Win32 API
Programming

* See also the notes at:

http://www.cs.binghamton.edu/~reckert/360/class?a.htm
http:/Amww. cs.binghamton.edu/~reckert /360/class3ahtm

(C) Richard R. Eckert

Win32 APl Programming
 Event-driven, graphics oriented
» Example: User clicks mouse over a
program’ swindow area (an event) --
—Windows decodes HW signasfrom mouse
—figures out which window user has selected
—sendsamessage to that window’ s program:
* "User has clicked over (X,Y)”
* "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows

(C) Richard R. Eckert

D

|

1
-
[Ri—
-

0

Overview of Win32 APl Program
Structure--2 main tasks:
* Initia activities
* Process messages from Windows
—the message loop

(C) Richard R. Eckert

Pseudocode
« Initialize variables, memory space
* Create & show program’s window
e Loop
—Fetchany msgsent from Windowstothis pgm
—I1f messageisWM_QUIT
« terminate program, return control to Windows
—If message is something else
« take actions based onmsg & parameters
« return control to Windows

i End LOOp (C) Richard R. Eckert

Essential Partsof aWin32 APl Pgm

* |. The source program (.c/.cppfile):
—A.WinMain() function
* 0. declarations, initialization, etc.
* 1. register window class
« 2. create awindow based on aregistered class
* 3. show window, make it update its client area

* 4. the message |oop (get messages from Windows,
dispatch back to Windows for forwarding to
correct callback message-processing function)

—B. WndProc(): the msy-processing function

(C) Richard R. Eckert

« Il. The resource script (.rcfile):
— contains resource (Windows static) data
— separate from code and dynamic data
—compiled by aseparate "Resource Compiler”
—Examples:
« Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables

— Separation of resources and program code==>
« separates tasks of programmer & designer
« can change user interface w/o touching code

(C) Richard R. Eckert

Example Program

» See First Windows Program: winappl.cpp

* URL:
http://www. cs.binghamton.edu/~reckert /360/winappl.htm

(C) Richard R. Eckert

The WinMain() Function
int PASCAL WinMain (HINSTANCE hinstance,

HINSTANCE hPrevinstance,
LPSTR IpszCmdLine, int nCmdShow);

WinMain() startsfirst

integer exit code returned to Windows

PASCAL.: |-to-r parameter passing on stack

4 parameters passed in from Windows

— hinstance: a“handl€’, identifies current pgm instance
— IpszCmdLine: string containing command line args
— nCmdShow: how window is to appear when shown

(C) Richard R. Eckert

Hungarian Notation

* help clarify variable types

» precede name with key letters representing
type

» named after Hungarian Microsoft
programmer, Charles Simonyi

(C) Richard R. Eckert

prefix data type

y BYTE (unsi gned char)
BOCOL (int, TRUE=1 FALSE=0)
char
w DWORD (4-byte unsigned | ong)
n function
handl e

long (4 bytes)

short (int) near pointer

poi nter
z nul | -term nated char string
word (two bytes)
Ipsz long ptr to null-termnated str

=

(C) Richard R. Eckert

Register Clasq & wndclass);

typedef struct tag??WNDCLASS {

UINT style;

LRESULT CALLBACK IpfnwWndProc)();

int cbClsExtra;

int cbWndExtra;

HINSTANCE hinstance;

HICON hicon;

HCURSOR hCursor;

HBRUSH hBackground;

LPSTR IpszMenuName;

LPSTR IpszClassName; } *WNDCLASS;
WNDCLASS wndclass;

if ('RegisterClass (&wndclass)) return 0;

(C) Richard R. Eckert

CreateWindow() arguments:

window classname

window caption

window style (Boolean OR of style masks)

initial X , y positionin pixels

initial width , height

parent window handle (if main window, NULL)

window menu handle (NULL if class menu used)

program instance handle (from Windows)

creation parameters (for extradata, usually NULL)
Returns a handleto the resulting window

(C) Richard R. Eckert

ShowWindow (hWnd,nCmdShow);

» makes window visible on screen
» hwnd: which window to make visible
» nCmdShow: how (normal, minimized, etc.)

