Win32 API Programming

(C) Richard R. Eckert

Win32 APl Programming
» Event-driven, graphics oriented
» Example: User clicks mouse over a
program’ swindow area--
—Windows decodes HW signals from mouse
—figures out which window user has selected
— sends amessage to that window’ s program:
« "User has clicked over (X,Y)”
* "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows

(C) Richard R. Eckert

D

|

1
-
[Ri—
-

Overview of Win32 API Program
Structure--2 main tasks:
* Initia activities
* Process messages from Windows (the
message |oop)

(C) Richard R. Eckert

PSEUDOCODE
« Initialize variables, memory space
« Create & show program's Window
e Loop
— Fetch any msg sent from Windows to this pgm
—If messageisWM_QUIT
« terminate program, return control to Windows
—If messageis something else
« take actions based onmsg & parameters
« return control to Windows

« End Loop

() Richard R. Eckert

Essential Parts of a Windows Pgm

* |. The source program (.c/.cpp file):
—A. WinMain() function
* 0. declarations, initiaization, etc.
* 1. register window class
« 2. create awindow based on aregistered class
« 3. show window, make it update its client area

* 4. the message loop (get messages from Windows,
dispatch back to Windows for forwarding to
correct callback message-processing function

—B. WndProc(): the msg-processing function

(C) Richard R. Eckert

« Il. The resource script (.rcfile):
— contains resource (Windows static) data
—separate from code and dynamic data
—compiled by a separate "Resource Compiler”
—Examples:
« Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables
— Separation of resources and program code==>
« reduced memory demands
* separates tasks of programmer & designer
« can change user interface w/o touching code

(C) Richard R. Eckert

Example Program

» See First Windows Program: winappl.cpp

* URL:
http://www.cs.binghamton .edu/~reckert/360/winappl. htm

(C) Richard R. Eckert

TheWinMain() Function
¢ int PASCAL WinMain (HINSTANCE hinstance
HINSTANCE hPrevinstance
LPSTRIpszCmdLine, int "CmdShow);
* WinMain() startsfirst
* integer exit code returned to Windows
» PASCAL I-to-r parameter passing on stack
* 4 parameters passed in from Windows
— hinstance: a handle, identifies current pgm instance
— IpszCmadLine: string containing command line args
— nCmdShow: how window is to appear when shown

(C) Richard R. Edkert

Hungarian Notation
* help clarify variable types
* precede name with key letters representing
type
» named after Hungarian Microsoft
programmer, Charles Simonyi

(C) Richard R. Eckert

prefix data type

by BYTE (unsi gned char)

b BOOL (int, TRUE=1 FALSE=0)

c char

dw DWORD (4-byte unsigned | ong)
fn function

h handl e

| long (4 bytes)

n short (int) near pointer

p poi nt er

sz nul |l -term nated char string

w word (two bytes)
I psz long ptr to null-termnated str

() Richard R. Eckert

Register Clas{ & wndclass);

typedef struct tag??WNDCLASS {

UINT style;

LRESULT CALLBACK IpfnwndProc)();
int cbClsExtra;

int cbWndExtra;

HINSTANCE hinstance;

HICON hlcon;

HCURSOR hCursor ;

HBRUSH hBackground;

LPSTR IpszMenuName

LPSTR IpszClassName } WNDCLASS;
if ('RegisterClass (& wndclass)) return O;

(C) Richard R. Eckert

CreateWindow() arguments:

window class name

window caption

window style (Boolean OR of style masks)

initial x , y position in pixels

initial width , height

parent window handle (if main window, NULL)
window menu handle (NULL if class menu used)
program instance handle (passed in from Windows)
crestion parameters (lfor extradata, usually NULL)

C) Richard R. Eckert

ShowWindow (hWnd,nCmdShow);

» makes window visible on screen
* hWnd: which window to make visible

» NCmdShow: how (normal, minimized, etc.)

