Win32 APl Programming

(C) Richard R. Eckert

Tindows Events and Mezgages

ipp 3 Hemaage Gueum

Win32 APl Programming
 Event-driven, graphics oriented

» Example: User clicks mouse over a
program’s window area--
—Windows decodes HW signals from mouse
—figures out which window user has selected
—sends a message to that window’s program:
* "User has clicked over (X,Y)”
« "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows

(C) Richard R. Eckert

Overview of Win32 API Program
Structure--2 main tasks:
« |nitial activities

* Process messages from Windows (the
message loop)

(C) Richard R. Eckert

PSEUDOCODE

* Initialize variables, memory space

 Create & show program's window
* Loop

— Fetch any msg sent from Windows to this pgm
— If message is WM_QUIT
« terminate program, return control to Windows
—If message is something else
« take actions based on msg & parameters
« return control to Windows
» End Loop

(C) Richard R. Eckert

Essential Parts of a Windows Pgm

« |. The source program (.c/.cpp file):
—A. WinMain() function
« 0. declarations, initialization, etc.
« 1. register window class
« 2. create a window based on a registered class
« 3. show window, make it update its client area

« 4, the message loop (get messages from Windows,
dispatch back to Windows for forwarding to

correct callback message-processing function)
—B. WndProc(): the msg-processing function

(C) Richard R. Eckert

* 1. The resource script (.rc file):
—contains resource (Windows static) data
—separate from code and dynamic data
—compiled by a separate "Resource Compiler”
—Examples:

 Keybhoard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables

— Separation of resources and program code==>
« reduced memory demands
* separates tasks of programmer & designer
« can change user interface w/o touching code

(C) Richard R. Eckert

Example Program

 See First Windows Program: winappl.cpp

* URL:
http://www.cs.binghamton.edu/~reckert/360/winappl.htm

(C) Richard R. Eckert

The WinMain() Function

int PASCAL WinMain (HINSTANCE hinstance,

HINSTANCE hPrevinstance,
LPSTR IpszCmdLine, int nCmdShow);

WinMain() starts first

integer exit code returned to Windows
PASCAL: I-to-r parameter passing on stack

4 parameters passed in from Windows

— hinstance: a handle, identifies current pgm instance
— IpszCmdLine: string containing command line args
— nCmdShow: how window is to appear when shown

(C) Richard R. Eckert

Hungarian Notation

* help clarify variable types

« precede name with key letters representing
type

» named after Hungarian Microsoft
programmer, Charles Simonyi

(C) Richard R. Eckert

prefix data type

by BYTE (unsigned char)

b BOOL (int, TRUE=1 FALSE=0)

c char

dw DWORD (4-byte unsigned long)
fn function

h handle

| long (4 bytes)

n short (int) near pointer
p pointer

sz null-terminated char string
w word (two bytes)
Ipsz long ptr to null-terminated str

(C) Richard R. Eckert

RegisterClass(&wndclass);

typedef struct tag?WNDCLASS {

UINT style;

LRESULT CALLBACK IpfnwndProc)();
int chClsExtra;

int cbWndExtra;

HINSTANCE hinstance;

HICON hlcon;

HCURSOR hCursor;

HBRUSH hBackground;

LPSTR IpszMenuName

LPSTR IpszClassName } WNDCLASS;
if ('RegisterClass (&wndclass)) return 0;

(C) Richard R. Eckert

CreateWindow() arguments:

window class name

window caption

window style (Boolean OR of style masks)

initial x , y position in pixels

initial width , height

parent window handle (if main window, NULL)
window menu handle (NULL if class menu used)
program instance handle (passed in from Windows)
creation parameters (for extra data, usually NULL)

(C) Richard R. Eckert

ShowWindow (hWnd,nCmdShow);

* makes window visible on screen
* hWnd: which window to make visible

* nCmdShow: how (normal, minimized, etc.)