— sat by Windows environment when program
isstarted;

— vaueispassed in from Windows,

(C) Richard R. Eckert

UpdateWindow (hWnd);

« Causes client area to be updated
« Painted with background brush

(C) Richard R. Eckert

The Message L oop

» User interaction = amsg sent to a window

« Lotsof other actions.e messages

* A message structure:
—HWND hwnd; // target window handle
—UINT message; // mgg ID value--WM_***
—WPARAM wParam; // datapassed in msy
—LPARAM |Param; // moredatain msgy
—DWORD time; // time msg wassent
—POINT pt; // mouse cursor position (X,y)

(C) Richard R. Eckert

GetM essage()

 Program must keep checking for messages

» Use message loop w/ GetM essage()
» BOOL GetMessage(

LPMSG IpMsg, //ptr to msg struct
HWND hwnd, //target window
UINT wMsgl, //1st msgin range
UINT wMsg?2, //last msg in range)

(C) Richard R. Eckert

GetM essage()

Reads next msg from app's msg queue
Fills MSG struct pointed to by first param
Place in aloop:

V\Mile(G{etM}&saage(& msy, NULL, 0, 0))

return((i né.msg.wParan") ;

Returns non-0, except for WM_QUIT msg

—Terminates msy loop & returns control to
Windows

(C) Richard R. Eckert

The Main Message Loop

Application’s
Windows System WinMain() function

CreateVindow (]

Is there a message

(C) Richard R. Eckert

M essage Processing

* What goesinside the message | oop:
TrandateMessage (& msg)--
"Cooks" keyboard input
Convertsraw key codesto ANSI codes
DispatchMessage (& msg) --
Sends message on to Windows, which
forwardsit to pgm's"Window Procedure’:
WndProd)--
2nd member of WNDCLASS structure
Programmer must write this function

(C) Richard R. Eckert

The Window Procedure

« “Callback” function (called by Windows)
« Should contain a switch/case statement :
—Looks at message ID of current message
— Acts appropriately on "interesting” messages

— Forwards other messagesto default Window
procedure--DefWindowProc()

(C) Richard R. Eckert

WndProc()
LRESULT CALLBACK WhdProc(
HWND hWid, UINT wMessage,
WPARAM wParam LPARAM |Param)
Parameters--
Same asfirst four fields of MSG structure:
— window associated with message
— message |D (what messageis)
— msg data(wParam & |Param)
¢ Returnvalue--
— Result of message handling
— 0 means message was handled

(C) Richard R. Eckert

The WM_DESTROY Message

* Sent by OS when window is destroyed

» WndProc() should respond by calling:
—PostQuitMessagg);
—WindowssendsWM_QUIT mgg to queue
—wParam=0 implies:

* O returned by GetMessagg() in WinMain ()

* normal return to Windows

* 50 program exitsWinMain()'s message loop
 And return to Windows

(C) Richard R. Eckert

WINDOWS Wi DESTROY MESSAGE PROCESSING

Windows System

eeeeeee

application

Should call:

nnnnnnn

Some other important messages

* WM_COMMAND--User clicked on menu item,
LOWORD(wParam)= menuitem ID

« WM_*BUTTONDOWN-Ieft/right mouse button
pressed (* =L, R, or M, IParam=x,y coordinates)

« WM_MOUSEMOVE--mouse moved (IParam=x.,y
coordinates)

* WM_CHAR--User pressed valid ANSI code character
keyboard key combination (wParam=ANSI code)

e WM_PAINT --Part of window was exposed & should be
redrawn

« WM_KEYDOWN-keyboard key pressed (wParam=
virtual key code)

(C) Richard R. Eckert

[1. The Resource Script (.rcfile)

* Resources--static data
» Example: amenu
* Defined in a script (.rc) file--

#i ncl ude "resource. h"

MYMENU MENU

BEG N
MENU TEM "&Ci rcl e, | DM Cl RCLE
MENUI TEM " &Rect angl e", | DM_RECTANGLE
MENUI TEM " Cl ear &Screen", | DM CLEAR
MENUI TEM " &Qui t ", IDMQUT

END

(C) Richard R. Eckert

The Resour ce header (.h file)
/1 resource.h

#define |1 DM _Cl RCLE 40006
#define | DM RECTANGLE 40007
#defi ne |1 DM _CLEAR 40008
#define IDM QU T 40009

