
1

Menus
?Windows provides support for complex menus

– Popup menus
– Menu items that are graphics images
– Enabled/disabled/grayed-out menu items
– Checked/unchecked menu items
– Menu items that change dynamically as program 
runs

• Good for programs that operate in more than one state
• Or to support beginner/advanced versions of menu

Creating Menus
? Can write source .RC resource script file 

containing menu definition
? Or use Visual Studio's menu editor to create menu 

visually
? Simple Menu Syntax—

MenuName MENU
BEGIN

/* menu definition goes here */
END

Menu Syntax
? MenuName: string used to find menu data in 

program resources
? Menu Items

– Go between BEGIN and END
– Can only be MENUITEM or POPUP

? Menu Item Syntax—
MENUITEM string, MenuID options      or  
MENUITEM SEPARATOR

Latter Causes horizontal line between    
previous and following menu items

? MENUITEM string, MenuID, Option
– String: Menu item's characters enclosed in “ ”

– MenuID: Number passed as LOWORD(wParam) with 
WM_COMMAND msg

• Usually given a constant name

– Option:
• Appearance/Status: ENABLED, GRAYED, or INACTIVE
• Check State: CHECKED, UNCHECKED

– Refers to check mark next to menu item

Menu Item Syntax

Popup Menus
? Popup menus

– Used when number of menu items gets too big
– Can have nested popups (up to 8 levels)

? Popup syntax
– POPUP string options
– string:

• Gives popup title --what will appear on menu bar
• No ID needed since popup titles not selectable & don't 

generate messages
– Some options: 

• MENUBARBREAK
• MENUBREAK

– Example: menu1.rc

Changing Menu Item Status
? 1. Get handle to entire menu GetMenu(hWnd)

– Returns handle to menu attached to specified window

? 2. Change Status (activate/deactivate an item)
– EnableMenuItem(hMenu, item_id, ActionFlag);
– hMenu=handle to menu containing item

• item_id: which item
• ActionFlag: how & what action

• Examples:
1. MF_BYCOMMAND | MF_ENABLED?

Enable menu item whose ID is given in 2nd parameter
2. MF_BYPOSITION | MF_DISABLED?

Disable menu item whose position given in 2nd parameter
– Position number relative to top left item (position 0)
– Hard to keep track of positions, so not used often



2

Examples
? 1. EnableMenuItem(hMenu, IDM_SEL3, 

MF_BYCOMMAND | MF_ENABLED);
? 2. EnableMenuItem(hMEnu, 5, 

MF_BYPOSITION | MF_GRAYED);
? Possible actions:

– MF_ENABLED

– MF_DISABLED (seldom used, since  confusing to user)
– MF_GRAYED

Changing Check State

? CheckMenuItem()
– Checks/unchecks specified item
– Works like EnableMenuItem()
– Action flag values: 

• MF_CHECKED or MF_UNCHECKED

? Can use bitmaps for checked/unchecked state
SetMenuItemBitmaps (hMenu, item_id, action flags,

h_unchecked bitmap, h_checked bitmap);
Action flags: 

MF_BYCOMMAND or MF_BYPOSITION

Getting Menu Item State

GetMenuState (hMenu, menu_id, MF_Flags)
– Returns UINT that encodes menu item status
– A combination of MF_CHECKED, 

MF_ENABLED, etc.

The MENU1 program
? Selection 1 ==> Enables Selection 3 (no longer 

grayed out) & creates a MessageBox
? Selection 2 ==> Toggles the checked status of 

Selection 2 
? Selection 3 ==> Nothing if disabled; Creates 

MessageBox confirming Selection 3 is enabled 
? Right ==> Disables Selection 3. Left ==> Beeps

– Both create MessageBoxes

? Quit ==> Exits Windows 
? Help ==> Creates a MessageBox entitled “not 

much help”; says “Select any menu item”

MessageBox() 
int MessageBox( HWNDhWnd, // handle to owner window  

LPCTSTR lpText,                  // text in message box 
LPCTSTR lpCaption,            // message box title 
UINT uType // message box style );

• Displays a popup child window
• Contains an application-defined message & title
• Behavior & buttons determined by uType

• MB_ABORTRETRYIGNORE: Abort, Retry, Ignore buttons.
• MB_OK: OK button (default)
• MB_OKCANCEL: OK and Cancel buttons
• MB_RETRYCANCEL: Retry and Cancel buttons
• MB_YESNO: Yes and No buttons
• MB_YESNOCANCEL: Yes, No, Cancel buttons
• Others (see online help)

• Retuns an identifier of button pressed
• Good debugging tool

Creating Dynamic Menus 
(on fly as program operates)

? Rationale:
– Operations may become impossible or irrelevant, 

so delete them from menu
– Other operations may become possible or relevant, 

so add them to menu
– May want to use bitmap images as menu items

• e.g., tool selection (picking a brush image for painting)
• Graphical menu items can’t be defined in resource script

? Can be created as the program runs



3

Menu-altering Functions
? CreateMenu(); Creates new menu, ready to add items
? CreatePopupMenu(); Creates new popup menu, ready 

to receive items
? SetMenu(); Attaches a menu to a window

– Often used with LoadMenu() to switch between alt. menus

? AppendMenu(); Adds new menu item or popup to end 
of a menu

? InsertMenu(); Inserts new menu item/popup into a 
menu/popup menu

? DeleteMenu(); Removes menu item from a menu or 
popup menu

?DestroyMenu(); Deletes an entire menu, 
removing it from memory
– Only needed if menu was loaded but not attached 

to a window

?DrawMenuBar(); Redraws the menu bar (in 
menu area below window caption)
– Makes any changes visible

? LoadMenu(); Loads menu from program's 
resource data
– Ready to be attached to a Window with SetMenu()

