
1

Menus
Windows provides support for complex menus—
 Popup menus
 Menu bars that are graphics images
 Enabled/disabled/grayed-out menu items
 Checked/unchecked menu items
 Menu items with associated bitmaps
 Menu items that change dynamically as program runs
 Good for pgms that operate in more than one state
 Or to support beginner/advanced versions of menu

Creating Menus

l Can write source .RC resource script file
containing menu definition

l Or use Developer Studio's menu editor to
create menu visually

l Simple Menu Syntax—
 MenuName MENU
 BEGIN
 /* menu definition goes here */
 END

Menu Syntax
l MenuName: string used to find menu data in

program resources
l Menu Items

– Go between BEGIN and END
– Can only be MENUITEM or POPUP

l Menu Item Syntax—
MENUITEM string, MenuID options
or MENUITEM SEPARATOR
 Latter Causes horizontal line between

previous and following menu items

l MENUITEM string, MenuID, Option
– String: Menu item's characters enclosed in " ”
– MenuID: Number passed as LOWORD(wParam)

with WM_COMMAND msg
• Usually given a constant name

– Option:
• Appearance: ENABLED, GRAYED, or INACTIVE
• Check State: CHECKED, UNCHECKED

– Refers to check mark next to menu item

Menu Item Syntax

Menu Item Syntax
l Popup menus

– Used when number of menu items gets too big
– Can have nested popups (up to 8 levels)

l Popup syntax

– POPUP string options

– string:
• Gives popup title--what will appear on menu bar
• No ID needed since popup titles not selectable &

don't generate messages

– Some options:
 MENUBARBREAK
 MENUBREAK

Changing Menu Item Status
l 1. Get handle to entire menu GetMenu(hWnd)

• Returns handle to menu attached to specified window

l 2. Change Status (activate/deactivate an item)
– EnableMenuItem (hMenu, idEnableItem, ActionFlag);

• hMenu=handle to menu containing item
• idEnableItem: which item
• ActionFlag: how & what action

• Examples:
 1. MF_BYCOMMAND | MF_ENABLEDè
 Enable menu item whose ID is given in 2nd parm
 2. MF_BYPOSITION | MF_DISABLEDè
 Disable menu item whose position given in 2nd parm

– Position number relative to top left item (position 0)
– Hard to keep track of positions, so not used often

2

Examples
l 1. EnableMenuItem(hMenu, IDM_SEL3,

 MF_BYCOMMAND | MF_ENABLED);
l 2. EnableMenuItem(hMEnu, 5,

 MF_BYPOSITION | MF_GRAYED);
l Possible actions:

– MF_ENABLED
– MF_DISABLED (seldom used, since confusing to user)
– MF_GRAYED

Changing Check State
l CheckMenuItem()

– Checks/unchecks specified item
– Works like EnableMenuItem()
– Action flag values:

• MF_CHECKED or MF_UNCHECKED

– Can use bitmaps for checked/unchecked state
SetMenuItemBitmaps (hMenu, pos’n, action flags,
 h_unchecked bitmap, h_checked bitmap);
Action flags:

MF_BYCOMMAND or MF_BYPOSITION

Getting Menu Item State

GetMenuState (hMenu, menu_id, MF_Flags)
– Returns UINT that encodes menu item status
– A combination of MF_CHECKED,

MF_ENABLED, etc.

Creating Dynamic Menus
(on fly as program operates)

l Rationale:
– Operations may become impossible or irrelevant,

so delete them from menu
– Other operations may become possible or relevant,

so add them to menu
– May want to use bitmap images as menu items

• e.g., tool selection (picking a brush image for painting)
• Graphical menu items can’t be defined in resource script

l Can be created as the program runs

Menu-altering Functions
l CreateMenu(); Creates new menu, ready to add items
l CreatePopupMenu(); Creates new popup menu, ready

to receive items
l SetMenu(); Attaches a menu to a window

– Often used with LoadMenu() to switch between alt. menus

l AppendMenu(); Adds new menu item or popup to end
of a menu

l InsertMenu(); Inserts new menu item/popup into a
menu/popup menu

l DeleteMenu(); Removes menu item from a menu or
popup menu

l DestroyMenu(); Deletes an entire menu,
removing it from memory
– Only needed if menu was loaded but not attached

to a window

l DrawMenuBar(); Draws the menu bar (in
menu area below window caption)
– Makes any changes visible

l LoadMenu(); Loads menu from program's
resource data
– Ready to be attached to a Window with SetMenu()

3

Basic sequence
1. CreateMenu(): Create a new, empty menu

– Returns a handle to the new menu

2. AppendMenu() and/or InsertMenu()
– Add menu items as needed

3. SetMenu(): Attach menu to a window
l Popup menus must be created separately and attached

to menu as follows:
1. CreatePopupMenu(): Create a new, empty popup menu
– Returns a handle to the new popup menu
2. AppendMenu() or InsertMenu(): Add menu items to popup
3. AppendMenu() or InsertMenu(): Add popup to main menu

Apending Item at End of Menu
AppendMenu (hMenu, MF_flags, item_id,

item_content);
– hMenu: which menu to append item to
– MF_flags, Bitwise OR of:

• What: MF_BITMAP, MF_STRING, MF_POPOP
• Appearance: MF_ENABLED, MF_GRAYED, etc.