— set by Windows environment when program
is started;

— value is passed in from Windows;
— "normal" can be overridden

(C) Richard R. Eckert

UpdateWindow (hWnd);

* Causes client area to be updated
» Painted with background brush

(C) Richard R. Eckert

The Message Loop

 User interaction-->a msg sent to a window

« Lots of other actions-->messages

* A message structure:
—HWND hwnd; // target window handle
—UINT message; // msg ID value--WM_***
—WPARAM wParam; // data passed in msg
—LPARAM [Param; // more data in msg
—DWORD time; // time msg was sent
—POINT pt; // mouse cursor position (X,y)

(C) Richard R. Eckert

GetMessage()

» Program must keep checking for messages

» Use message loop w/ GetMessage()

* BOOL GetMessage(
LPMSG IpMsg, //ptr to msg struct
HWND hWnd, //target window
UINT wMsg1l, //1st msg in range
UINT wMsg2, //last msg in range)

(C) Richard R. Eckert

GetMessage()

» Reads next msg from app's msg queue
* Fills MSG struct pointed to by first param
* Place in a loop:
while (GetMessage(&msg, NULL, 0, 0))
{..}
return((intymsg.wParam);
* Returns non-0, except for WM_QUIT msg

— Terminates msg loop & returns control to
Windows

(C) Richard R. Eckert

The Main Message Loop

Application's
Windows System WinMain() function

CreateWindow ()
Gar

Is there a message
for this application's

o |Process
this
sssss ge

(C) Richard R. Eckert

Message Processing

» What goes inside the message loop:
TranslateMessage (&msg)--
"Cooks" keyboard input
Converts raw key codes to ANSI codes
DispatchMessage (&msg)--
Sends message on to Windows, which
forwards it to pgm's "Window Procedure™:
WndProc()--
2nd member of WNDCLASS structure
Programmer must write this function

(C) Richard R. Eckert

The Window Procedure

* “Callback” function (called by Windows)
» Should contain a switch/case statement :
— Looks at message ID of current message
— Acts appropriately on "interesting" messages

— Forwards other messages to default Window
procedure--DefWindowProc()

(C) Richard R. Eckert

WndProc()

LRESULT CALLBACK WndProc (
HWND hwnd, UINT wMessage,
WPARAM wParam, LPARAM IParam)
Parameters--
Same as first four fields of MSG structure:
—window associated with message
—message ID (what message is)
—msg data (wParam & IParam)

(C) Richard R. Eckert

The WM_DESTROY Message
 Sent by OS when window is destroyed
» WndProc() should respond by calling:
— PostQuitMessage();
» Windows sends WM_QUIT msg to queue
o wParam =0 implies:
— 0 returned by GetMessage() in WinMain()
—s0 program exits WinMain()'s message loop
—and return to Windows

(C) Richard R. Eckert

WINDOWS WM DESTROY MESSAGE PROCESSING

Windows System

sopie o e

Application

WndProc()

Nsg Handler 1
Msg Handler 2
UM DESTROY
Nsg Handler

Should call:

Default

Some other important messages

* WM_COMMAND--User clicked on menu item,
LOWORD(wParam)= menu item 1D

« WM_*BUTTONDOWN--left/right mouse button
pressed (* = L or R, IParam=x,y coordinates)

« WM_MOUSEMOVE--mouse moved (IParam=x,y
coords)

* WM_CHAR--User pressed valid ANSI code character
keyboard key combination (wParam=ANSI code)

o WM_PAINT--Part of window was exposed & should be
redrawn

* WM_KEYDOWN--keyboard key pressed (wParam=
virtual key code)

(C) Richard R. Eckert

I1. The Resource Script (.rc file)

» Resources--static data
» Example: a menu

* Defined in a script (.rc) file--

#include "‘resource.h"
MYMENU MENU
BEGIN

MENUITEM "&Circle", IDM_CIRCLE

MENUITEM "&Rectangle’, IDM_RECTANGLE

MENUITEM "Clear &Screen',IDM_CLEAR
MENUITEM "&Quit", IDM_QUIT
END

(C) Richard R. Eckert

The Resource header (.h file)
// resource.h

#define I1DM_CIRCLE 40006
#define IDM_RECTANGLE 40007
#define 1DM_CLEAR 40008
#define IDM_QUIT 40009

» Must be #included in .CPP & .RC files

» Can use Visual Studio's resource editors to
prepare .rc & .h visually
— ID numbers generated automatically

(C) Richard R. Eckert

Key idea with menus:

