
1

Introduction to Microsoft
Windows MFC Programming:

The Application/Window
Approach

? Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

? The Microsoft Foundation Class (MFC)
Library

?A Hierarchy of C++ classes designed
to facilitate Windows programming

?An alternative to using Win32
API functions

?A Visual C++ Windows application can use
either Win32 API, MFC, or both

Microsoft Foundation Classes

?About 200 MFC classes (versus 2000+ API
functions)

? Provide a framework upon which to build
Windows applications

? Encapsulate most of the Win32 API in a set
of logically organized classes

Some characteristics of MFC
? 1. Convenience of reusable code:

– Many tasks common to all Windows apps are
provided by MFC

– Our programs can inherit and modify this
functionality as needed

– We don't need to recreate these tasks
– MFC handles many clerical details in Windows

programs

MFC Characteristics, continued
? 2. Produce smaller executables:

– Typically 1/3 the size of their API counterparts

? 3. Can lead to faster program development:
– But there's a steep learning curve--
– Especially for newcomers to object -oriented

programming

2

MFC Characteristics, continued

? 4. MFC Programs must be written in C++
and require the use of classes
– Programmer must have good grasp of:

• How classes are declared, implemented
(instantiated), extended, overridden, and used

• Encapsulation

• Inheritance
• Polymorphism

Help on MFC Classes
? See Online Help (Index) on:

“MFC (Microsoft Foundation Class)”
“Hierarchy Chart ”

“Hierarchy Chart ”
– Each class name is a hot link
– At bottom each has a “Class Members” link

• Clicking ? a document that lists all class members

? On the Web:
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vcmfc98/html/_mfc_class_library_reference_introduction.asp

Base MFC Class
? CObject: At top of hierarchy ("Mother of almost

all MFC classes")
? Provides features like:

– Serialization
• Streaming object’s persistent data to or from a storage medium

(disk reading/writing)
– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes
derived from it

Some Important Derived Classes

? CFile: Support for file operations
? CArchive: Works with CFile to facilitate

serialization and file I/O
? CDC: Encapsulates the device context

(Graphical Drawing)
? CGdiObject: Base class for various drawing

objects (CBrush, CPen, CFont, etc.)
? CMenu: Encapsulates menu management

? CCmdTarget: Encapsulates message passing
process and is parent of:
– CWnd: Base class from which all windows are

derived
– Encapsulates many important windows functions

and data members
– Example: m_hWnd stores the window’s handle
– Most common subclasses:

• CFrameWindow: Can contain other windows
– ("normal" kind of window we've used)

• CView: Encapsulates process of displaying and
interacting with data

• CDialog: Encapsulates dialog boxes

?CCmdTarget also parent of:
– CWinThread: Defines a thread of execution and

is the parent of:
• CWinApp: Most important class dealt with in MFC

applications:
• Encapsulates an MFC application
• Controls following aspects of Windows programs:

– Startup, initialization, execution, the message loop,
shutdown

– An application should have one CWinApp object
– When instantiated, application begins to run

– CDocument
• Encapsulates the data associated with a program

3

? Primary task in writing MFC program--to create
classes

? Most will be derived from MFC library classes
? MFC Class Member Functions--

– Most functions called by an application will be
members of an MFC class

? Examples:
– ShowWindow() -- a member of CWnd class

– TextOut() -- a member of CDC
– LoadBitmap() -- a member of CBitmap

MFC Classes and Functions ?Apps can also call API functions directly
– Use Global Scope Resolution Operator (::), for

example:
– ::UpdateWindow(hWnd);

?Usually more convenient to use MFC
member functions

MFC Global Functions
?Not members of any MFC class
? Begin with Afx prefix (Application

FrameworKS)
? Independent of or span MFC class hierarchy
? Example:

– AfxMessageBox()
– Message boxes are predefined windows
– Can be activated independently from the rest of

an application

Some Important Global Functions
? AfxAbort () -- uconditionally terminate an app
? AfxBeginThread() -- Create & run a new thread
? AfxGetApp() -- Returns a pointer to the

application object
? AfxGetMainWnd() -- Returns a pointer to

application’s main window
? AfxGetInstanceHandle() -- Returns handle to

applications’s current instance
? AfxRegisterWndClass() -- Register a custom

WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

? Simplest MFC programs must contain two classes
derived from hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from
CFrameWnd

• Defines the application's main window

? To use these & other MFC classes you must have:
#include <Afxwin.h> in the .cpp file

Message Processing under MFC
? Like API programs, MFC programs must handle

messages from Windows
? API mechanism: switch/case statement in app’s

WndProc
? Under MFC, WndProc is buried in MFC framework
? Message handling mechanism: “ Message Maps"

– lookup tables the MFC WndProc searches

? Table entries:
– Message number
– Pointer to a message-processing function

• These are members of CWnd
• You override the ones you want your app to respond to

4

Message Mapping
? Programs must:

– Declare message-processing (handler) functions
• e.g., OnWhatever() for WM_WHATEVER message

