Introduction to Microsoft
Windows MFC Programming:
The Application/Window
Approach

= Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

= The Microsoft Foundation Class (MFC)
Library

« A Hierarchy of C++ classes designed
to facilitate Windows programming

=« An alternative to using Win32
API functions

=« A Visua C++ Windows application can use
either Win32 API, MFC, or both
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The Relationship between Windows
MFC and Win32 API Programming

Some characteristicsof MFC

= 1. Convenience of reusable code
& 2. Many tasks common to all Windows apps are
provided by MFC

— eg., WinMain, the Window Procedure, and the
message loop are buried in the MFC Framework

= 3. Produce smaller executables:
— Typically 1/3 the size of their API counterparts
« 4. Can lead to faster program development:
— But there's a steep learning curve
=« 5. MFC Programs must be written in C++ and
require the use of classes
— Instantiation, encapsulation, inheritance, polymorphism




Help on MFC Classes

= See Online Help (Index) on:
“MFC” | “classes”
“MFC classes (MFC)”’
& Clicking on aclass = adocument with a
link to the class members
= Alsolook at
“MFC” |“hierarchy”
“hierarchy chart”

Base MFC Class

= CObject: At top of hierarchy ("Mother of almost
all MFC classes")
= Provides features like:
— Seridlization
 Streaming an object’s persistent datato or from a storage
medium (disk reading/writing)

— Runtime class information
— Diagnostic & Debugging support
— Some important macros
« All its functionality is inherited by any classes
derived from it




Some Important Derived Classes

=« CFile Support for file operations

= CArchive Workswith CFileto facilitate
seridization and file 1/O

= CDC: Encapsulates the device context (Graphical
Drawing)

= CGdiObject: Base class for various drawing
objects (CBrush, CPen, CFont, etc.)

= CMenu: Encapsulates menus and menu
management

= CCmdTarget: Encapsulates message passing process
and is parent of:
— CWnd: Base class from which all windows are derived

— Encapsulates many important windows functions and data
members

— Examples:
* m_hWnd stores the window's handle
* Create(...) creates awindow
— Most common subclasses:
» CFrameWindow: Can contain other windows

— ("normal" kind of window we've used)

e CView: Encapsulates process of displaying and interacting with
datain awindow

» CDialog: Encapsulates dialog boxes




= CCmdTarget also the parent of:

— CWinThread: Defines athread of execution

— m_pMainWnd isamember of this class
A pointer to an application’s main window
— Isthe parent of:
» CWinApp: Most important class dealt with in MFC applications:
» Encapsulates an MFC application
» Controlsfollowing aspects of Windows programs:
— Startup, initialization, execution, the message loop, shutdown
— An application should have exactly one CWinApp object
— When instantiated, application beginsto run
— Member function Initinstance() is called by WinMain()
* m_nCmdShow is amember of this class

— CDocument
» Encapsulates the data associated with a program

MFC Classes and Functions

& Primary task in writing MFC program--to create
classes

= Most will be derived from MFC library classes
= Encapsulate MFC Class Member Functions--

— Most functions called by an application will be
members of an MFC class

= Examples:
— ShowWindow( ) -- amember of CWnd class
— TextOut() -- amember of CDC class
— LoadBitmap( ) -- amember of CBitmap class




« Applications can also call API functions
directly

— Use Global Scope Resolution Operator (::), for
example:

— ::UpdateWindow (hWnd);
= Usually more convenient to use MFC
member functions

M FC Global Functions

= Not members of any MFC class
=« Begin with Afx prefix (Application
FrameworK S)

& Independent of or span MFC class hierarchy

« Example:

— AfxMessageBox ()
» Message boxes are predefined windows

* Can be activated independently from the rest of an
application

» Good for debugging




Some Important Global Functions

= AfxAbort( ) -- Unconditionally terminate an app

=« AfxBeginThread( ) -- Create & run a new thread

= AfXGetApp( ) -- Returns a pointer to the
application object

= AfxGetMainWnd( ) -- Returns a pointer to
application’ s main window

=« AfxGetl nstanceHandlg ) -- Returns handle to
applications’ scurrent instance

= AfxRegisterWndClass( ) -- Register a custom
WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

= Simplest MFC programs must contain two classes
derived from the hierarchy:
— 1. An application class derived from CWinApp
* Defines the application
* provides the message loop

— 2. A window class usually derived from
CWhnd or CFrameWnd

* Defines the application's main window

&« To usethese & other MFC classes you must have:
#include <Afxwin.n> in the .cpp file




M essage Processing under MFC
« Like API programs, MFC programs must handle
messages from Windows
= APl mechanism: switch/case statement in app’'s
WndProc()
= In MFC, WndProc() is buried in the MFC library
= Message handling mechanism: “ M essage M aps”
— lookup tables the MFC WndProc() searches
=« Table entries;
— Message number

— Pointer to a message-processing function
*» These functions are members of CWnd
» We override the ones we want our program to respond to
* Likevirtual functions

M essage M apping

&« Programs must:

