Introduction to Microsoft
Windows MFC Programming:
The Application/Window
Approach

= Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

= The Microsoft Foundation Class (MFC)
Library

« A Hierarchy of C++ classes designed
to facilitate Windows programming

=« An alternative to using Win32
API functions

=« A Visua C++ Windows application can use
either Win32 API, MFC, or both

C++ Windows BApplication

|

MFC Library

l

Win3? API

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

Some characteristicsof MFC

= 1. Convenience of reusable code
& 2. Many tasks common to all Windows apps are
provided by MFC

— eg., WinMain, the Window Procedure, and the
message loop are buried in the MFC Framework

= 3. Produce smaller executables:
— Typically 1/3 the size of their API counterparts
« 4. Can lead to faster program development:
— But there's a steep learning curve
=« 5. MFC Programs must be written in C++ and
require the use of classes
— Instantiation, encapsulation, inheritance, polymorphism

Help on MFC Classes

= See Online Help (Index) on:
“MFC” | “classes”
“MFC classes (MFC)”’
& Clicking on aclass = adocument with a
link to the class members
= Alsolook at
“MFC” |“hierarchy”
“hierarchy chart”

Base MFC Class

= CObject: At top of hierarchy ("Mother of almost
all MFC classes")
= Provides features like:
— Seridlization
 Streaming an object’s persistent datato or from a storage
medium (disk reading/writing)

— Runtime class information
— Diagnostic & Debugging support
— Some important macros
« All its functionality is inherited by any classes
derived from it

Some Important Derived Classes

=« CFile Support for file operations

= CArchive Workswith CFileto facilitate
seridization and file 1/O

= CDC: Encapsulates the device context (Graphical
Drawing)

= CGdiObject: Base class for various drawing
objects (CBrush, CPen, CFont, etc.)

= CMenu: Encapsulates menus and menu
management

= CCmdTarget: Encapsulates message passing process
and is parent of:
— CWnd: Base class from which all windows are derived

— Encapsulates many important windows functions and data
members

— Examples:
* m_hWnd stores the window's handle
* Create(...) creates awindow
— Most common subclasses:
» CFrameWindow: Can contain other windows

— ("normal" kind of window we've used)

e CView: Encapsulates process of displaying and interacting with
datain awindow

» CDialog: Encapsulates dialog boxes

= CCmdTarget also the parent of:

— CWinThread: Defines athread of execution

— m_pMainWnd isamember of this class
A pointer to an application’s main window
— Isthe parent of:
» CWinApp: Most important class dealt with in MFC applications:
» Encapsulates an MFC application
» Controlsfollowing aspects of Windows programs:
— Startup, initialization, execution, the message loop, shutdown
— An application should have exactly one CWinApp object
— When instantiated, application beginsto run
— Member function Initinstance() is called by WinMain()
* m_nCmdShow is amember of this class

— CDocument
» Encapsulates the data associated with a program

MFC Classes and Functions

& Primary task in writing MFC program--to create
classes

= Most will be derived from MFC library classes
= Encapsulate MFC Class Member Functions--

— Most functions called by an application will be
members of an MFC class

= Examples:
— ShowWindow() -- amember of CWnd class
— TextOut() -- amember of CDC class
— LoadBitmap() -- amember of CBitmap class

« Applications can also call API functions
directly

— Use Global Scope Resolution Operator (::), for
example:

— ::UpdateWindow (hWnd);
= Usually more convenient to use MFC
member functions

M FC Global Functions

= Not members of any MFC class
=« Begin with Afx prefix (Application
FrameworK S)

& Independent of or span MFC class hierarchy

« Example:

— AfxMessageBox ()
» Message boxes are predefined windows

* Can be activated independently from the rest of an
application

» Good for debugging

Some Important Global Functions

= AfxAbort() -- Unconditionally terminate an app

=« AfxBeginThread() -- Create & run a new thread

= AfXGetApp() -- Returns a pointer to the
application object

= AfxGetMainWnd() -- Returns a pointer to
application’ s main window

=« AfxGetl nstanceHandlg) -- Returns handle to
applications’ scurrent instance

= AfxRegisterWndClass() -- Register a custom
WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

= Simplest MFC programs must contain two classes
derived from the hierarchy:
— 1. An application class derived from CWinApp
* Defines the application
* provides the message loop

— 2. A window class usually derived from
CWhnd or CFrameWnd

* Defines the application's main window

&« To usethese & other MFC classes you must have:
#include <Afxwin.n> in the .cpp file

M essage Processing under MFC
« Like API programs, MFC programs must handle
messages from Windows
= APl mechanism: switch/case statement in app’'s
WndProc()
= In MFC, WndProc() is buried in the MFC library
= Message handling mechanism: “ M essage M aps”
— lookup tables the MFC WndProc() searches
=« Table entries;
— Message number

— Pointer to a message-processing function
*» These functions are members of CWnd
» We override the ones we want our program to respond to
* Likevirtual functions

M essage M apping

&« Programs must:

— Declare message-processing (handler) functions
* eg., OnWhatever() for WM_WHATEVER message
— Map them to messages program is going to
respond to
» Mapping is done by "message- mapping macros’
— Bind amessage to a handler function
- eg., ON_WM_WHATEVER()

User Moves Mouse

generates:

WM MOUSEMOYE
message

Delivered to:

Program's WndProc()

switch (message)

{
case WM_MOUSEMOVE:
Handler for message

Win32 APT Message Handling

User Moves Mouse

generates:

WM MOUSEMOYE
message

Delivered to:

MFC's Window Procedure

gearch message maps for
ON_WM_MOUSEMOVE ()

calls:

CWnd: : OnMouseMove()

MFC Message Handling

STEPSIN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

DECLARATION (.h)

1. Declare awindow class derived from
CFrameWnd (e.g., CMainWin)--

= Class Members:
— The constructor declaration

— Message-processing function declarations for messages
the application will override and respond to
* eg., void OnChar(...)

— DECLARE_MESSAGE_MAP() macro:
 Allowswindows based on this class to respond to messages

» Declaresthat a message map will be used to map messages to
overriding handler functions in the application

» Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--
= Must override CWinApp's I nitl nstance() virtua
function:
— Called each time a new instance of application is started
* i.e., when an object of this application classisinstantiated
— Purpose is for application to initiaize itself

— Good place to put code that does stuff that has to be
done each time program starts

10

IMPLEMENTATION (.CPP)

1. Define constructor for class derived from
CFrameWnd (e.g., our CMainWin)

= Should call member function Create() to create the
window

— Does what CreateWindow() doesin AP
2. Define message mayp for class derived from
CFrameWnd (e.g., our CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)
/I List of “message-mapping macros’, e.g.
ON_WM_CHAR()
END_MESSAGE_MAP()

3. Define (implement) message-processing
functions declared in .h file declarations above

4. Define (implement) | nitl nstance() overriding
function--

=« Donein class derived from CWinApp ... our CApp):

— Should have initidization code:
* |Instantiate a CMainWin object & pointer to program's main window
— m_pMainWnd
— (Used to refer to the window, like hwnd in API programs)
 Invoke object's ShowWindow() member function
 Invoke object's UpdateWindow() member function
» Must return non-zero to indicate success

— [MFC's implementation of WinMain() cals this function]

11

= Now nature & form of simple window &
application have been defined

= But neither exists--

=« Must instantiate an application object
derived from CWinApp ... our CApp

5. Instantiate the app class (e.g., our CApp)

& Causes AfxWinMain() to execute
— It's now part of MFC [WINMAIN.CPP]
« AfxWinMain() does the following:

— 1. Cdls AfxWinlnit()--
 which calls AfxRegister Class() to register window class

— 2. Calls CApp::InitInstance() [virtual function
overridden in 4 abovel--
 which creates, shows, and updates the window
— 3. Calls CWinApp::Run() [In THRDCORE.CPPJ--
 which calls CWinThread::PumpMessage()--

 which contains the GetMessage() loop

12

= After CWinApp::Run() returns:
— (i.e., when the WM_QUIT message is received)
— AfxXWinTerm() is called--
— which cleans up and exits

M SG2005 Example MFC
Application: Mouse/Char acter
M essage Processing

& User presses mouse button
—“L” or “R” displayed at current mouse cursor
position
= Keyboard key pressed &<

— Character displayed at upper left hand corner of
client area

13

= Message map contains:
— ON_WM_CHAR()
— ON_WM_LBUTTONDOWN()
— ON_WM_RBUTTONDOWN()
& T0 respond to messages:
— WM_CHAR
— WM_LBUTTONDOWN
— WM_RBUTTONDOWN
= S0 we need to define the following handler
function overrides:
— CWnd::OnChar(UINT ch, UINT count, UINT flags);
— CWnd::OnLButtonDown(UINT flags, CPoint loc);
— CWnd::OnRButtonDown(UINT flags, CPoint loc);

« In each handler we need to get a Device Context
to draw on:
CDC* pDC
» Declare apointer to a CDC object
pDC = this>GetDC();

» Use GetDC() member function of ‘this’ CWnd to get adevice
context to draw on

= And then display a string using TextOut()
— If it sacharacter, it must be formatted into a string first

— Can use wsprintf()
» Formatsintegers, characters, and other datatypesinto a string

14

Stepsin Creating and Buildingan MFC
Application like msg2005 “ manually”

1. “File” |“New” | “Project”
— Specify an empty Win32 project as in previous examples
2."Project” |“Add New Iten?
— Categories: “Visual C++" |“ Code”
— Templates. “C++ File”
— Enter or copy/paste .cpp file text (e.g., msg2005.CPP)--see
IMPLEMENTATION above
3.“Project” |“Add New Itent’ | “Visual C++" |“code” |“ Header File”
— Enter or copy/paste .h file text (e.g., msg2005.h)--see DECLARATION
above
4. With project name highlighted in Solution Explorer window,
“Project” |*Properties” |“ Configuration Properties” |“ Genera”
— From*“Use of MFC’, choose:
— "Use MFCinaShared DLL"
5. Build the project as usual

15

