
1

(C) Richard R. Eckert

Win32 API Programming

(C) Richard R. Eckert

• Event-driven, graphics oriented
• Example: User clicks mouse over a

program’s window area--
– Windows decodes HW signals from mouse
– figures out which window user has selected
– sends a message to that window’s program:

• "User has clicked over (X,Y)”
• "Do something and return control to me”

– Program reads message data, does what's
needed, returns control to Windows

Win32 API Programming

(C) Richard R. Eckert (C) Richard R. Eckert

Overview of Win32 API Program
Structure--2 main tasks:

• Initial activities
• Process messages from Windows (the

message loop)

(C) Richard R. Eckert

PSEUDOCODE
• Initialize variables, memory space
• Create & show program's Window
• Loop

– Fetch any msg sent from Windows to this pgm
– If message is WM_QUIT

• terminate program, return control to Windows

– If message is something else
• take actions based on msg & parameters
• return control to Windows

• End Loop
(C) Richard R. Eckert

Essential Parts of a Windows Pgm

• I. The source program (.c/.cpp file):
– A. WinMain() function

• 0. declarations, initialization, etc.
• 1. register window class
• 2. create a window based on a registered class
• 3. show window, make it update its client area
• 4. the message loop (get messages from Windows,

dispatch back to Windows for forwarding to
correct callback message-processing function

– B. WndProc(): the msg-processing function

2

(C) Richard R. Eckert

• II. The resource script (.rc file):
– contains resource (Windows static) data
– separate from code and dynamic data
– compiled by a separate "Resource Compiler”
– Examples:

• Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables

– Separation of resources and program code==>
• reduced memory demands
• separates tasks of programmer & designer
• can change user interface w/o touching code

(C) Richard R. Eckert

Example Program

• See First Windows Program: winapp1.cpp

• URL:
http://www.cs.binghamton.edu/~reckert/360/winapp1.htm

(C) Richard R. Eckert

The WinMain() Function
• int PASCAL WinMain (HINSTANCE hInstance,
 HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow);
• WinMain() starts first
• integer exit code returned to Windows
• PASCAL l-to-r parameter passing on stack
• 4 parameters passed in from Windows

– hInstance: a handle, identifies current pgm instance
– lpszCmdLine: string containing command line args
– nCmdShow: how window is to appear when shown

(C) Richard R. Eckert

Hungarian Notation

• help clarify variable types

• precede name with key letters representing
type

• named after Hungarian Microsoft
programmer, Charles Simonyi

(C) Richard R. Eckert

 prefix data type

by BYTE (unsigned char)
b BOOL (int, TRUE=1 FALSE=0)
c char
dw DWORD (4-byte unsigned long)
fn function
h handle

 l long (4 bytes)
n short (int) near pointer
p pointer
sz null-terminated char string
w word (two bytes)
lpsz long ptr to null-terminated str

(C) Richard R. Eckert

RegisterClass(&wndclass);
 typedef struct tagWNDCLASS {
 UINT style;

 LRESULT CALLBACK lpfnWndProc)();
 int cbClsExtra;

 int cbWndExtra ;
 HINSTANCE hInstance;

 HICON hIcon;
 HCURSOR hCursor ;

 HBRUSH hBackground ;
 LPSTR lpszMenuName

 LPSTR lpszClassName } WNDCLASS;
if (!RegisterClass (&wndclass)) return 0;

3

(C) Richard R. Eckert

CreateWindow() arguments:

window class name
window caption
window style (Boolean OR of style masks)
initial x , y position in pixels
initial width , height
parent window handle (if main window, NULL)
window menu handle (NULL if class menu used)
program instance handle (passed in from Windows)
creation parameters (for extra data, usually NULL)

(C) Richard R. Eckert

ShowWindow (hWnd,nCmdShow);

• makes window visible on screen

• hWnd: which window to make visible
• nCmdShow: how (normal, minimized, etc.)

