
— Create/insert into project with Cursor Editors
= Bitmaps:
— ID="CUTBMP", filename: cutbmp .bmp
— ID="PASTEBMP", filename: pastebmp .bmp
— ID="ARROWBMP", filename: arrowbmp .bmp
— Use Bitmap Editor to create bitmap resources
— Same way as Cursor Editor isused

Menu Resour ce

=« None (since menu created dynamically in
program)

= But still must assign constant valuesto
menu item names (IDM_*)

= Doneinthemenu2.h
= Must beincluded aong with resource.h

Constants

= ARROWCURSOR, GLUECURSOR, &
CUTCURSOR

& Used in switch/case statement in program
= Congtant values assigned in menu2.h file

The MENU2.CPP Program

= WM_CREATE Createinitial main menu
— Create main menu and popup menu (empty);
i.e., get handles
— Load bitmaps to go into the popup menu
— Append bitmaps to popup menu and itemsto
main menu:

— Attach entire menu structure to program's
window with SetMenu()

Other menu items
(WM_COMMAND)

= Create, add, del etenew popup menu and
items:

— Usecallsto CreateMenu(),
CreatePopupMenu(), AppendMenu(),
InsertMenu(), DeleteMenu()

« To change state of menu items

— Usecallsto EnableMenultem() and
CheckMenul tem()

Cursors

& User chooses bitmap from “Tools’ popup
— change nCursor variablethat keepstrack of
current cursor
= User moves mouse in window
(WM_SETCURSOR)

— Examine nCursor & use LoadCursor() to get
current mouse cursor

— Use SetCursor() to change to current cursor

Other Stuff in MENU2

& Since menu isloaded dynamicaly, original
menu when window class was registered is
NULL

= When window is destroyed
(WM_DESTROQY), cal DeleteObject() to
get rid of the bitmaps

