Introduction to Microsoft
Windows MFC Programming:
The Application/Window
Approach

& Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

. The Microsoft Foundation Class (M FC)
Library

=~ A Hierarchy of C++ classes designed
to facilitate Windows programming

= Anadternativeto using Win32
API functions

= A Visua C++ Windows application can use
either Win32 AP, MFC, or both

| C++ Windows Application

| Win32 APT |

I

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

Microsoft Foundation Classes

= About 200 MFC classes (versus 2000+ API
functions)

= Provide aframework upon which to build
Windowsapplications

= Encapsulate most of theWin32 APl in aset
of logically organized classes

Some characteristics of MFC

= 1. Convenience of reusable code:

— Many tasks common to all Windows apps are
provided by MFC

— Our programs can inherit and modify this
functionality as needed

— Wedon't need to recreate these tasks
— MFC handles many clerical detailsin Windows
programs

MFC Characteristics, continued

= 2. Produce smaller executables:
— Typically 1/3 the size of their API counterparts
= 3. Can lead to faster program devel opment:
— But there's a steep learning curve--

— Especially for newcomersto object -oriented
programming

MFC Characteristics, continued

=« 4. MFC Programs must be written in C++
and require the use of classes
— Programmer must have good grasp of:
» How classes are declared, implemented

(instantiated), extended, overridden, and used
« Encapsulation

* Inheritance
« Polymorphism

Help on MFC Classes

- See Online Help (Index) on:
“MFC (Microsoft Foundation Class)”
“ Hierarchy Chart”
“Hierarchy Chart”
— Each classnameisahot link
— At bottom each has a*“ Class Members® link
« Clicking & adocument that listsall class members

OntheWeb:

http://msdn. microsoft.com/library/default.asp?url=/library/en-
us/vemfc98/html/_mfc_class_library_reference_introduction.asp

Base MFC Class

= CObject: At top of hierarchy ("Mother of almost
all MFC classes")
=« Providesfeatureslike:
— Serialization
« Streaming object’s persistent data to or from a storage medium
(disk reading/writing)

— Runtime class information
— Diagnostic & Debugging support
— Someimportant macros
= All itsfunctionality isinherited by any classes
derived from it

Some Important Derived Classes

« CFile: Support for file operations

= CArchive: Works with CFile to facilitate
seridization and file /O

= CDC: Encapsulates the device context
(Graphical Drawing)

=« CGdiObject: Base classfor variousdrawing
objects (CBrush, CPen, CFont, etc.)

= CMenu: Encapsulates menu management

= CCmdTarget: Encapsulates message passing
processand isparent of:

— CWnd: Base class from which all windows are
derived

— Encapsulates many important windows functions
and data members
— Example: m_hWnd stores the window’ s handle
— Most common subclasses:
« CFrameWindow: Can contain other windows
—("normal" kind of window we've used)

« CView: Encapsulates process of displaying and
interacting with data

« CDialog: Encapsulates dialog boxes

= CCmdTarget also parent of:
— CWinThread Definesathread of execution and
isthe parent of:

« CWinApp: Most important class dealt within MFC
applications:

« Encapsulates an MFC application
« Controlsfollowing aspects of Windows programs:

— Startup, initialization, execution, the message loop,
shutdown

— An application should have one CWinA pp object
—When instantiated, application beginsto run
— CDocument
« Encapsul ates the data associated with a program

MFC Classes and Functions
& Primary task in writing MFC program--to create

classes
= Most will be derived from MFC library classes
= MFC ClassMember Functions-

— Most functions called by an application will be

members of an MFC class

= Examples:

— ShowWindow() -- amember of CWnd class

— TextOut() -- amember of CDC

— LoadBitmap() -- a member of CBitmap

« Appscan aso cal API functionsdirectly
— Use Global Scope Resolution Operator (::), for
example:
— ::UpdateWindow(hwnd);
= Usually more convenient to use MFC
member functions

MFC Globa Functions

= Not members of any MFC class
=« Beginwith Afx prefix (Application
FrameworKS)
& |ndependent of or span MFC classhierarchy
= Example:
— AfxMessageBox()
— Message boxes are predefined windows

— Can be activated independently from the rest of
an application

Some Important Global Functions

« AfxAbort () -- uconditionally terminate an app

« AfxBeginThread() -- Create & run anew thread

« AfXGetApp() - Returns a pointer to the
application object

= AfxGetMainWnd() -- Returnsapointer to
application’ s main window

« AfxGetlnstanceHandle() - Returnshandleto
applications'scurrent instance

= AfxRegisterWndClass() -- Register a custom

WNDCLASS for an MFC app

A Minima MFC Program
(App/Window Approach)

=« Simplest MFC programs must contain two classes
derived from hierarchy:
— 1. An application class derived from CWinApp
« Definesthe application
« provides the message loop
— 2. A window class usually derived from
CFramewnd
« Definesthe application's main window
=« Tousethese & other MFC classes you must have:
#include <Afxwin.h>inthe.cpp file

M essage Processing under MFC
= Like API programs, MFC programs must handle
messages from Windows
== APl mechanism: switch/case statement in app’s
WndProc
=« Under MFC, WndProcis buried in MFC framework
=« Message handling mechanism: “ M essage M aps'
— lookup tables the MFC WndProc searches
=« Table entries:
— Message number

— Pointer to amessage-processing function
* Theseare membersof CWnd

*_Youoverride the onesyou want your app to respond to

M essage M apping
= Programs must:
— Declare message-processing (handler) functions
* eg., OnWhatever() for WM_WHATEVER message
— Map them to messages app is going to respond to
* Mapping done by "message- mapping macros’
« Bind amessage to a handler function
* eg., ON_WM_WHATEVER()
« Most MFC application windows use a window
procedure, WndProc(), supplied by the library

