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Win32 API Programming
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• Event-driven, graphics oriented
• Example: User clicks mouse over a 

program’s window area--
– Windows decodes HW signals from mouse
– figures out which window user has selected
– sends a message to that window’s program:

• "User has clicked over (X,Y)”
• "Do something and return control to me”

– Program reads message data, does what's 
needed, returns control to Windows

Win32 API Programming
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Overview of Win32 API Program 
Structure--2 main tasks:

• Initial activities
• Process messages from Windows (the 

message loop)
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PSEUDOCODE
• Initialize variables, memory space
• Create & show program's window
• Loop

– Fetch any msg sent from Windows to this pgm
– If message is WM_QUIT

• terminate program, return control to Windows
– If message is something else

• take actions based on msg & parameters
• return control to Windows

• End Loop
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Essential Parts of a Windows Pgm
• I. The source program (.c/.cpp file):

– A. WinMain() function
• 0. declarations, initialization, etc.
• 1. register window class
• 2. create a window based on a registered class
• 3. show window, make it update its client area
• 4. the message loop (get messages from Windows, 

dispatch back to Windows for forwarding to 
correct callback message-processing function)

– B. WndProc(): the msg-processing function
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• II. The resource script (.rc file):
– contains resource (Windows static) data
– separate from code and dynamic data
– compiled by a separate "Resource Compiler”
– Examples: 

• Keyboard Accelerators, Bitmaps, Cursors, Dialog 
Box specs, Fonts, Icons, Menus, String Tables

– Separation of resources and program code==>
• reduced memory demands
• separates tasks of programmer & designer
• can change user interface w/o touching code
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Example Program
• See First Windows Program: winapp1.cpp
• URL:
http://www.cs.binghamton.edu/~reckert/360/winapp1.htm
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The WinMain() Function
• int PASCAL WinMain (HINSTANCE hInstance, 

HINSTANCE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow);

• WinMain() starts first
• integer exit code returned to Windows
• PASCAL: l-to-r parameter passing on stack
• 4 parameters passed in from Windows

– hInstance: a handle, identifies current pgm instance
– lpszCmdLine: string containing command line args
– nCmdShow: how window is to appear when shown
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Hungarian Notation
• help clarify variable types
• precede name with key letters representing 

type
• named after Hungarian Microsoft 

programmer, Charles Simonyi
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prefix  data type
---------------------------------
by   BYTE (unsigned char)
b    BOOL (int, TRUE=1 FALSE=0)
c    char
dw   DWORD (4-byte unsigned long)
fn   function
h    handle
l    long (4 bytes)
n    short (int) near pointer
p    pointer
sz   null-terminated char string
w    word (two bytes)
lpsz long ptr to null-terminated str

(C) Richard R. Eckert

RegisterClass(&wndclass);
typedef struct tagWNDCLASS  {
UINT    style;    
LRESULT CALLBACK lpfnWndProc)();
int     cbClsExtra;
int     cbWndExtra;
HINSTANCE hInstance;
HICON hIcon; 
HCURSOR hCursor;
HBRUSH hBackground;
LPSTR lpszMenuName
LPSTR lpszClassName            }  WNDCLASS;

if (!RegisterClass (&wndclass))  return 0;
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CreateWindow() arguments:
window class name 
window caption
window style (Boolean OR of style masks)
initial x , y position in pixels
initial width ,  height
parent window handle (if main window, NULL)
window menu handle (NULL if class menu used)
program instance handle (passed in from Windows)
creation parameters (for extra data, usually NULL)
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ShowWindow (hWnd,nCmdShow);
• makes window visible on screen
• hWnd: which window to make visible
• nCmdShow: how (normal, minimized, etc.)

– set by Windows environment when program 
is started;

– value is passed in from Windows;
– "normal" can be overridden
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UpdateWindow (hWnd);
• Causes client area to be updated
• Painted with background brush
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The Message Loop
• User interaction-->a msg sent to a window
• Lots of other actions-->messages
• A message structure:

– HWND hwnd;   // target window handle
– UINT message; // msg ID value--WM_***
– WPARAM wParam; // data passed in msg
– LPARAM lParam;  // more data in msg
– DWORD    time;  // time msg was sent
– POINT   pt;   // mouse cursor position (x,y)
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GetMessage()
• Program must keep checking for messages
• Use message loop w/ GetMessage()
• BOOL GetMessage(

LPMSG lpMsg, //ptr to msg struct
HWND hWnd, //target window
UINT wMsg1, //1st msg in range
UINT wMsg2, //last msg in range)
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• Reads next msg from  app's msg queue
• Fills MSG struct pointed to by first param
• Place in a loop:

while (GetMessage(&msg, NULL, 0, 0))
{ ... }

return((int)msg.wParam);
• Returns non-0, except for WM_QUIT msg

– Terminates msg loop & returns control to 
Windows

GetMessage()
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Message Processing
• What goes inside the message loop:

TranslateMessage (&msg)--
"Cooks" keyboard input
Converts raw key codes to ANSI codes