» when menu item is selected
—Windows sends a WM_COMMAND msg
—low word of wParam=selected item ID
—extract with macro LOWORD()

—then do switch/case on LOWORD(wParam) to
perform correct action

(C) Richard R. Eckert

TEXT AND GRAPHICS OUTPUT
* Displaying something in a window

» Text & graphics done one pixel at a time

* Any size/shape/position possible

« Design goal: Device Independence

(C) Richard R. Eckert

Device Independent Graphics
Interface

» Windows programs don’t access hardware
devices directly

» Make calls to generic drawing functions
within the Windows ‘Graphics Device
Interface’ (GDI) -- a DLL

» The GDI translates these into HW
commands

Program —>| GDI — > Hardware

(C) Richard R. Eckert

Device Independent Graphics

Interface
m May use device drivers (HW control

programs)

Program bGDI bDriverQ Hardware

m Thus graphics /O done in a “standard” way

m Programs will run unaltered on other HW
platforms

(C) Richard R. Eckert

Device Context

» Windows pgms don’t draw directly on HW

» Draw on “Device Context” (DC)
— Abstracts the device it represents
— Like a painter’s canvas
— Specifies drawing attribute settings
* e.g., text color
— Contains drawing objects
* e.g., pens, brushes, bitmaps, fonts

(C) Richard R. Eckert

The DC and the GDI

Windows Drawing Using the GDI and the DC

Device
Context
(DC)

Draving
Comnands

Graphics

Application Device Hardware
GDI Interface Hardware

functions (ZDI) Commands

(C) Richard R. Eckert

Some GDI Attribute Settings

ATTRIBUTE DEFAULT FUNCTION

Background color white SetBkColor()
Background mode OPAQUE SetBkMode()
Clipping Region whole surf. SelectClipRgn()
Current Position (0,0 MoveToEX()
Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()
Text Color Black SetTextColor()

(C) Richard R. Eckert

Some GDI Drawing Objects

Object Default What it is

Bitmap none image object

Brush WHITE_BRUSH area fill object

Font SYSTEM_FONT text font object

Pen BLACK_PEN line-drawing object

Color Palette DEFAULT_PALETTE colors

» Can be created with GDI functions
» Must be selected into a DC to be used

(C) Richard R. Eckert

Windows Drawing "Objects" and the DC

Device
SelectObject () Context

(Dey

Drawing
CreatePen() Coumands

CreateSolidBrushi)

Graphics

Application Device Hardware
GDI Interface Hardware

runctions | (@DI) Comnands

(C) Richard R. Eckert

Color in Windows

 Uses four-byte numbers to represent colors
* Simplest method--direct color:
—typedef DWORD COLORREF,;

| 0| Blue (0-255) | Green (0-255) | Red (0-255) |

- MSB=0:
» ==> RGB color used (default)
« other bytes specify R, G, B intensities

(C) Richard R. Eckert

RGB() Macro

Specify Red, Green, Blue intensities

RGB() generates a COLORREF value

can be used in color-setting ftns), e.g.
COLORREF cr;
cr = RGB (0,0,255); /* blue */

Example usage in a program
SetTextColor(hDC,RGB(255,0,0)); //red text
SetBkColor(hDC,RGB(0,0,255)); //blue bkgnd

(C) Richard R. Eckert

A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP;

HDC hDC;

hDC = GetDC(hWnd);

hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOIdP = (HPEN)SelectObject(hDC, hNewP);

// DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOIdP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted

ReleaseDC(hwnd,hDC);

(C) Richard R. Eckert

Some GDI Drawing Primitives
» Arc(hDC,x1,y1,x2,y2,xStart,yStart,xEnd,yEnd);

« Ellipse (hDc, x1,y1,x2,y2);

» MovetoEx (hDC,x1,y1,IpPoint);

* LineTo (hDC,x1,yl);

* Polygon (hDC,points_array,nCount);
* Polyline (hDC,points_array,nCount);
 Rectangle (hDC,x1,y1,x2,y2);

* SetPixel (hDC,x1,y1,colref);

» TextOut (hDC,x,y,IpString,cbString);
» Many more (see on(-line help)