— Declare message-processing (handler) functions
* eg., OnWhatever() for WM_WHATEVER message
— Map them to messages program is going to
respond to
» Mapping is done by "message- mapping macros’
— Bind amessage to a handler function
- eg., ON_WM_WHATEVER()




User Moves Mouse

generates:

WM MOUSEMOYE
message

Delivered to:

Program's WndProc()

switch (message)

{
case WM_MOUSEMOVE:
Handler for message

Win32 APT Message Handling

User Moves Mouse

generates:

WM MOUSEMOYE
message

Delivered to:

MFC's Window Procedure

gearch message maps for
ON_WM_MOUSEMOVE ()

calls:

CWnd: : OnMouseMove()

MFC Message Handling

STEPSIN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)




DECLARATION (.h)

1. Declare awindow class derived from
CFrameWnd (e.g., CMainWin)--

= Class Members:
— The constructor declaration

— Message-processing function declarations for messages
the application will override and respond to
* eg., void OnChar( ... )

— DECLARE_MESSAGE_MAP( ) macro:
 Allowswindows based on this class to respond to messages

» Declaresthat a message map will be used to map messages to
overriding handler functions in the application

» Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--
= Must override CWinApp's I nitl nstance( ) virtua
function:
— Called each time a new instance of application is started
* i.e., when an object of this application classisinstantiated
— Purpose is for application to initiaize itself

— Good place to put code that does stuff that has to be
done each time program starts
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IMPLEMENTATION (.CPP)

1. Define constructor for class derived from
CFrameWnd (e.g., our CMainWin)

= Should call member function Create( ) to create the
window

— Does what CreateWindow( ) doesin AP
2. Define message mayp for class derived from
CFrameWnd (e.g., our CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)
/I List of “message-mapping macros’, e.g.
ON_WM_CHAR()
END_MESSAGE_MAP()

3. Define (implement) message-processing
functions declared in .h file declarations above

4. Define (implement) | nitl nstance() overriding
function--

=« Donein class derived from CWinApp ... our CApp):

— Should have initidization code:
* |Instantiate a CMainWin object & pointer to program's main window
— m_pMainWnd
— (Used to refer to the window, like hwnd in API programs)
 Invoke object's ShowWindow() member function
 Invoke object's UpdateWindow( ) member function
» Must return non-zero to indicate success

— [MFC's implementation of WinMain() cals this function]
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= Now nature & form of simple window &
application have been defined

= But neither exists--

=« Must instantiate an application object
derived from CWinApp ... our CApp

5. Instantiate the app class (e.g., our CApp)

& Causes AfxWinMain( ) to execute
— It's now part of MFC [WINMAIN.CPP]
« AfxWinMain( ) does the following:

— 1. Cdls AfxWinlnit( )--
 which calls AfxRegister Class( ) to register window class

— 2. Calls CApp::InitInstance( ) [virtual function
overridden in 4 abovel--
 which creates, shows, and updates the window
— 3. Calls CWinApp::Run() [In THRDCORE.CPPJ--
 which calls CWinThread::PumpMessage( )--

 which contains the GetMessage( ) loop
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= After CWinApp::Run() returns:
— (i.e., when the WM_QUIT message is received)
— AfxXWinTerm( ) is called--
— which cleans up and exits

M SG2005 Example MFC
Application: Mouse/Char acter
M essage Processing

& User presses mouse button
—“L” or “R” displayed at current mouse cursor
position
= Keyboard key pressed &<

— Character displayed at upper left hand corner of
client area
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= Message map contains:
— ON_WM_CHAR()
— ON_WM_LBUTTONDOWN()
— ON_WM_RBUTTONDOWN( )
& T0 respond to messages:
— WM_CHAR
— WM_LBUTTONDOWN
— WM_RBUTTONDOWN
= S0 we need to define the following handler
function overrides:
— CWnd::OnChar(UINT ch, UINT count, UINT flags);
— CWnd::OnLButtonDown(UINT flags, CPoint loc);
— CWnd::OnRButtonDown(UINT flags, CPoint loc);

« In each handler we need to get a Device Context
to draw on:
CDC* pDC
» Declare apointer to a CDC object
pDC = this>GetDC();

» Use GetDC() member function of ‘this’ CWnd to get adevice
context to draw on

= And then display a string using TextOut( )
— If it sacharacter, it must be formatted into a string first

— Can use wsprintf()
» Formatsintegers, characters, and other datatypesinto a string
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Stepsin Creating and Buildingan MFC
Application like msg2005 “ manually”

1. “File” |“New” | “Project”
— Specify an empty Win32 project as in previous examples
2."Project” |“Add New Iten?
— Categories: “Visual C++" |“ Code”
— Templates. “C++ File”
— Enter or copy/paste .cpp file text (e.g., msg2005.CPP)--see
IMPLEMENTATION above
3.“Project” |“Add New Itent’ | “Visual C++" |“code” |“ Header File”
— Enter or copy/paste .h file text (e.g., msg2005.h)--see DECLARATION
above
4. With project name highlighted in Solution Explorer window,
“Project” |*Properties” |“ Configuration Properties” |“ Genera”
— From*“Use of MFC’, choose:
— "Use MFCinaShared DLL"
5. Build the project as usual
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