Basic Sequence
1. CreateMenu(): Create a new, empty menu

– Returns a handle to the new menu

2. AppendMenu() and/or InsertMenu()
– Add menu items as needed

3. SetMenu(): Attach menu to a window
? Popup menus must be created separately and attached 

to menu as follows:
1. CreatePopupMenu(): Create a new, empty popup menu
– Returns a handle to the new popup menu
2. AppendMenu() or InsertMenu(): Add menu items to popup 
3. AppendMenu() or InsertMenu(): Add popup to main menu
4. SetMenu() or DrawMenuBar(): First or subsequent times

Apending Item at End of Menu

AppendMenu (hMenu, MF_flags, item_id, 
item_content);
– hMenu: which menu to append item to

– MF_flags, Bitwise OR of:
• What: MF_BITMAP, MF_STRING, MF_POPOP 
• Appearance: MF_ENABLED, MF_GRAYED, etc.

– item_id: from resource data (IDMs) or hPopup
– item_content: what goes there: the string or hBitmap

• Example: “&Quit”, (LPSTR)hImage

Inserting a Menu Item in any Position
InsertMenu (hMenu, item_id,  MF_flags, 

new_item_id, item_content);
– item_id: where (in front of this item)

• position or IDM_***

– MF_flags, Bitwise OR of:
• where spec.: MF_BYCOMMAND, MF_BYPOSITION

• What: MF_BITMAP, MF_STRING, MF_POPOP
• Appearance: MF_ENABLED, MF_GRAYED, etc.

– new_item_id: IDM_*** or hPopup
– item_content: what goes there; the string or 

hBitmap

Deleting a Menu Item

DeleteMenu (hMenu, item_id, MF_flags) 



4

DestroyMenu()

?Must destroy unattached menus
– If not, they will remain in memory for entire 

Windows session
– Attached menus are destroyed automatically 

when window is destroyed

InsertMenu() or DeleteMenu()

? Can be used to change existing menus
– Usually easier than creating an entire menu 

from scratch
– More flexible than defining multiple menus in 

program's resources and switching between 
them with LoadMenu() and SetMenu()

Creating a Menu with Bitmap Images

1. Create  image as bitmap (.bmp) using Dev. Studio
2. Include bitmap in program's resource data
3. Use LoadBitmap() to get bitmap data while 

program is running
– Returns a handle to the bitmap

4. Use AppendMenu() or InsertMenu() to add the 
bitmap as a menu item

5. Use SetMenu() to attach the menu to the window
6. At termination use DeleteObject() to remove 

bitmap from memory

Using LoadBitmap()
LoadBitmap (hInstance, lpBitmap);
? To load a bitmap from program’s resources
? hInstance points to resource data for this instance

– Must be obtained -- several ways
– One way: Use GetWindowLong():

– hInstance = (HINSTANCE) GetWindowLong (hWnd, 
GWL_INSTANCE);

? lpBitmap is the name of the bitmap resource
? GetWindowLong() used to get instance handle for 

loading many other kinds of resources

MENU2 Example Program
? Example of dynamic menus
? No menu defined in .rc file
? Main menu created upon receipt of the 

WM_CREATE message
? “Tools” popup menu has three bitmap images

– Clicking on each changes mouse cursor to that shape?
• Need to include two cursors (third is predefined ARROW cursor)
• And the three bitmaps in resource script file
• (Bitmaps & cursors have different formats, need both)

? “Add Menu Items”
– Adds a new popup menu w/ items:

• 1. “New Selection 1” toggles its check state & 
activation state of following item

• 2. Item to be toggled by Selection 1; if active, 
causes a beep

• 3. Delete new popup menu (& reactivate old 
item)

– Also Grays out old “Add Menu Items” item



5

MENU2 Resources using 
Visual Editors—

?Cursors:
– ID="CUTCURSOR", filename: cutcur.cur
– ID="GLUECUR", filename: gluecur.cur)

– Create/insert into project with Cursor Editors

? Bitmaps:
– ID="CUTBMP", filename: cutbmp .bmp

– ID="PASTEBMP", filename: pastebmp .bmp
– ID="ARROWBMP", filename: arrowbmp .bmp

– Use Bitmap Editor to create bitmap resources
– Same way as Cursor Editor is used

Menu Resource

?None (since menu created dynamically in 
program)

? But still must assign constant values to 
menu item names (IDM_*)

?Done in the menu2.h
?Must be included along with resource.h

Constants

?ARROWCURSOR, GLUECURSOR, & 
CUTCURSOR

?Used in switch/case statement in program
? Constant values assigned in menu2.h file

The MENU2.CPP Program

?WM_CREATE:  Create initial main menu
– Create main menu and popup menu (empty); 

i.e., get handles
– Load bitmaps to go into the popup menu
– Append bitmaps to popup menu and items to 

main menu:
– Attach entire menu structure to program's 

window with SetMenu()

Other menu items 
(WM_COMMAND)

? Create, add, delete new popup menu and 
items:
– Use calls to CreateMenu(), 

CreatePopupMenu(), AppendMenu(),
InsertMenu(), DeleteMenu()

? To change state of menu items 
– Use calls to EnableMenuItem() and

CheckMenuItem()

Cursors

?User chooses bitmap from “Tools” popup
– change nCursor variable that keeps track of 

current cursor

?User moves mouse in window 
(WM_SETCURSOR)
– Examine nCursor & use LoadCursor() to get 

current mouse cursor
– Use SetCursor() to change to current cursor



6

Other Stuff in MENU2

? Since menu is loaded dynamically, original 
menu when window class was registered is 
NULL

?When window is destroyed 
(WM_DESTROY), call DeleteObject() to 
get rid of the bitmaps


