More Win32 API

e More Mouse Stuff

e GetSystemMetrics()

o WM_PAINT Messages
e GetClientRect()

e TextOut()

e wsprintf()

e Using Fonts

e GetTextMetrics()

Mouse Messages
o Client Area Mouse M essages—

— Mouse msgs generated when mouse moves
over the window’s client area

— or when pressed/released within window’s
client area

— 21 messagesin all

—WM_MOUSEMOVE: Sent to window under
cursor when mouse moved

« |Param = mouse cursor X,Y position

« wParam: Mouse notification code
— MK_LBUTTON, MK_RBUTTON, MK_SHIFT,

e Example Program MK_CONTROL
e WM_*BUTTON#: . InpUt FOCUS -

=L M.R o Window whose caption lineis highlighted has
¢ T "input focus'

e #=DOWN, UP,DBLCLK

e DBLCLK message sent only if
wndclass.style contains CS DBLCLKS

r—3

o Only thiswindow will receive keyboard inp

e Run 2instances of Winapp2

— Note: keyboard acceleratorsonly work with
instance that has input focus

e Input focus not significant for mouse input

o Good sincemouseisused to activate a
window

e When awindow gains (loses) input focus:

—WM_SETFOCUS (WM _KILLFOCUS)
message sent to window

e Common responses.

— highlight an edit area, change a caption, etc.
e SetFocus(hWnd)

— Giveawindow (or a contral) the input focus
e Responseto receiving input focus

depends on window style

o Mouseactionsin other parts of window=>»

Nonclient Area Mouse M essages

— WM _NC* messages sent

* (* =MOUSEMOVE, etc.)
—wParam: HT* hit test code>

« non-client area where action occurred
—|Param: mouse cursor position
— Usually not processed by applications
— Could useto generate other messages

¢ eg., WM_NCLBUTTONDOWN + coordinates >
WM_COMMAND

Capturing the Mouse
e Tolimit mouseto interacting with just
oneprogram
® ., Screen capture program

e Application that doesthishas" captured”
themouse

@ Only it will recelve mouse messages.
o U SetCapture(hWnd);
e Release with: ReleaseCapture(void);

Getting information on
user interface items

eUse:
GetSystemMetrics(nindex)
—nIndex specifes which item
—See online help

WM_PAINT Messages

e Sent any time client area is invalidated
(exposed)
e Should redraw everything in exposed area
® Use BeginPaint(hWnd,&ps) to get a DC
® ps is a pointer to a PAINTSTRUCT
— contains info about area to be redrawn

® Use EndPaint(hWnd,&ps) to release the
DC

PAINTSTRUCT
typedef struct tagPAINTSTRUCT
{
HDC hdc; /Il device context handle
BOOL fErase; // should bkgnd be redrawn? T/F
RECT rcPaint; // rectangular area to update
BOOL fRestore; // reserved for use by Windows
BOOL flncUpdate; /l reserved
BYTE rgbReserved[16]; // reserved
} PAINTSTRUCT;

WM_PAINT Message

e If you want to keep stuff already drawn
in your window after it's exposed:

— You need to keep track of everything
drawn

— Then redraw in response to WM_PAINT

Forcing a WM_PAINT

e InvalidateRect (hWnd,&rect,bErase);
- parameters:
« window to be invalidated
« rectangular area (NULL ==> entire client area)
* background erased (TRUE/FALSE)
o Causes a WM_PAINT message to be
placed on the queue

e This could be done in response to
mouse & other messages

Determining Client Area

e GetClientRect(hWnd,&rect)
—rect pointer will contain (0,0,width,height)

—You may need to know this
« for animations

Displaying Text
o TextOut(hDC,x,y,IpTxt,cbTxt);

—X,Yy: position on client area of window
—IpTxt string to be displayed
—cbTxt length of the string
—current DC text color & bkgnd color used
—current DC font is used
—can use Istrlen() to get cbTxt

« for example:

char cBuf[] = “Hello, World";
TextOut (hDC, 0, 0, cBuf, Istrlen(cBuf)) ;

Displaying Numeric Values

e Must format values into a string
e Can use wsprintf()
e See online help
e Example:
char cBuf[50];
int num = 19;
wsprintf(cBuf, “The number is: %d ", num);
TextOut(hDC, 10, 10, cBuf, Istrlen(cBuf));

Using and Changing Fonts
o FONT: Typeface, style, size of characters in a
character set
e Three basic kinds of fonts--
— Stock fonts--built into Windows, always
available
— Logical or GDI fonts--defined in separate
.fon (stroke or raster) or .fot/.ttf (TrueType)
font resource files in \windows\system and
stored on disk
— Device fonts--native to the output device
(e.g., built-in printer fonts).