DispatchMessage (&msg)--
Sends message on to Windows, which
forwards it to pgm's "Window Procedure":

WndProc()--
2nd member of WNDCLASS structure
Programmer must write this function
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The Window Procedure
• “Callback” function (called by Windows)
• Should contain a switch/case statement :

– Looks at message ID of current message
– Acts appropriately on "interesting" messages
– Forwards other messages to default Window 

procedure--DefWindowProc()
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WndProc()
LRESULT CALLBACK WndProc (

HWND hWnd, UINT wMessage,
WPARAM wParam, LPARAM lParam)

Parameters--
Same as first four fields of MSG structure:
– window associated with message
– message ID (what message is)
– msg data (wParam & lParam)
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The WM_DESTROY Message
• Sent by OS when window is destroyed
• WndProc() should respond by calling:

– PostQuitMessage();
• Windows sends WM_QUIT msg to queue 
• wParam = 0  implies:

– 0 returned by GetMessage() in WinMain()
– so program exits WinMain()'s message loop 
– and return to Windows
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Some other important messages
• WM_COMMAND--User clicked on menu item, 

LOWORD(wParam)= menu item ID
• WM_*BUTTONDOWN--left/right mouse button 

pressed (* = L or R,  lParam=x,y coordinates)
• WM_MOUSEMOVE--mouse moved (lParam=x,y

coords)
• WM_CHAR--User pressed valid ANSI code character 

keyboard  key combination (wParam=ANSI code)
• WM_PAINT--Part of window was exposed & should be 

redrawn
• WM_KEYDOWN--keyboard key pressed (wParam= 

virtual key code)
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• Resources--static data
• Example: a menu
• Defined in a script (.rc) file--
#include "resource.h"
MYMENU MENU 
BEGIN
MENUITEM "&Circle", IDM_CIRCLE
MENUITEM "&Rectangle",   IDM_RECTANGLE
MENUITEM "Clear &Screen",IDM_CLEAR
MENUITEM "&Quit", IDM_QUIT
END

II. The Resource Script (.rc file)
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The Resource header (.h file)
// resource.h
#define IDM_CIRCLE 40006
#define IDM_RECTANGLE 40007
#define IDM_CLEAR 40008
#define IDM_QUIT 40009

• Must be #included in .CPP & .RC files
• Can use Visual Studio's resource editors to 

prepare .rc & .h visually
– ID numbers generated automatically
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• when menu item is selected
– Windows sends a WM_COMMAND msg
– low word of wParam=selected item ID
– extract with macro LOWORD()
– then do switch/case on LOWORD(wParam) to 

perform correct action

Key idea with menus:
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• Displaying something in a window
• Text & graphics done one pixel at a time
• Any size/shape/position possible
• Design goal: Device Independence

TEXT AND GRAPHICS OUTPUT
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Device Independent Graphics 
Interface

• Windows programs don’t access hardware 
devices directly

• Make calls to generic drawing functions 
within the Windows ‘Graphics Device 
Interface’ (GDI) -- a DLL

• The GDI translates these into HW 
commands

Program GDI Hardware
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May use device drivers (HW control 
programs)

Thus graphics I/O done in a “standard” way
Programs will run unaltered on other HW 
platforms

Program GDI Driver Hardware

Device Independent Graphics 
Interface
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• Windows pgms don’t draw directly on HW
• Draw on “Device Context” (DC)

– Abstracts the device it represents
– Like a painter’s canvas
– Specifies drawing attribute settings

• e.g., text color
– Contains drawing objects

• e.g., pens, brushes, bitmaps, fonts

Device Context
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The DC and the GDI
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Some GDI Attribute Settings
ATTRIBUTE         DEFAULT       FUNCTION
-----------------------------------------------------------------
Background color      white SetBkColor()
Background mode     OPAQUE SetBkMode() 
Clipping Region        whole surf. SelectClipRgn()
Current Position (0,0) MoveToEx()
Drawing Mode         R2COPYPEN   SetROP2()
Mapping Mode         MM_TEXT SetMapMode() 
Text Color                Black           SetTextColor()
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Some GDI Drawing Objects
Object          Default   What it is
----------------------------------------------------------------------
Bitmap           none image object
Brush             WHITE_BRUSH        area fill object
Font             SYSTEM_FONT text font object
Pen                 BLACK_PEN line-drawing object
Color Palette  DEFAULT_PALETTE   colors
----------------------------------------------------------------------

• Can be created with GDI functions
• Must be selected into a DC to be used
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Color in Windows
• Uses four-byte numbers to represent colors
• Simplest method--direct color:

– typedef DWORD  COLORREF;
---------------------------------------------------------
| 0 |  Blue (0-255) | Green (0-255) | Red (0-255)  |
---------------------------------------------------------
– MSB=0:

• ==> RGB color used (default)
• other bytes specify R, G, B intensities
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RGB() Macro
• Specify Red, Green, Blue intensities
• RGB() generates a COLORREF value
• can be used in color-setting ftns), e.g.