» Must be #included in .CPP & .RC files

e Can use Visua Studio's resource editors to
prepare .rc & .hvisudly

— 1D numbersgenerated automatically

(C) Richard R. Eckert

Key ideawith menus:

» when menu item is selected
—WindowssendsaWM_COMMAND msg
—low word of wPararm=sdlected item ID
—extract with macro LOWORD()

—then do switch/case on LOWORD(wParam) to
perform correct action

(C) Richard R. Eckert

Text and Graphics Output
* Displaying something in a window
» Text & graphics done one pixel at atime
» Any size/shape/position possible
 Design goal: Device Independence

(C) Richard R. Eckert

Device Independent Graphics .
Inter face Device Context
» Windows programs don’t access hardware ¢ Windowspgmsdon't draw directly on HW
devicesdirectly « Draw on “Device Context” (DC)
» Make calsto generic drawing functions — Is associated with a physical device
within the Windows ‘ Graphics Device — Abstracts the device it represents
Interface’ (GDI) -- aDLL — Likeapainter's canvas
+ The GDI trandatesthese into HW — Must be" gotten” from Windows
commands — Specifies drawing attribute settings
* e.g., text color
— Contains drawing objects
Program ::> GDI ::> Hardware « e.g., pens, brushes, bitmaps, fonts
(C) Richard R. Eckert (C) Richard R. Eckert
The DC and the GDI Some GDI Attribute Settings
Windows Drawing Using the DI and the DC
ATTRIBUTE DEFAULT FUNCTION
Device -
C(gg“t Background color white SetBkColor()
Background mode OPAQUE SetBkMode()
praming Clipping Region wholesurf. SelectClipRgn()
Current Position (0,0) MoveToEx ()
Eraphics o rdare DrawingMode ~ R2COPYPEN SetROP2()
A ication
i B e | rTeee [e MappingMode ~ MM_TEXT SetMapMode()
Text Color Black SetTextColon()
(C) Richard R. Eckert (C) Richard R. Eckert
Some GDI Dr aW| ng Obj eCtS ¥indows Drawing "Objects™ and the DC
Object Default What it is e
A CORTaNL
______ L;fl— o
Bitmap none image object ' 7%
Brush WHITE_BRUSH areafill object | commteemr Cramins
Font SYSTEM_FONT text font object e v
Pen BLACK_PEN line-drawing object xppiicatlon|———q Pevice L uacawmre
Color Palette DEFAULT_PALETTE colors e - S T
* Can be created with GDI functions
* Must be “selected” into a DC to be used
(C) Richard R. Eckert (C) Richard R. Eckert

Color in Windows

* Uses four-byte numbers to represent colors
» Simplest method--direct color:
—typedef DWORD COLORREF;

|0| Blue (0-255) | Green (0-255) | Red (0-255) |

—-MSB=0:
» ==> RGB color used (default)
« other bytes specify R, G, B intensities

(C) Richard R. Eckert

RGB() Macro

Specify Red, Green, Blue intensities

RGB() generates a COLORREF value

* can be used in color-setting ftns), eg.
COLORREF cr;
cr=RGB (0,0,255); /* blue*/

» Example usage in a program

SetTextColor (hDC, RGB(255,0,0)); //red text

SetBkColor (hDC, RGB(0,0,255)); //blue bkgnd

(C) Richard R. Eckert

A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP;

HDC hDC;

hDC = GetDC(hwnd);

hNewP = CrestePen(PS_SOLID, 3, RGB(0,0,255));
hOIdP = (HPEN) SelectObject (hDC, hNewP);

/ NOW DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOIdP); //displace pen from DC
DeleteObject (hNewP); //now can be deleted
ReleaseDC(hWndhDC);

(C) Richard R. Eckert

Some GDI Drawing Primitives
¢ Arc(hDCx1ylx2y2 xStart,yStart xEnd,yEnd);
« Ellipse (hDc, x1,y1,x2y2);
¢ MovetoEx (hDC,x1,y1,|pPoint);

e LineTo (hDCx1yl);

« Polygon (hDC,points_array nCount);
 Polyline (hDC,points_arraynCount);
¢ Rectangle (hDCx1y1,x2y2);

» SetPixel (hDC,x1,y1,colref);

¢ TextOut (hDC,x,y|pString,cbString);
¢ Many more (seeon-line help)