= Message maps enable library window procedure to
find the function corresponding to the currentmsg

User Moves Mouse

generates:

User Moves Mouse

generates:

WM_MOUSEMOVE

WM_MOUSEMOVE
message 5

message

Delivered to: Delivered to:

Program's WndProc() MFC's Window Procedure
switch (nessage) search message maps For

ON_WM_MOUSEMOVE ()

case WM_MOUSEMOVE:

Handler for message
) calle:

CHind: :OnMouseMove ()

MFC Message Handling

Win32 API Message Handling

STEPSIN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

DECLARATIONS (.h)

1. Declare awindow class derived from
CFramewnd (e.g., CMainWin)--
« Class Members:
— The constructor
— Message-processing function declarations for messages
the application will respond to
* eg., void OnChar()
— DECLARE_MESSAGE_MAP() macro:
+ Allows windows based on this class to respond to messages
« Declares that a message map will be used to map messages to

overriding handler functions in the application
« Should be |ast class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--
= Must override CWinApp's | nitl nstance()
virtual function:
— Called each time a new instance of application
is started

« i.e., when an object of thisapplication classis
instantiated

— Purposeis for application to initialize itself
— Good place to put code that does stuff that has
to be done each time program starts

IMPLEMENTATION (.CPP)
.. Define constructor for class derived from
CFramewWnd (our CMainWin)

k= Should call member function Create() to create the
window

L Doeswhat CreateWindow() doesin API
P. Define message map for class derived from
CFrameWnd (our CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)

List of "message-mapping macros', e.g.

ON_WM_CHAR()
EN n_l\/l E QQA{‘F_M AP()

3. Define (implement) message-processing
functions declared in declarations (1) above

4. Define (implement) I nitl nstance() overriding
function--

=« Donein class derived from CWinApp (our CApp):
— Should have initialization code for each new app instance:
« Create a CMainWin object s pointer to program's main window
— (Used to refer to the window, like hwnd in APl programs)
« Invoke object'sShowWindow() member function
* Invoke object'sUpdateWindow() member function
* Must return non-zero to indicate success
— [MFC'simplementation of WinMain() calls this function]

= Now nature & form of simple window &
application have been defined

= But neither exists--

= Must instantiate an application object
derived fromCWinApp (our CApp)

5. Create an instance of the app class(our CApp)
= Causes AfxWinMain() to execute

— It's now part of MFC [WINMAIN.CPP]
= AfxWinMain() doesthefollowing:

— Cdls AfxWinlnit()--

— Calls CApp::Initlnstancg) [virtual function
overridden in 4 abovel--

« which creates, shows, and updates the window
— Cdls CWinApp::Run() [In THRDCORE.CPP]--
« which calls CWinThread::PumpMessage()--

« which calls AfxRegister Class() to register window class

=« After WinApp::Run() returns:

— (i.e., when the WM_QUIT message is received)
= AfXWinTerm() iscalled--

— which cleans up and exits

L~ which containsthe GetMessage() loop
MSGNEW Example MFC = Message map contains:
i ~eti N — ON_WM_CHAR()
Application: Mouse’C_haracter T ON WM LBUTTONDOWN()
Message Processing — ON_WM_RBUTTONDOWN()

& User presses mouse button s
— L or Rdisplayed at current mouse cursor
position
= Keyboard key pressed &

— Character displayed at upper left hand corner of
client area

« Torespond to messages:
— WM_CHAR
— WM_LBUTTONDOWN
— WM_RBUTTONDOWN

= S0 we need to define the following handler
function overrides:
— CWnd::OnChar(UINT ch, UINT count, UINT flags);
— CWnd::OnLButtonDown(UINT flags, CPoint loc);
— CWnd::OnRButtonDown (UINT flags, CPoint loc);

= In each handler we need to get a Device Context
to draw on:
CDC* pDC
* Declare apointer to aCDC object
pDC=this->GetDC();

» Use GetDQ() member function of ‘this° CWnd to get adevice
context to draw on

= And then display a string using TextOut()
— If it'sacharacter, it must be formatted into astring first

— Can use wsprintf()
 Formats integers, characters, and other datatypesinto astring

Stepsin Creating and Buildingan MFC
Application like MSGNEW “manually”
| “File” |“New” | “Project”
— Specify an empty Win32 project asin previousexamples
p.“Project” |“Add New Item”
— Categories: “Visual C++" |“C++"
— Templates: “C++ File”
— Enter or copy/paste .cpp filetext (e.9., MSGNEW.CPP)-see
IMPLEMENTATION above
. “Project” | “Add New Item” | “Visual C++” |“C++" |“ Header File”
— Enter or copy/paste .h filetext (e.g., MSGNEW.H) --see
DECLARATION above
fl. “Project” | “Properties’ | “General” (with msgnew highlighted in Solution
Explorer window):
— From“Useof MFC”, choose:
— "UseMFCinaShared DLL"

b. Build the project as usual

CApp object is created &

How It Works

MFC'sWinMain() executes &
Registers class (default)
Callsour CApp::Initlnstance() &
Our override creates a CM ainWin object
Our CMainWin constructor callsCreate().« window created

Our CApp::Initlnstance() override callswindow's
ShowWindow() & window is displayed

Our override calls UpdateWindow() & client area painted
WinMain() continues by calling itsRun() function
Call to PumpMessage()

Which startsthe message loop