COLORREF  cr;
cr = RGB (0,0,255);   /* blue */

• Example usage in a program
SetTextColor(hDC,RGB(255,0,0)); //red text
SetBkColor(hDC,RGB(0,0,255)); //blue bkgnd
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A Typical Sequence 
With Drawing Objects:

HPEN    hOldP, hNewP;
HDC     hDC;
hDC = GetDC(hWnd); 
hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOldP = (HPEN)SelectObject(hDC, hNewP);
// DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOldP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted

ReleaseDC(hWnd,hDC);

(C) Richard R. Eckert

Some GDI Drawing Primitives
• Arc(hDC,x1,y1,x2,y2,xStart,yStart,xEnd,yEnd);
• Ellipse (hDc, x1,y1,x2,y2);
• MovetoEx (hDC,x1,y1,lpPoint);
• LineTo (hDC,x1,y1);
• Polygon (hDC,points_array,nCount);
• Polyline (hDC,points_array,nCount);
• Rectangle (hDC,x1,y1,x2,y2);
• SetPixel (hDC,x1,y1,colref);
• TextOut (hDC,x,y,lpString,cbString);
• Many more (see on-line help)
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Stock Objects
• predefined in Windows
• obtain with GetStockObject();

– gets a handle to a predefined pen/brush/font
• Stock objects are maintained by Windows

– should not be deleted!
• Example

SelectObject
(hDC,GetStockObject(BLACK_PEN));
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Some Stock Objects
Object    Choices
-----------------------------------------------------
Pen        BLACK_PEN, WHITE_PEN, NULL_PEN
Brush     DKGRAY_BRUSH, GRAY_BRUSH,

BLACK_BRUSH, LTGRAY_BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font       ANSI_FIXED_FONT, ANSI_VAR_FONT,
DEVICE_DEFAULT_FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED_FONT
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The winapp2.cpp Application
• Details of WndProc()--

– menu item clicked==>WM_COMMAND msg
• LOWORD(wParam)==IDM_RECTANGLE 

("Rectangle” menu item clicked):
– draw red-outlined rectangle (pen) with solid cyan 

interior ( brush)
• LOWORD(wParam)==IDM_CIRCLE ("Circle" 

clicked):
– draw blue-outlined circle (pen) with crosshatched 

magenta interior (brush)
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– LOWORD(wParam)==IDM_CLEAR ("Clear Screen” 
clicked):
• call InvalidateRect() ==>  Windows sends WM_PAINT 

msg
– client area needs to be repainted
– default Window Procedure repaints client area with  

class background brush
– effectively erases window's client area

– LOWORD(wParam)==IDM_QUIT ("Quit” clicked):
• program calls DestroyWindow()
• causes Windows to destroy window
• and send a WM_DESTROY message
• which causes app to terminate
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• left mouse button pressed ==> 
WM_LBUTTONDOWN msg
– get cursor’s x,y coordinates from lParam 

• use LOWORD & HIWORD macros
• output "L" at (x,y) on screen DC with TextOut()

• right mouse button pressed ==> 
WM_RBUTTONDOWN msg

• output "R” at (x,y) on screen DC with TextOut()
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– User hits ANSI character keyboard key/s ==> 
WM_CHAR msg (wParam=char code)
• copy character into a buffer
• output buffer to upper left corner w/TextOut()

– User takes action to close window (double 
clicks on System menu or hits Alt-F4) ==> 
WM_DESTROY message 
• post WM_QUIT message to app's queue
• causes program to exit event loop and return 

control to Windows
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Using Visual Studio to Create a 
Win32 API Application with a 

Menu and an Icon
1. Get into Visual Studio, open a New Project, & 

create an empty Win32 application
2. Create a new Visual C++ source file, type or 

paste in the code (winapp2.cpp), & save it as a 
C++ source file
• must have: #include “resource.h”

3. Move it into the project
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4. Create the Icon Resource (and the .rc file) 
• Select ‘Project | Add Resource | Icon | New’

– Brings up icon editor

• Draw desired icon
• Click on IDI_ICON1 in “Resource View” to bring 

up the “Properties” window and change the icon 
ID to “MYICON”

• Give name to .ico file
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5. Select ‘Project | Add Resource | Menu | New’
• Brings up the menu editor

– Type the caption: &Circle in the “Type Here” rectangle
– In resulting "Properties" box, Select “False” for “Pop-

up”
– Click on the resulting Circle menu item to bring up the 

“Properties” box again.
– Change the ID to IDM_CIRCLE

• Click on the next rectangle over in the menu editor
– Repeat the above steps using caption: &Rectangle and 

ID: IDM_RECTANGLE
• Repeat for: Clear &Screen, &Quit menu items 

(IDs: IDM_CLEAR, and IDM_QUIT)
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6. Click on “IDI_MENU1” in “Resource View” 
to bring up the “Properties” window and 
change the menu ID to “MYMENU”

7. Build the project

(C) Richard R. Eckert

Copy Project to a Diskette
• Delete all the temporary files from the 

workspace’s Debug Directory
– Everything except the .exe file

• Copy the entire workspace directory to your 
diskette

• If using a public computer, delete the 
workspace directory from the hard disk