(C) Richard R. Eckert

Stock Objects

* predefined in Windows
* obtain with GetStockObject();
—getsahandleto a predefined pen/brush/font
* Stock objects are maintained by Windows
—should not be deleted!
* Example
SelectObject (hDC,
GetStockObject(BLACK _PEN));

(C) Richard R. Eckert

Some Stock Objects
Object Choices

Pen BLACK_PEN, WHITE_PEN, NULL_PEN

Brush DKGRAY_BRUSH, GRAY_BRUSH,
BLACK_BRUSH, LTGRAY_BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font ~ ANSI_FIXED_FONT, ANSI_VAR_FONT,
DEVICE_DEFAULT_FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED_FONT

(C) Richard R. Eckert

Thewinapp2.cpp Application

* Details of WndProc()--
—menu item clicked==>WM_COMMAND mgg

« LOWORD(wParam)==IDM_RECTANGLE

("Rectangle” menu item clicked):
—draw red-outlined rectangle (pen) with solid cyan
interior (brush)

« LOWORD(wParam)==IDM_CIRCLE ("Circle"

clicked):

—draw blue-outlined circle (pen) with crosshatched
magenta interior (brush)

(C) Richard R. Eckert

— LOWORD(wParam)==IDM_CLEAR ("Clear Screen”
clicked):
« call InvalidateRect() ==> Windows sends WM_PAINT
msg
—client area needs to be repainted
—default Window Procedure repaints client area with
class background brush

—effectively erases window's client area
— LOWORD(wParam)==IDM_QUIT ("Quit” clicked):
* program calls DestroyWindow()
* causes Windows to destroy window
 and send aWM_DESTROY message
* which causes app to terminate

(C) Richard R. Eckert

* |eft mouse button pressed ==>
WM_LBUTTONDOWN msg
—get cursor’ sx,y coordinates from [Param
¢ use LOWORD & HIWORD macros
* output "L" at (x,y) on screen DC with TextOut ()
* right mouse button pressed ==>
WM_RBUTTONDOWN msg
« output "R” at (x,y) on screen DC with TextOut ()

(C) Richard R. Eckert

—User hits ANSI character keyboard key/s ==>
WM_CHAR msg (WPararm=char code)
« copy character into a buffer
« output buffer to upper left corner w/ TextOut ()
—User takes action to close window (double
clickson System menu or hits Alt-F4) ==>
WM_DESTROY message
* post WM_QUIT message to app's queue

* causes program to exit event loop and return
control to Windows

(C) Richard R. Eckert

Using Visual Studioto Createa
Win32 APl Application with a
Menu and an Icon
1. Get into Visua Studio, open aNew Project, &

createan empty Win32 application

2. Createanew Visual C++ sourcefile, typeor
pastein the code (winapp2.cpp), & saveitasa
C++ sourcefile

» must have: #include “resource.h”

3. Moveit into the project

(C) Richard R. Eckert

4. Create the Icon Resource (and the .rc file)
* Select ‘Project | Add Resource | Icon | New’
— Bringsupicon editor
* Draw desired icon
* Click on IDI_ICON1 in “Resource View” to bring
up the “Properties” window and change theicon
IDto“MYICON"

» Give nameto .icofile

(C) Richard R. Eckert

5. Select ‘ Project | Add Resource | Menu | New’
* Brings up the menu editor
— Typethe caption: & Circleinthe“Type Here” rectangle
—Inresulting "Properties" box, Select “ False” for “Pop-
up”
— Click on the resulting Circle menu item to bring up the
“Properties” box again.
— ChangethelD to IDM_CIRCLE
« Click on the next rectangle over in the menu editor

— Repeat the above steps using caption: & Rectangle and
ID: IDM_RECTANGLE

* Repeat for: Clear & Screen, & Quit menu items
— IDs IDM_CLEAR and IDM_QUIT

(C) Richard R. Eckert

6. Click on“IDI_MENUY" in“Resource View”
to bring up the “ Properties” window and
changethe menu ID to “MY MENU"

7. Build the project

(C) Richard R. Eckert

Copy Project to a Diskette

 Delete dl the temporary files from the
workspace's Debug Directory
— Everything except the .exefile

« Copy the entire workspace directory to your
diskette

« If using a public computer, delete the
workspace directory from the hard disk

(C) Richard R. Eckert