C) Richard R. Eck

Stock Objects

* predefined in Windows
* obtain with GetStockObject();
—gets a handle to a predefined pen/brush/font
« Stock objects are maintained by Windows
—should not be deleted!
» Example
SelectObject
(hDC,GetStockObject(BLACK_PEN));

(C) Richard R. Eckert

Some Stock Objects
Object Choices

Pen BLACK_PEN, WHITE_PEN, NULL_PEN

Brush DKGRAY_BRUSH, GRAY_ BRUSH,
BLACK_BRUSH, LTGRAY BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font ANSI_FIXED FONT, ANSI_VAR_FONT,
DEVICE_DEFAULT_FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED_FONT

(C) Richard R. Eckert

The winapp2.cpp Application

* Details of WndProc()--

—menu item clicked==>WM_COMMAND msg
* LOWORD(wParam)==IDM_RECTANGLE
("Rectangle” menu item clicked):
—draw red-outlined rectangle (pen) with solid cyan
interior (brush)
* LOWORD(wParam)==IDM_CIRCLE ("Circle"
clicked):
—draw blue-outlined circle (pen) with crosshatched
magenta interior (brush)

(C) Richard R. Eckert

— LOWORD(wParam)==IDM_CLEAR ("Clear Screen”
clicked):

« call InvalidateRect() ==> Windows sends WM_PAINT
msg

—client area needs to be repainted

—default Window Procedure repaints client area with
class background brush

—effectively erases window's client area
— LOWORD(wParam)==IDM_QUIT ("Quit” clicked):
« program calls DestroyWindow()
« causes Windows to destroy window
 and send a WM_DESTROY message
« which causes app to terminate

(C) Richard R. Eckert

« left mouse button pressed ==>
WM_LBUTTONDOWN msg
—get cursor’s x,y coordinates from |Param
+ use LOWORD & HIWORD macros
* output "L" at (X,y) on screen DC with TextOut()
* right mouse button pressed ==>
WM_RBUTTONDOWN msg
« output "R” at (x,y) on screen DC with TextOut()

(C) Richard R. Eckert

— User hits ANSI character keyboard key/s ==>

WM_CHAR msg (wParam=char code)
« copy character into a buffer
« output buffer to upper left corner w/TextOut()

— User takes action to close window (double
clicks on System menu or hits Alt-F4) ==>
WM_DESTROY message

e post WM_QUIT message to app's queue

« causes program to exit event loop and return
control to Windows

(C) Richard R. Eckert

Using Visual Studio to Create a
Win32 API Application with a
Menu and an Icon

1. Get into Visual Studio, open a New Project, &
create an empty Win32 application

2. Create a new Visual C++ source file, type or

paste in the code (winapp2.cpp), & save itas a
C++ source file

» must have: #include “resource.h”
3. Move it into the project

(C) Richard R. Eckert

4. Create the Icon Resource (and the .rc file)
« Select ‘Project | Add Resource | Icon | New’
— Brings up icon editor
* Draw desired icon
* Click on IDI_ICONL1 in “Resource View” to bring

up the “Properties” window and change the icon
ID to “MYICON”

» Give name to .ico file

(C) Richard R. Eckert

5. Select “Project | Add Resource | Menu | New’
* Brings up the menu editor
— Type the caption: &Circle in the “Type Here” rectangle
- In resulting "Properties™ box, Select “False” for “Pop-
up”
— Click on the resulting Circle menu item to bring up the
“Properties” box again.

— Change the ID to IDM_CIRCLE
« Click on the next rectangle over in the menu editor

- Repeat the above steps using caption: &Rectangle and
ID: IDM_RECTANGLE

* Repeat for: Clear &Screen, &Quit menu items
(IDs: IDM_CLEAR, and IDM_QUIT)

(C) Richard R. Eckert

6. Click on “IDI_MENUL” in “Resource View”
to bring up the “Properties” window and
change the menu ID to “MYMENU”

7. Build the project

(C) Richard R. Eckert

Copy Project to a Diskette
* Delete all the temporary files from the

workspace’s Debug Directory
— Everything except the .exe file

 Copy the entire workspace directory to your
diskette

* If using a public computer, delete the
workspace directory from the hard disk

(C) Richard R. Eckert