– Map them to messages app is going to respond to
• Mapping done by "message-mapping macros”
• Bind a message to a handler function
• e.g., ON_WM_WHATEVER()

? Most MFC application windows use a window
procedure, WndProc(), supplied by the library

? Message maps enable library window procedure to
find the function corresponding to the current msg

STEPS IN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

DECLARATIONS (.h)
1. Declare a window class derived from

CFrameWnd (e.g., CMainWin)--
? Class Members:

– The constructor
– Message-processing function declarations for messages

the application will respond to
• e.g., void OnChar()

– DECLARE_MESSAGE_MAP() macro:
• Allows windows based on this class to respond to messages
• Declares that a message map will be used to map messages to

overriding handler functions in the application
• Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--

?Must override CWinApp's InitInstance()
virtual function:
– Called each time a new instance of application

is started
• i.e., when an object of this application class is

instantiated

– Purpose is for application to initialize itself
– Good place to put code that does stuff that has

to be done each time program starts

IMPLEMENTATION (.CPP)
1. Define constructor for class derived from

CFrameWnd (ourCMainWin)
? Should call member function Create() to create the

window
? Does what CreateWindow() does in API
2. Define message map for class derived from

CFrameWnd (our CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)

List of "message-mapping macros“, e.g.
ON_WM_CHAR()

END_MESSAGE_MAP()

5

3. Define (implement) message-processing
functions declared in declarations (1) above

4. Define (implement) InitInstance() overriding
function--

? Done in class derived from CWinApp (our CApp):
– Should have initialization code for each new app instance:

• Create a CMainWin object ? pointer to program's main window
– (Used to refer to the window, like hWnd in API programs)

• Invoke object's ShowWindow() member function
• Invoke object'sUpdateWindow() member function
• Must return non-zero to indicate success

– [MFC's implementation of WinMain() calls this function]

?Now nature & form of simple window &
application have been defined

? But neither exists --
?Must instantiate an application object

derived fromCWinApp (our CApp)

5. Create an instance of the app class (our CApp)
? Causes AfxWinMain() to execute

– It's now part of MFC [WINMAIN.CPP]

? AfxWinMain() does the following:
– Calls AfxWinInit()--

• which calls AfxRegisterClass() to register window class

– Calls CApp::InitInstance() [virtual function
overridden in 4 above]--

• which creates, shows, and updates the window

– Calls CWinApp::Run() [In THRDCORE.CPP]--
• which calls CWinThread::PumpMessage()--
• which contains the GetMessage() loop

?After WinApp::Run() returns:
– (i.e., when the WM_QUIT message is received)

? AfxWinTerm() is called--
– which cleans up and exits

MSGNEW Example MFC
Application: Mouse/Character

Message Processing

?User presses mouse button ?
– L or R displayed at current mouse cursor

position

?Keyboard key pressed ?
– Character displayed at upper left hand corner of

client area

? Message map contains:
– ON_WM_CHAR()
– ON_WM_LBUTTONDOWN()
– ON_WM_RBUTTONDOWN()

? To respond to messages:
– WM_CHAR
– WM_LBUTTONDOWN
– WM_RBUTTONDOWN

? So we need to define the following handler
function overrides:
– CWnd::OnChar(UINT ch, UINT count, UINT flags);
– CWnd::OnLButtonDown(UINT flags, CPoint loc);
– CWnd::OnRButtonDown(UINT flags, CPoint loc);

6

? In each handler we need to get a Device Context
to draw on:
CDC* pDC

• Declare a pointer to a CDC object

pDC = this->GetDC();
• Use GetDC() member function of ‘this’ CWnd to get a device

context to draw on

? And then display a string using TextOut()
– If it’s a character, it must be formatted into a string first

– Can use wsprintf()
• Formats integers, characters, and other data types into a string

Steps in Creating and Building an MFC
Application like MSGNEW “manually”

1. “File” | “New” | “Project”
– Specify an empty Win32 project as in previous examples

2. “Project” | “Add New Item”
– Categories: “Visual C++” | “C++”
– Templates: “C++ File”
– Enter or copy/paste .cpp file text (e.g., MSGNEW.CPP)--see

IMPLEMENTATION above
3. “Project” | “Add New Item” | “Visual C++” | “C++” | “ Header File ”

– Enter or copy/paste .h file text (e.g., MSGNEW.H)--see
DECLARATION above

4. “Project” | “Properties” | “General” (with msgnew highlighted in Solution
Explorer window):
– From “Use of MFC”, choose:
– "Use MFC in a Shared DLL"

5. Build the project as usual

How It Works
CApp object is created ?
MFC's WinMain() executes ?
Registers class (default)
Calls our CApp::InitInstance()?
Our override creates a CMainWin object

Our CMainWin constructor calls Create()?window created
Our CApp::InitInstance() override calls window's
ShowWindow() ? window is displayed

Our override calls UpdateWindow()? client area painted
WinMain() continues by calling its Run() function ?

Call to PumpMessage()
Which starts the message loop