– item_id: from resource data (IDMs) or hPopup
– item_content: what goes there: the string or

hBitmap
• Example: “&Quit”, (LPSTR)hImage

Inserting a Menu Item in any Position
InsertMenu (hMenu, item_id, MF_flags,

new_item_id, item_content);
– item_id: where (in front of this item)

• position or IDM_***

– MF_flags, Bitwise OR of:
• where spec.: MF_BYCOMMAND, MF_BYPOSITION
• What: MF_BITMAP, MF_STRING, MF_POPOP
• Appearance: MF_ENABLED, MF_GRAYED, etc.

– new_item_id: IDM_*** or hPopup
– item_content: what goes there; the string or

hBitmap

Deleting a Menu Item

DeleteMenu (hMenu, item_id, MF_flags)

DestroyMenu()

l Must destroy unattached menus
– If not, they will remain in memory for entire

Windows session
– Attached menus are destroyed automatically

when window is destroyed

InsertMenu() or DeleteMenu()

l Can be used to change existing menus
– Usually easier than creating an entire menu

from scratch
– More flexible than defining multiple menus in

program's resources and switching between
them with LoadMenu() and SetMenu()

4

Creating a menu with bitmap images

1. Create image as bitmap (.bmp) using Dev. Studio
2. Include bitmap in program's resource data
3. Use LoadBitmap() to get bitmap data while

program is running
– Returns a handle to the bitmap

4. Use AppendMenu() or InsertMenu() to add the
bitmap as a menu item

5. Use SetMenu() to attach the menu to the window
6. At termination use DeleteObject() to remove

bitmap from memory

MENU2 Example Program
l Example of dynamic menus
l No menu defined in .rc file
l Main menu created upon receipt of the

WM_CREATE message
l “Tools” popup menu has three bitmap images

– Clicking on each changes mouse cursor to that
shapeè

• Need to include two cursors (third is predefined
ARROW cursor)

• And the three bitmaps in resource script file
• (Bitmaps & cursors have different formats, need both)

l “Add Menu Items”
– Adds a new popup menu w/ items:

• 1. “New Selection 1” toggles its check state &
activation state of following item

• 2. Item to be toggled by Selection 1; if active,
causes a beep

• 3. Delete new popup menu (& reactivate old
item)

– Also Grays out old “Add Menu Items” item

MENU2 Resources using
Visual Editors—

l Cursors:
– ID="CUTCURSOR", filename: cutcur.cur
– ID="GLUECUR", filename: gluecur .cur)
– Create/insert into project with Cursor Editors

l Bitmaps:
– ID="CUTBMP", filename: cutbmp.bmp
– ID="PASTEBMP", filename: pastebmp.bmp
– ID="ARROWBMP", filename: arrowbmp.bmp
– Use Bitmap Editor to create bitmap resources
– Same way as Cursor Editor is used

Menu Resource

l None (since menu created dynamically in
program)

l But still must assign constant values to
menu item names (IDM_*)

l Done in the menu2.h
l Must be included along with resource.h

Constants

l ARROWCURSOR, GLUECURSOR, &
CUTCURSOR

l Used in switch/case statement in program
l Constant values assigned in menu2.h file

5

The MENU2.CPP Program

l WM_CREATE: Create initial main menu
– Create main menu and popup menu (empty);

i.e., get handles
– Load bitmaps to go into the popup menu
– Append bitmaps to popup menu and items to

main menu:
– Attach entire menu structure to program's

window with SetMenu()

Other menu items
(WM_COMMAND)

l Create, add, delete new popup menu and
items:
– Use calls to CreateMenu(),

CreatePopupMenu(), AppendMenu(),
InsertMenu(), DeleteMenu()

l To change state of menu items
– Use calls to EnableMenuItem() and

CheckMenuItem()

Cursors
l User chooses bitmap from “Tools” popup

– change nCursor variable that keeps track of
current cursor

l User moves mouse in window
(WM_SETCURSOR)
– Examine nCursor & use LoadCursor() to get

current mouse cursor
– Use SetCursor() to change to current cursor

Other Stuff in MENU2
l Since menu is loaded dynamically. original

menu when window class was registered is
NULL

l When window is destroyed
(WM_DESTROY), call DeleteObject() to
get rid of the bitmaps