— set by Windows environment when program
is started;

— vaueispassed in from Windows;
— "normal” can be overridden

(C) Richard R. Eckert

UpdateWindow (hWnd);

« Causesclient areato be updated
« Painted with background brush

() Richard R. Eckert

The Message L oop

 User interaction-->amsg sent to a window

* Lotsof other actions-->messages

* A message structure:
—HWND hwnd; // target window handle
—UINT message; // msg ID value--WM_***
—WPARAM wParam; // data passed in mgg
—LPARAM |Param; // more datainmsg
—DWORD time; // time msg was sent
—POINT pt; // mouse cursor position (X,y)

(C) Richard R. Eckert

GetM essage()

 Program must keep checking for messages

» Use message loop w/ GetM essage()

» BOOL GetMessage(
LPMSG IpMsg, //ptr to msg struct
HWND hwnd, //target window
UINT wMsgl, //1st msgin range
UINT wMsg?2, //last msg in range)

() Richard R. Eckert

GetM essage()

Reads next msg from app's msg queue

Fills MSG struct pointed to by first param
Placein aloop:
while (GetMessagg(& msg, NULL, O, 0))
{..}

return(msg.wParam);
Returns non-0, except for WM_QUIT msg
—Terminates msg loop & returns control to

Windows

(C) Richard R. Eckert

The Main Message Loop

Application’s

Windows System WinMain() function

CreateVindow (]

Is there a message

(C) Richard R. Eckert

The Window Procedure

« "callback" function (called by Windows)

« Should contain a switch/case statement :
—Looks at message ID of current message
—Acts appropriately on "interesting” messages

— Forwards other messages to default Window
procedure--DefWindowProc()

() Richard R. Eckert

M essage Processing

* What goesinside the message |oop:
Trand ateMessage (& msg)--
"Cooks" keyboard input
Convertsraw key codesto ANS| codes
DispatchMessage (& msg)--
Sends message on to Windows, which
forwardsit to pgm's "Window Procedure':
WhdProc()--
2nd member of WNDCLASS structure
Programmer must write this function

(C) Richard R. Eckert

WndProc()

LRESULT CALLBACK WndProc (
HWND hwnd, UINT wMessage,

WPARAM wParam, LPARAM |Param)
Parameters--

Same asfirst four fields of MSG structure:
—window associated with message

—message ID (what messageis)

—msg data (wParam & |Param)

(C) Richard R. Eckert

TheWM_DESTROY Message
* Sent by OS when window is destroyed
» WndProc() should respond by calling:
—PostQuitMessagsg);
» Windows sends WM_QUIT msg to queue
» wParam =0 implies:

—0 returned by GetMessage() in WinMain()
— 0 program exits WinMain()'s message loop
—and return to Windows

(C) Richard R. Eckert

WINDOWS Wi DESTROY MESSAGE PROCESSING

Windows System

eeeeeee

application

Should call:

nnnnnnn

Some other important messages

« WM_COMMAND--User clicked on menu item,
LOWORD(wParam)= menu item ID

« WM_*BUTTONDOWN--left/right mouse button
pressed (* =L or R, |Param=x,y coordinates)

« WM_MOUSEMOV E--mouse moved (IParam=x,y
coords)

* WM_CHAR--User pressed valid ANSI code character
keyboard key combination (wParam=ANSI code)

« WM_PAINT--Part of window was exposed & should be
redrawn

« WM_KEYDOWN--keyboard key pressed (wParam~
virtual key code)

(C) Richard R. Eckert

[1. The Resource Script (.rcfile)
» Resources--static data

» Example: amenu
 Defined in ascript (.rc) file--

#i ncl ude "resource. h"

MYMENU MENU

BEG N
MVENUI TEM "&Circl e”, | DM _Cl RCLE
MENUI TEM " &Rect angl e", | DM_RECTANGLE
MVENUI TEM " Cl ear &Screen”, | DM_CLEAR
MVENUI TEM " &Qui t ", IDMQU T

END

() Richard R. Eckert

The Resour ce header (.h file)
/] resource.h

#define | DM _ClI RCLE 40006
#defi ne | DM_RECTANGLE 40007
#define | DM_CLEAR 40008
#define IDMQU T 40009

* Must be#includedin .CPP & .RCfiles

e Can use Visua Studio's resource editorsto
prepare rc & .hvisually
— 1D numbers generated automatically

(C) Richard R. Eckert

Key idea with menus:

« when menu item is selected
—Windows sendsaWM_COMMAND msy
—low word of wParam=sdlected item ID
—extract with macro LOWORD()

