
1

Introduction to Microsoft
Windows MFC Programming:

The Application/Window
Approach

?Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

?The Microsoft Foundation Class (MFC)
Library

?A Hierarchy of C++ classes designed
to facilitate Windows programming

?An alternative to using Win32
API functions

?A Visual C++ Windows application can use
either Win32 API, MFC, or both

2

Some characteristics of MFC
? 1. Convenience of reusable code
? 2. Many tasks common to all Windows apps are

provided by MFC
– e.g., WinMain, the Window Procedure, and the

message loop are buried in the MFC Framework
? 3. Produce smaller executables:

– Typically 1/3 the size of their API counterparts
? 4. Can lead to faster program development:

– But there's a steep learning curve
? 5. MFC Programs must be written in C++ and

require the use of classes
– Instantiation, encapsulation, inheritance, polymorphism

3

Help on MFC Classes
? See Online Help (Index) on:

“MFC” | “classes”
“MFC classes (MFC)”

? Clicking on a class ? a document with a
link to the class members

? Also look at
“MFC” | “hierarchy”

“hierarchy chart”

Base MFC Class
? CObject: At top of hierarchy ("Mother of almost

all MFC classes")
? Provides features like:

– Serialization
• Streaming an object’s persistent data to or from a storage

medium (disk reading/writing)

– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes
derived from it

4

Some Important Derived Classes

? CFile: Support for file operations
? CArchive: Works with CFile to facilitate

serialization and file I/O
? CDC: Encapsulates the device context (Graphical

Drawing)
? CGdiObject: Base class for various drawing

objects (CBrush, CPen, CFont, etc.)
? CMenu: Encapsulates menus and menu

management

? CCmdTarget: Encapsulates message passing process
and is parent of:
– CWnd: Base class from which all windows are derived
– Encapsulates many important windows functions and data

members
– Examples:

• m_hWnd stores the window’s handle
• Create(…) creates a window

– Most common subclasses:
• CFrameWindow: Can contain other windows

– ("normal" kind of window we've used)
• CView: Encapsulates process of displaying and interacting with

data in a window
• CDialog: Encapsulates dialog boxes

5

?CCmdTarget also the parent of:
– CWinThread: Defines a thread of execution
– m_pMainWnd is a member of this class

• A pointer to an application’s main window

– Is the parent of:
• CWinApp: Most important class dealt with in MFC applications:
• Encapsulates an MFC application
• Controls following aspects of Windows programs:

– Startup, initialization, execution, the message loop, shutdown
– An application should have exactly one CWinApp object
– When instantiated, application begins to run

– Member function InitInstance() is called by WinMain()
• m_nCmdShow is a member of this class

– CDocument
• Encapsulates the data associated with a program

? Primary task in writing MFC program--to create
classes

? Most will be derived from MFC library classes
? Encapsulate MFC Class Member Functions--

– Most functions called by an application will be
members of an MFC class

? Examples:
– ShowWindow() -- a member of CWnd class
– TextOut() -- a member of CDC class
– LoadBitmap() -- a member of CBitmap class

MFC Classes and Functions

6

?Applications can also call API functions
directly
– Use Global Scope Resolution Operator (::), for

example:
– ::UpdateWindow (hWnd);

?Usually more convenient to use MFC
member functions

MFC Global Functions
?Not members of any MFC class
?Begin with Afx prefix (Application

FrameworKS)
? Independent of or span MFC class hierarchy
?Example:

– AfxMessageBox()
• Message boxes are predefined windows
• Can be activated independently from the rest of an

application
• Good for debugging

7

Some Important Global Functions
? AfxAbort() -- Unconditionally terminate an app
? AfxBeginThread() -- Create & run a new thread
? AfxGetApp() -- Returns a pointer to the

application object
? AfxGetMainWnd() -- Returns a pointer to

application’s main window
? AfxGetInstanceHandle() -- Returns handle to

applications’s current instance
? AfxRegisterWndClass() -- Register a custom

WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

? Simplest MFC programs must contain two classes
derived from the hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from
CWnd or CFrameWnd

• Defines the application's main window
? To use these & other MFC classes you must have:

#include <Afxwin.h> in the .cpp file

8

Message Processing under MFC
? Like API programs, MFC programs must handle

messages from Windows
? API mechanism: switch/case statement in app’s

WndProc()
? In MFC, WndProc() is buried in the MFC library
? Message handling mechanism: “Message Maps"

– lookup tables the MFC WndProc() searches
? Table entries:

– Message number
– Pointer to a message-processing function

• These functions are members of CWnd
• We override the ones we want our program to respond to
• Like virtual functions

Message Mapping
?Programs must:

– Declare message-processing (handler) functions
• e.g., OnWhatever() for WM_WHATEVER message

– Map them to messages program is going to
respond to

• Mapping is done by "message-mapping macros”
– Bind a message to a handler function

– e.g., ON_WM_WHATEVER()

9

STEPS IN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

10

DECLARATION (.h)
1. Declare a window class derived from

CFrameWnd (e.g., CMainWin)--
? Class Members:

– The constructor declaration
– Message-processing function declarations for messages

the application will override and respond to
• e.g., void OnChar(…)

– DECLARE_MESSAGE_MAP() macro:
• Allows windows based on this class to respond to messages
• Declares that a message map will be used to map messages to

overriding handler functions in the application
• Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--

? Must override CWinApp's InitInstance() virtual
function:
– Called each time a new instance of application is started

• i.e., when an object of this application class is instantiated

– Purpose is for application to initialize itself
– Good place to put code that does stuff that has to be

done each time program starts

11

IMPLEMENTATION (.CPP)
1. Define constructor for class derived from

CFrameWnd (e.g., our CMainWin)
? Should call member function Create() to create the

window
– Does what CreateWindow() does in API

2. Define message map for class derived from
CFrameWnd (e.g., our CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)

// List of “message-mapping macros”, e.g.
ON_WM_CHAR()

END_MESSAGE_MAP()

3. Define (implement) message-processing
functions declared in .h file declarations above

4. Define (implement) InitInstance() overriding
function--

? Done in class derived from CWinApp … our CApp):
– Should have initialization code:

• Instantiate a CMainWin object ? pointer to program's main window
– m_pMainWnd
– (Used to refer to the window, like hWnd in API programs)

• Invoke object's ShowWindow() member function
• Invoke object's UpdateWindow() member function
• Must return non-zero to indicate success

– [MFC's implementation of WinMain() calls this function]

12

?Now nature & form of simple window &
application have been defined

?But neither exists--
?Must instantiate an application object

derived from CWinApp … our CApp

5. Instantiate the app class (e.g., our CApp)
?Causes AfxWinMain() to execute

– It's now part of MFC [WINMAIN.CPP]

?AfxWinMain() does the following:
– 1. Calls AfxWinInit()--

• which calls AfxRegisterClass() to register window class

– 2. Calls CApp::InitInstance() [virtual function
overridden in 4 above]--

• which creates, shows, and updates the window

– 3. Calls CWinApp::Run() [In THRDCORE.CPP]--
• which calls CWinThread::PumpMessage()--
• which contains the GetMessage() loop

13

?After CWinApp::Run() returns:
– (i.e., when the WM_QUIT message is received)
– AfxWinTerm () is called--
– which cleans up and exits

MSG2005 Example MFC
Application: Mouse/Character

Message Processing

?User presses mouse button ?
– “L” or “R” displayed at current mouse cursor

position

?Keyboard key pressed ?
– Character displayed at upper left hand corner of

client area

14

? Message map contains:
– ON_WM_CHAR()
– ON_WM_LBUTTONDOWN()
– ON_WM_RBUTTONDOWN()

? To respond to messages:
– WM_CHAR
– WM_LBUTTONDOWN
– WM_RBUTTONDOWN

? So we need to define the following handler
function overrides:
– CWnd::OnChar(UINT ch, UINT count, UINT flags);
– CWnd::OnLButtonDown(UINT flags, CPoint loc);
– CWnd::OnRButtonDown(UINT flags, CPoint loc);

? In each handler we need to get a Device Context
to draw on:
CDC* pDC

• Declare a pointer to a CDC object

pDC = this->GetDC();
• Use GetDC() member function of ‘this ’ CWnd to get a device

context to draw on

? And then display a string using TextOut()
– If it’s a character, it must be formatted into a string first
– Can use wsprintf()

• Formats integers, characters, and other data types into a string

15

Steps in Creating and Building an MFC
Application like msg2005 “manually”

1. “File” | “New” | “Project”
– Specify an empty Win32 project as in previous examples

2. “Project” | “Add New Item”
– Categories: “Visual C++” | “Code”
– Templates: “C++ File”
– Enter or copy/paste .cpp file text (e.g., msg2005.CPP)--see

IMPLEMENTATION above
3. “Project” | “Add New Item” | “Visual C++” | “code” | “ Header File ”

– Enter or copy/paste .h file text (e.g., msg2005.h)--see DECLARATION
above

4. With project name highlighted in Solution Explorer window,
“Project” | “Properties” | “Configuration Properties” | “General”
– From “Use of MFC”, choose:
– "Use MFC in a Shared DLL"

5. Build the project as usual