Some Stock Fonts

Font = ARSI_FIXED FONT

Font = ANSI_VAR_FONT

Font = DEVICE_DEFAULT_FONT
Font = OEM_FIXED_FONT

Font = SYSTEM_FONT

Font = SYSTEM FIXED_ FONT

Windows Stock Fonts

Some Stroke Fonts

Modern AgBbCcDdEe

Roman AaBbCeDdEe
bl AaBUCBdE,

Windows Stroke Fonts

Some Raster Fonts

Courier AaBbCcDdEe
MS Senf AaBbCcDdEe

MS Sans Serif AaBbCcDdEe
ZwuBoh AaBSXxAGEe

Windows Raster Fonts

Some True Type Fonts

Courier New AaBbCcDdEe

Courier New Bold AaBbCcDdEe
Courler New Italic AaBbCcldEe
courier Nevw Bold Italic AaBhCcDdBe
Times New Roman AaBbCeDdEe

Times New Roman Bold AaBbCcDdEe
Times New Roman Italic AaBbCcDdEe

Times New Roman Bold Italic AaBbCcDdEe
Arial AaBbCcDdEe

Arial Bold AaBbCcDdEe

Ariaf Halic AaBbCcOdEe

Arial Boid ftalic AaBbCcDdEe

TyuBoh AaBAXxASEe

PHELO KB LEck P D TS |

Windows TrueType Fonts

Using Stock Fonts

e GetStockObject ()
—returns handle to the desired font
—can be selected into a DC
HDC hDC;
HFONT hFont;
hDC = GetDC(hWnd);
hFont = GetStockObject (ANSI_VAR_FONT);
SelectObject (hDC,hFont);

Using Logical Fonts
e Obtain a handle to the font data resource
and select it into the DC

— Just like a stock font, except it's loaded from
separate file (.fon, .fot/.ttf).
— Use CreateFont() instead of GetStockObject()
to load and get a font handle.
— CreateFont() makes new fonts by
interpolating data in a font file
» ==> New sizes, bold/underlined, rotated/distorted

* Called logical since they come from program logic
not just from a file

CreateFont()

hFont = CreateFont (Ht, Width, Escapement,
Orientation, Weight, Italic, Underline, StrikeOut,
CharSet, OutputPrecision, ClipPrecision, Quality,
PitchAndFamily, Facename);
— 14 parameters, many are often set to 0 ==> defaults
— See the on-line help on CreateFont():

Example call to CreateFont()--

hFont = CreateFont (36, 0, 3000, 0, 0,0, 0, 0,0, 0, 0, O,
0,"Roman")

Escapement & Orientation

(BT [] 1080

FTD Frm

Escapamant ar dentat fon

Character Escapement & Orisntation

Determining Character Sizes

e With CreateFont(), may not get what you want
e Use GetTextMetrics(hDC,IpTextmetric)

—See online help | o
L e g
[I Wy ——— el
b i BT
B |

e g

Deagwed| |

|
I
[l

e k o

Font Measurements

FONT1 Example Program
e User types ==> blue text in client area
o Can change font from menu
® Backspace editing feature
o cBuUf[] builds text string as it's input
o WM_CHAR message received ==> character
tested & appended to cBuf if:
— Character is alphanumeric
« IsCharAlphaNumeric()
— Or character is punctuation
« if helper functionIsAnsiPunc() returns TRUE
— And cBuUff] hasn't been filled

e To display, force a WM_PAINT message
— InvalidateRect()
e Response: draw cBuUf[] string

@ Also string will be redrawn automatically
after exposure (resizing, uncovering)

e WM_CHAR for printable characters
o WM_KEYDDOWN for Backspace

@ IsAnsiPunc()--a helper function that
tests ranges of ANSI codes for
punctuation characters

o WM_CREATE when program starts -->

— Use CreateFon(() to create new Roman font &
save handle inhFont

o WM_COMMAND to choose font from a
popup menu (set nFontChoice variable)

WM_PAINT message:

1. Get a DC with BeginPaint()

2. Change color to blue

3. Check value of nFontChoice

4. SelectObject() to select chosen font into DC
5. TextOut() to output the cBuf] string

6. Release DC with EndPaint()

Note use of static variables to “remember”
variable values from one WndProc() callback
to another