—then do switch/case on LOWORD(wParam) to
perform correct action

() Richard R. Eckert

TEXT AND GRAPHICS OUTPUT
* Displaying something in a window

» Text & graphics done one pixel at atime

» Any size/shape/position possible

* Design goal: Device Independence

(C) Richard R. Eckert

Device I ndependent Graphics
Interface

» Windows programs don't access hardware
devicesdirectly

» Make calsto generic drawing functions
within the Windows ‘ Graphics Device
Interface’ (GDI) -- aDLL

» The GDI trandates these into HW
commands

Program =3 GDI == Hardware

(C) Richard R. Eckert

Device Independent Graphics

Interface
m May use device drivers (HW control

programs)
Program [54GDI Driver|chy Hardwarg

m Thusgraphics1/O donein a“standard” way

m Programs will run unaltered on other HW
platforms

(C) Richard R. Eckert

Device Context

» Windows pgmsdon’t draw directly on HW

» Draw on “Device Context” (DC)
— Abstracts the device it represents
—Like apainter’s canvas
— Specifies drawing attribute settings

* eg., textcolor
— Contains drawing objects
* e.g., pens, brushes, bitmaps, fonts

() Richard R. Eckert

The DC and the GDI

Windows Drawing Using the GDI and the DC

Device
Context
(ne)

Drawing
Commands

Graphics

Application Device Hardware
DI Interface | Hardware

functions | (GDI) Commands

(C) Richard R. Eckert

Some GDI Attribute Settings

ATTRIBUTE DEFAULT FUNCTION

Background color ~ white SetBkColor ()
Background mode OPAQUE SetBkM ode()
Clipping Region wholesurf. SelectClipRgn()
Current Position (0,0) MoveToEx()
Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()
Text Color Black SetTextColor()

() Richard R. Eckert

Some GDI Drawing Objects

Object Default What itis

Bitmap none image object

Brush WHITE_BRUSH areafill object

Font SYSTEM_FONT text font object
Pen BLACK_PEN line-drawing object

Color Palette DEFAULT_PALETTE colors

» Can be created with GDI functions
* Must be selected into aDC to be used

(C) Richard R. Eckert

Windows Drawing '"0bjects” and the DOC

@ Cwwics

Salkert Bbjertn CORTENT

|:ﬂ'—|— 10

st pe
Cresfefeai i Comsyarsds

Cweat ool i))

Lo INTartads L]

tmacird | (DT Framunds

(C) Richard R. Eckert

Color in Windows

» Uses four-byte numbers to represent colors
» Simplest method--direct color:
—typedef DWORD COLORREF;

|0 Blue (0-255) | Green (0-255) | Red (0-255) |

—MSB=0:
« ==> RGB color used (default)
« other bytes specify R, G, B intensities

(C) Richard R. Eckert

RGB() Macro

Specify Red, Green, Blueintensities
RGB() generates a COLORREF value
can be used in color-setting ftns), e.g.
COLORREF cr;
cr=RGB (0,0,255); /* blue*/
Example usage in a program
SetTextColor (hDC,RGB(255,0,0)); //red text
SetBkColor(hDC,RGB(0,0,255)); //blue bkgnd

() Richard R. Eckert

A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP,

HDC hDC;

hDC = GetDC(hwnd);

hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOIldP = (HPEN)SelectObject(hDC, hNewP);

// DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOIdP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted

ReleaseDC(hwnd,hDC);

(C) Richard R. Eckert

Some GDI Drawing Primitives

* Arc(hDC,x1,y1,x2y2xStartyStartxEnd,yEnd);
« Ellipse (hDc, x1,y1,x2,y2);

» MovetoEx (hDC,x1,y1,IpPaint);

* LineTo(hDC,x1,y1);

« Polygon (hDC,points_array,nCount);

« Polyline (hDC,points_array,nCount);
 Rectangle (hDCx1,y1,x2,y2);

» SetPixd (hDC,x1,y1,colref);

» Many more (see on-line help)

() Richard R. Eckert

Stock Objects

* predefined in Windows

* obtain with GetStockObject();
—getsahandle to a predefined pen/brush/font

* Stock objects are maintained by Windows
—should not be deleted!

