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Introduction to Microsoft 
Windows MFC Programming:                   

The Application/Window 
Approach

?Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

?The Microsoft Foundation Class (MFC) 
Library

?A Hierarchy of C++ classes designed 
to facilitate Windows programming

?An alternative to using Win32 
API functions

?A Visual C++ Windows application can use 
either Win32 API, MFC, or both
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Some characteristics of MFC
? 1. Convenience of reusable code
? 2. Many tasks common to all Windows apps are 

provided by MFC
– e.g., WinMain, the Window Procedure, and the 

message loop are buried in the MFC Framework 
? 3. Produce smaller executables:

– Typically 1/3 the size of their API counterparts
? 4. Can lead to faster program development:

– But there's a steep learning curve
? 5. MFC Programs must be written in C++ and 

require the use of classes
– Instantiation, encapsulation, inheritance, polymorphism
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Help on MFC Classes
? See Online Help (Index) on:

“MFC” | “classes”
“MFC classes (MFC)”

? Clicking on a class ? a document with a 
link to the class members

? Also look at 
“MFC” | “hierarchy”

“hierarchy chart”

Base MFC Class
? CObject: At top of hierarchy ("Mother of almost 

all MFC classes")
? Provides features like:

– Serialization
• Streaming an object’s persistent data to or from a storage 

medium (disk reading/writing)

– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes 
derived from it
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Some Important Derived Classes

? CFile: Support for file operations
? CArchive: Works with CFile to facilitate 

serialization and file I/O
? CDC: Encapsulates the device context (Graphical 

Drawing)
? CGdiObject: Base class for various drawing 

objects (CBrush, CPen, CFont, etc.)
? CMenu: Encapsulates menus and menu 

management

? CCmdTarget: Encapsulates message passing process 
and is parent of:
– CWnd: Base class from which all windows are derived
– Encapsulates many important windows functions and data 

members
– Examples: 

• m_hWnd stores the window’s handle
• Create(…) creates a window 

– Most common subclasses:
• CFrameWindow: Can contain other windows

– ("normal" kind of window we've used)
• CView: Encapsulates process of displaying and interacting with 

data in a window
• CDialog: Encapsulates dialog boxes
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?CCmdTarget also the parent of:
– CWinThread: Defines a thread of execution
– m_pMainWnd is a member of this class

• A pointer to an application’s main window 

– Is the parent of:
• CWinApp: Most important class dealt with in MFC applications:
• Encapsulates an MFC application
• Controls following aspects of Windows programs:

– Startup, initialization, execution, the message loop, shutdown
– An application should have exactly one CWinApp object
– When instantiated, application begins to run

– Member function InitInstance() is called by WinMain()
• m_nCmdShow is a member of this class

– CDocument
• Encapsulates the data associated with a program

? Primary task in writing MFC program--to create 
classes

? Most will be derived from MFC library classes
? Encapsulate MFC Class Member Functions--

– Most functions called by an application will be 
members of an MFC class

? Examples: 
– ShowWindow( ) -- a member of CWnd class
– TextOut( ) -- a member of CDC class
– LoadBitmap( ) -- a member of CBitmap class

MFC Classes and Functions
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?Applications can also call API functions 
directly
– Use Global Scope Resolution Operator (::), for 

example:
– ::UpdateWindow (hWnd);

?Usually more convenient to use MFC 
member functions

MFC Global Functions
?Not members of any MFC class
?Begin with Afx prefix (Application 

FrameworKS)
? Independent of or span MFC class hierarchy
?Example:

– AfxMessageBox( )
• Message boxes are predefined windows
• Can be activated independently from the rest of an 

application
• Good for debugging
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Some Important Global Functions
? AfxAbort( ) -- Unconditionally terminate an app
? AfxBeginThread( ) -- Create & run a new thread
? AfxGetApp( ) -- Returns a pointer to the 

application object
? AfxGetMainWnd( ) -- Returns a pointer to 

application’s main window
? AfxGetInstanceHandle( ) -- Returns handle to 

applications’s current instance
? AfxRegisterWndClass( ) -- Register a custom 

WNDCLASS for an MFC app

A Minimal MFC Program 
(App/Window Approach)

? Simplest MFC programs must contain two classes 
derived from the hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from 
CWnd or CFrameWnd

• Defines the application's main window
? To use these & other MFC classes you must have: 

#include <Afxwin.h> in the .cpp file
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Message Processing under MFC
? Like API programs, MFC programs must handle 

messages from Windows
? API mechanism: switch/case statement in app’s 

WndProc()
? In MFC, WndProc() is buried in the MFC library
? Message handling mechanism: “Message Maps" 

– lookup tables the MFC WndProc() searches
? Table entries:

– Message number 
– Pointer to a message-processing function

• These functions are members of CWnd
• We override the ones we want our program to respond to
• Like virtual functions

Message Mapping
?Programs must:

– Declare message-processing (handler) functions
• e.g., OnWhatever( ) for WM_WHATEVER message

– Map them to messages program is going to 
respond to

• Mapping is done by "message-mapping macros”
– Bind a message to a handler function

– e.g., ON_WM_WHATEVER( )
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STEPS IN WRITING A 
SIMPLE MFC PROGRAM 
(App/Window Approach)
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DECLARATION (.h)
1. Declare a window class derived from

CFrameWnd (e.g., CMainWin)--
? Class Members:

– The constructor declaration
– Message-processing function declarations for messages 

the application will override and respond to 
• e.g., void OnChar( … )

– DECLARE_MESSAGE_MAP( ) macro:
• Allows windows based on this class to respond to messages
• Declares that a message map will be used to map messages to 

overriding handler functions in the application
• Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--

? Must override CWinApp's InitInstance( ) virtual 
function:
– Called each time a new instance of application is started

• i.e., when an object of this application class is instantiated

– Purpose is for application to initialize itself
– Good place to put code that does stuff that has to be 

done each time program starts
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IMPLEMENTATION (.CPP)
1. Define constructor for class derived from

CFrameWnd (e.g., our CMainWin)
? Should call member function Create( ) to create the 

window
– Does what CreateWindow( ) does in API

2. Define message map for class derived from
CFrameWnd (e.g., our CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)

// List of “message-mapping macros”, e.g.
ON_WM_CHAR( )

END_MESSAGE_MAP( )

3. Define (implement) message-processing 
functions declared in .h file declarations above

4. Define (implement) InitInstance() overriding 
function--

? Done in class derived from CWinApp … our CApp):
– Should have initialization code:

• Instantiate a CMainWin object ? pointer to program's main window
– m_pMainWnd
– (Used to refer to the window, like hWnd in API programs)

• Invoke object's ShowWindow( ) member function
• Invoke object's UpdateWindow( ) member function
• Must return non-zero to indicate success

– [MFC's implementation of WinMain() calls this function]
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?Now nature & form of simple window & 
application have been defined      

?But neither exists--
?Must instantiate an application object 

derived from CWinApp … our CApp

5. Instantiate the app class (e.g., our CApp)
?Causes AfxWinMain( ) to execute

– It's now part of MFC [WINMAIN.CPP]

?AfxWinMain( ) does the following:
– 1. Calls AfxWinInit( )--

• which calls AfxRegisterClass( ) to register window class

– 2. Calls CApp::InitInstance( ) [virtual function 
overridden in 4 above]--

• which creates, shows, and updates the window

– 3. Calls CWinApp::Run( ) [In THRDCORE.CPP]--
• which calls CWinThread::PumpMessage( )--
• which contains the GetMessage( ) loop
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?After CWinApp::Run( ) returns:
– (i.e., when the WM_QUIT message is received)
– AfxWinTerm ( ) is called--
– which cleans up and exits

MSG2005 Example MFC 
Application: Mouse/Character 

Message Processing

?User presses mouse button ?
– “L” or “R” displayed at current mouse cursor 

position

?Keyboard key pressed ?
– Character displayed at upper left hand corner of 

client area
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? Message map contains:
– ON_WM_CHAR( )
– ON_WM_LBUTTONDOWN( )
– ON_WM_RBUTTONDOWN( )

? To respond to messages:
– WM_CHAR
– WM_LBUTTONDOWN
– WM_RBUTTONDOWN

? So we need to define the following handler 
function overrides:
– CWnd::OnChar(UINT ch, UINT count, UINT flags);
– CWnd::OnLButtonDown(UINT flags, CPoint loc);
– CWnd::OnRButtonDown(UINT flags, CPoint loc);

? In each handler we need to get a Device Context 
to draw on:
CDC* pDC

• Declare a pointer to a CDC object

pDC = this->GetDC( );
• Use GetDC( ) member function of ‘this ’ CWnd to get a device 

context to draw on

? And then display a string using TextOut( )
– If it’s a character, it must be formatted into a string first
– Can use wsprintf( )

• Formats integers, characters, and other data types into a string
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Steps in Creating and Building an MFC 
Application like msg2005 “manually”

1. “File” | “New” | “Project”
– Specify an empty Win32 project as in previous examples

2. “Project” | “Add New Item”
– Categories:  “Visual C++” | “Code”
– Templates: “C++ File”
– Enter or copy/paste .cpp file text (e.g., msg2005.CPP)--see 

IMPLEMENTATION above
3. “Project” | “Add New Item” | “Visual C++” | “code” | “ Header File ”

– Enter or copy/paste .h file text (e.g., msg2005.h)--see DECLARATION 
above

4. With project name highlighted in Solution Explorer window,      
“Project” | “Properties” | “Configuration Properties” | “General”
– From “Use of MFC”, choose:
– "Use MFC in a Shared DLL"

5. Build the project as usual


