
1

More Win32 API
l More Mouse Stuff
l GetSystemMetrics()
l WM_PAINT Messages
l GetClientRect()
l TextOut()
l wsprintf()
l Using Fonts
l GetTextMetrics()
l Example Program

Mouse Messages
l Client Area Mouse Messages—

– Mouse msgs generated when mouse moves
over the window’s client area

– or when pressed/released within window’s
client area

– 21 messages in all
– WM_MOUSEMOVE: Sent to window under

cursor when mouse moved
• lParam = mouse cursor X,Y position
• wParam: Mouse notification code

– MK_LBUTTON, MK_RBUTTON, MK_SHIFT,
MK_CONTROL

l WM_*BUTTON# :
l * = L, M, R
l # = DOWN, UP, DBLCLK
l DBLCLK message sent only if

wndclass.style contains CS_DBLCLKS

Input Focus
l Window whose caption line is highlighted has

"input focus"
l Only this window will receive keyboard input
l Run 2 instances of Winapp2

– Note: keyboard accelerators only work with
instance that has input focus

l Input focus not significant for mouse input
l Good since mouse is used to activate a

window

l When a window gains (loses) input focus:
– WM_SETFOCUS (WM_KILLFOCUS)

message sent to window

l Common responses:
– highlight an edit area, change a caption, etc.

l SetFocus(hWnd)
– Give a window (or a control) the input focus

l Response to receiving input focus
depends on window style

l Mouse actions in other parts of windowèè
– WM_NC* messages sent

• (* = MOUSEMOVE, etc.)

– wParam: HT* hit test codeàà
• non-client area where action occurred

– lParam: mouse cursor position
– Usually not processed by applications

– Could use to generate other messages
• e.g., WM_NCLBUTTONDOWN + coordinates àà

WM_COMMAND

Nonclient Area Mouse Messages

2

l To limit mouse to interacting with just
one program

l e.g., screen capture program
l Application that does this has "captured"

the mouse
l Only it will receive mouse messages.
l Use: SetCapture(hWnd);
l Release with: ReleaseCapture(void);

Capturing the Mouse Getting information on
user interface items

lUse:
GetSystemMetrics(nIndex)
–nIndex specifes which item
–See online help

WM_PAINT Messages
l Sent any time client area is invalidated

(exposed)
l Should redraw everything in exposed area

l Use BeginPaint(hWnd,&ps) to get a DC

l ps is a pointer to a PAINTSTRUCT

– contains info about area to be redrawn

l Use EndPaint(hWnd,&ps) to release the
DC

typedef struct tagPAINTSTRUCT

 {

 HDC hdc; // device context handle

 BOOL fErase; // should bkgnd be redrawn? T/F

 RECT rcPaint; // rectangular area to update
 BOOL fRestore; // reserved for use by Windows

 BOOL fIncUpdate; // reserved

 BYTE rgbReserved[16]; // reserved

 } PAINTSTRUCT;

PAINTSTRUCT

WM_PAINT Message

l If you want to keep stuff already drawn
in your window after it’s exposed:
– You need to keep track of everything

drawn

– Then redraw in response to WM_PAINT

Forcing a WM_PAINT

l InvalidateRect (hWnd,&rect,bErase);
– parameters:

• window to be invalidated

• rectangular area (NULL ==> entire client area)

• background erased (TRUE/FALSE)

l Causes a WM_PAINT message to be
placed on the queue

l This could be done in response to
mouse & other messages

3

Determining Client Area

l GetClientRect(hWnd,&rect)
– rect pointer will contain (0,0,width,height)

– You may need to know this
• for animations

Displaying Text
l TextOut(hDC,x,y,lpTxt,cbTxt);

– x,y: position on client area of window

– lpTxt: string to be displayed

– cbTxt: length of the string

– current DC text color & bkgnd color used

– current DC font is used
– can use lstrlen() to get cbTxt

• for example:

char cBuf [] = “Hello, World”;
TextOut (hDC, 0, 0, cBuf , lstrlen(cBuf)) ;

Displaying Numeric Values

l Must format values into a string
l Can use wsprintf()
l See online help
l Example:

char cBuf[50];

int num = 19;
wsprintf(cBuf, “The number is: %d ", num);

TextOut(hDC, 10, 10, cBuf, lstrlen(cBuf));

Using and Changing Fonts
l FONT: Typeface, style, size of characters in a

character set

l Three basic kinds of fonts--
– Stock fonts--built into Windows, always

available
– Logical or GDI fonts--defined in separate

.fon (stroke or raster) or .fot/.ttf (TrueType)
font resource files in \windows\system and
stored on disk

– Device fonts--native to the output device
(e.g., built-in printer fonts).

Some Stock Fonts Some Stroke Fonts

4

Some Raster Fonts Some True Type Fonts

Using Stock Fonts

l GetStockObject ()
– returns handle to the desired font

– can be selected into a DC

HDC hDC;
HFONT hFont;

hDC = GetDC(hWnd);

hFont = GetStockObject (ANSI_VAR_FONT);

SelectObject (hDC,hFont);

Using Logical Fonts
l Obtain a handle to the font data resource

and select it into the DC
– Just like a stock font, except it's loaded from

separate file (.fon, .fot/.ttf).

– Use CreateFont() instead of GetStockObject()
to load and get a font handle.

– CreateFont() makes new fonts by
interpolating data in a font file
• ==> New sizes, bold/underlined, rotated/distorted

• Called logical since they come from program logic
not just from a file

CreateFont()
hFont = CreateFont (Ht, Width, Escapement,

Orientation, Weight, Italic, Underline, StrikeOut,
CharSet, OutputPrecision, ClipPrecision, Quality,
PitchAndFamily, Facename);
– 14 parameters, many are often set to 0 ==> defaults
– See the on-line help on CreateFont ():

Example call to CreateFont()--

hFont = CreateFont (36, 0, 3000, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,"Roman")

Escapement & Orientation

5

l With CreateFont(), may not get what you want
l Use GetTextMetrics(hDC,lpTextmetric)

– See online help

Determining Character Sizes
l User types ==> blue text in client area
l Can change font from menu

l Backspace editing feature

l cBuf[] builds text string as it's input

l WM_CHAR message received ==> character
tested & appended to cBuf if:

– Character is alphanumeric
• IsCharAlphaNumeric()

– Or character is punctuation
• if helper function IsAnsiPunc() returns TRUE

– And cBuf[] hasn't been filled

FONT1 Example Program

l To display, force a WM_PAINT message
– InvalidateRect()

l Response: draw cBuf[] string
l Also string will be redrawn automatically

after exposure (resizing, uncovering)

l WM_CHAR for printable characters
l WM_KEYDDOWN for Backspace
l IsAnsiPunc()--a helper function that

tests ranges of ANSI codes for
punctuation characters

l WM_CREATE when program starts -->
– Use CreateFont() to create new Roman font &

save handle in hFont

l WM_COMMAND to choose font from a
popup menu (set nFontChoice variable)

WM_PAINT message:

 1. Get a DC with BeginPaint()

 2. Change color to blue

 3. Check value of nFontChoice

 4. SelectObject() to select chosen font into DC
 5. TextOut() to output the cBuf[] string

 6. Release DC with EndPaint()

Note use of static variables to “remember”
variable values from one WndProc() callback
to another