» Example
SelectObject

(hDc,GetStockObject(BLACK _PEN));

(C) Richard R. Eckert

Some Stock Objects
Object Choices

Pen BLACK_PEN, WHITE_PEN, NULL_PEN

Brush DKGRAY_BRUSH, GRAY_ BRUSH,
BLACK_BRUSH, LTGRAY_BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font ~ ANSI_FIXED_FONT, ANSI_VAR_FONT,
DEVICE_DEFAULT_FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED_FONT

(C) Richard R. Eckert

Thewinapp2.cpp Application

* Details of WndProc()--

—menu item clicked==>WM_COMMAND msg
* LOWORD(wParam)==IDM_RECTANGLE
("Rectangle” menu item clicked):
—draw red-outlined rectangle (pen) with solid cyan
interior (brush)
« LOWORD(wParam)==IDM_CIRCLE ("Circle"
clicked):
—draw blue-outlined circle (pen) with crosshatched
magenta interior (brush)

(C) Richard R. Eckert

— LOWORD(wParam)==IDM_CLEAR ("Clear Screen”
clicked):
« cdl InvaidateRect() ==> Windows sends WM_PAINT
msg
—client area needs to be repainted

—default Window Procedure repaints client area with
class background brush

—effectively erases window's client area
— LOWORD(wParam)==IDM_QUIT ("Quit” clicked):
« program calls DestroyWindow()
« causes Windows to destroy window
« and send aWM_DESTROY message
 which causes app to terminate

(©) Richard R Eckert

* |eft mouse button pressed ==>
WM_LBUTTONDOWN msg
—get cursor’ s x,y coordinates from |Param
¢ use LOWORD & HIWORD macros
* output "L" at (X,y) on screen DC with TextOut()
* right mouse button pressed ==>
WM_RBUTTONDOWN msg
* output "R” at (x,y) on screen DC with TextOut()

(C) Richard R. Eckert

—User hits ANSI character keyboard key/s ==>

WM_CHAR msg (wParam=char code)
« copy character into a buffer
« output buffer to upper left corner w/TextOut()

— User takes action to close window (double
clicks on System menu or hits Alt-F4) ==>
WM_DESTROY message

* post WM_QUIT message to app's queue

 causes program to exit event loop and return
control to Windows

() Richard R. Eckert

Using Dev Studioto Createa
Win32 API application visually

1. creste .cpp sourcefilewith atext editor

*» must have: #include “resource.n”
2. Get into Developer Studio, open a New

Workspace, & create aWin32 application

* ‘File| New | Projects tab | Win32 Application’
3. Prepare the C++ source file

* ‘File| New | C++ Source File

— Enter File name (winapp2)

—Make sure *Add to project’ Box is checked
—Typein or copy/paste code

(C) Richard R. Eckert

4. Create the .rcfile
« ‘File| New | Files Tab | Resource Script’
« Give it the name winapp2
5. Sdlect ‘Insert | Resource | Icon | New’
« brings up icon editor
* draw desired icon
« hit <Enter> --> |con Properties Dialog Box
« for ID type “MYICON" (must be in quotes)
* give nameto .icofile

(C) Richard R. Eckert

6. Select ‘Insert | Resource | Menu | New'
* brings up menu editor
« double click in dotted rectangle on gray menu bar
* inresulting "Menu Item Properties’ box, remove
Pop-up check mark
« enter ID: IDM_CIRCLE and Caption: &Circle

« do samefor & Rectangle, Clear & Screen, & Quit
menu items (IDs: IDM_RECTANGLE,
IDM_CLEAR, and IDM_QUIT

(C) Richard R. Eckert

BE e | Eaeid e |

[[T =] Gwan fiGce

Foipgia M Pyw gk Bsik fioe -
iosged [prasd [Hab

P [

1l -]
NN FE|

() Richard R. Eckert

7. Minimize Menu Editor box (menu nameis
IDR_MENU1)

« right click on that & click on "Properties’ in
resulting dialog box
* brings up "Menu Properties’ box”
« change ID to "MYMENU" (must be in quotes)
8. Build the project

(C) Richard R. Eckert

Ea Script2
Ea Menu
.. B [IDR_MENU1

Menu Properties

44 B Resouce |

10: I"MYMENU" jPreview:

Language: I English [U1.5.] =~ l
LCondition: I

() Richard R. Eckert

Copy Project to a Diskette

» Déelete all the temporary files from the
workspace' s Debug Directory

— Everything except the .exefile

 Copy the entire workspace directory to your
diskette

* If using a public computer, delete the
workspace directory from the hard disk

(C) Richard R. Eckert