– set by Windows environment when program
is started;

– value is passed in from Windows;
– "normal" can be overridden

(C) Richard R. Eckert

UpdateWindow (hWnd);

• Causes client area to be updated

• Painted with background brush

(C) Richard R. Eckert

The Message Loop
• User interaction-->a msg sent to a window
• Lots of other actions-->messages
• A message structure:

– HWND hwnd; // target window handle
– UINT message; // msg ID value--WM_***
– WPARAM wParam; // data passed in msg
– LPARAM lParam; // more data in msg
– DWORD time; // time msg was sent
– POINT pt; // mouse cursor position (x,y)

(C) Richard R. Eckert

GetMessage()

• Program must keep checking for messages

• Use message loop w/ GetMessage()
• BOOL GetMessage(
 LPMSG lpMsg, //ptr to msg struct

 HWND hWnd, //target window
 UINT wMsg1, //1st msg in range
 UINT wMsg2, //last msg in range)

(C) Richard R. Eckert

• Reads next msg from app's msg queue

• Fills MSG struct pointed to by first param
• Place in a loop:

while (GetMessage(&msg, NULL, 0, 0))
 { ... }

return(msg.wParam);

• Returns non-0, except for WM_QUIT msg
– Terminates msg loop & returns control to

Windows

GetMessage()

4

(C) Richard R. Eckert (C) Richard R. Eckert

Message Processing
• What goes inside the message loop:
 TranslateMessage (&msg)--

 "Cooks" keyboard input
 Converts raw key codes to ANSI codes
DispatchMessage (&msg)--
 Sends message on to Windows, which
 forwards it to pgm's "Window Procedure":
 WndProc()--
 2nd member of WNDCLASS structure
 Programmer must write this function

(C) Richard R. Eckert

The Window Procedure

• "callback" function (called by Windows)

• Should contain a switch/case statement :
– Looks at message ID of current message
– Acts appropriately on "interesting" messages
– Forwards other messages to default Window

procedure--DefWindowProc()

(C) Richard R. Eckert

WndProc()

LRESULT CALLBACK WndProc (

 HWND hWnd, UINT wMessage,
 WPARAM wParam, LPARAM lParam)
Parameters--

 Same as first four fields of MSG structure:
– window associated with message
– message ID (what message is)
– msg data (wParam & lParam)

(C) Richard R. Eckert (C) Richard R. Eckert

The WM_DESTROY Message
• Sent by OS when window is destroyed
• WndProc() should respond by calling:

– PostQuitMessage();

• Windows sends WM_QUIT msg to queue
• wParam = 0 implies:

– 0 returned by GetMessage() in WinMain()
– so program exits WinMain()'s message loop
– and return to Windows

5

(C) Richard R. Eckert (C) Richard R. Eckert

Some other important messages
• WM_COMMAND--User clicked on menu item,

LOWORD(wParam)= menu item ID
• WM_*BUTTONDOWN--left/right mouse button

pressed (* = L or R, lParam=x,y coordinates)
• WM_MOUSEMOVE--mouse moved (lParam=x,y

coords)
• WM_CHAR--User pressed valid ANSI code character

keyboard key combination (wParam=ANSI code)
• WM_PAINT--Part of window was exposed & should be

redrawn
• WM_KEYDOWN--keyboard key pressed (wParam=

virtual key code)

(C) Richard R. Eckert

• Resources--static data

• Example: a menu
• Defined in a script (.rc) file--
#include "resource.h"
MYMENU MENU
BEGIN

 MENUITEM "&Circle", IDM_CIRCLE
 MENUITEM "&Rectangle", IDM_RECTANGLE
 MENUITEM "Clear &Screen",IDM_CLEAR
 MENUITEM "&Quit", IDM_QUIT
END

II. The Resource Script (.rc file)

(C) Richard R. Eckert

The Resource header (.h file)
// resource.h
#define IDM_CIRCLE 40006
#define IDM_RECTANGLE 40007
#define IDM_CLEAR 40008
#define IDM_QUIT 40009
• Must be #included in .CPP & .RC files
• Can use Visual Studio's resource editors to

prepare .rc & .h visually
– ID numbers generated automatically

(C) Richard R. Eckert

• when menu item is selected
– Windows sends a WM_COMMAND msg
– low word of wParam=selected item ID
– extract with macro LOWORD()
– then do switch/case on LOWORD(wParam) to

perform correct action

Key idea with menus:

(C) Richard R. Eckert

• Displaying something in a window
• Text & graphics done one pixel at a time

• Any size/shape/position possible
• Design goal: Device Independence

TEXT AND GRAPHICS OUTPUT

6

(C) Richard R. Eckert

Device Independent Graphics
Interface

• Windows programs don’t access hardware
devices directly

• Make calls to generic drawing functions
within the Windows ‘Graphics Device
Interface’ (GDI) -- a DLL

• The GDI translates these into HW
commands

Program GDI Hardware

(C) Richard R. Eckert

n May use device drivers (HW control
programs)

n Thus graphics I/O done in a “standard” way
n Programs will run unaltered on other HW

platforms

Program GDI Driver Hardware

Device Independent Graphics
Interface

(C) Richard R. Eckert

• Windows pgms don’t draw directly on HW

• Draw on “Device Context” (DC)
– Abstracts the device it represents
– Like a painter’s canvas
– Specifies drawing attribute settings

• e.g., text color

– Contains drawing objects
• e.g., pens, brushes, bitmaps, fonts

Device Context

(C) Richard R. Eckert

The DC and the GDI

(C) Richard R. Eckert

Some GDI Attribute Settings

ATTRIBUTE DEFAULT FUNCTION

Background color white SetBkColor()
Background mode OPAQUE SetBkMode()
Clipping Region whole surf. SelectClipRgn()
Current Position (0,0) MoveToEx()
Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()
Text Color Black SetTextColor()

(C) Richard R. Eckert

Some GDI Drawing Objects
Object Default What it is
--
Bitmap none image object
Brush WHITE_BRUSH area fill object
Font SYSTEM_FONT text font object
Pen BLACK_PEN line-drawing object
Color Palette DEFAULT_PALETTE colors
--

• Can be created with GDI functions
• Must be selected into a DC to be used

7

(C) Richard R. Eckert (C) Richard R. Eckert

Color in Windows
• Uses four-byte numbers to represent colors
• Simplest method--direct color:

– typedef DWORD COLORREF;

| 0 | Blue (0-255) | Green (0-255) | Red (0-255) |

– MSB=0:

• ==> RGB color used (default)
• other bytes specify R, G, B intensities

(C) Richard R. Eckert

RGB() Macro

• Specify Red, Green, Blue intensities

• RGB() generates a COLORREF value
• can be used in color-setting ftns), e.g.

 COLORREF cr;
 cr = RGB (0,0,255); /* blue */

• Example usage in a program
 SetTextColor(hDC,RGB(255,0,0)); //red text
 SetBkColor(hDC,RGB(0,0,255)); //blue bkgnd

(C) Richard R. Eckert

A Typical Sequence
With Drawing Objects:

HPEN hOldP, hNewP;
HDC hDC;
hDC = GetDC(hWnd);
hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOldP = (HPEN)SelectObject(hDC, hNewP);
// DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOldP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted

ReleaseDC(hWnd,hDC);

(C) Richard R. Eckert

Some GDI Drawing Primitives
• Arc(hDC,x1,y1,x2,y2,xStart,yStart,xEnd,yEnd);
• Ellipse (hDc, x1,y1,x2,y2);
• MovetoEx (hDC,x1,y1,lpPoint);
• LineTo (hDC,x1,y1);
• Polygon (hDC,points_array,nCount);
• Polyline (hDC,points_array,nCount);
• Rectangle (hDC,x1,y1,x2,y2);
• SetPixel (hDC,x1,y1,colref);
• Many more (see on-line help)

(C) Richard R. Eckert

Stock Objects
• predefined in Windows
• obtain with GetStockObject();

– gets a handle to a predefined pen/brush/font

• Stock objects are maintained by Windows
– should not be deleted!

• Example
SelectObject

(hDc,GetStockObject(BLACK_PEN));

8

(C) Richard R. Eckert

Some Stock Objects

Object Choices

Pen BLACK_PEN, WHITE_PEN, NULL_PEN
Brush DKGRAY_BRUSH, GRAY_BRUSH,
 BLACK_BRUSH, LTGRAY_BRUSH,
 NULL_BRUSH, WHITE_BRUSH
Font ANSI_FIXED_FONT, ANSI_VAR_FONT,
 DEVICE_DEFAULT_FONT, SYSTEM_FONT,
 OEM_FIXED_FONT, SYSTEM_FIXED_FONT

(C) Richard R. Eckert

The winapp2.cpp Application

• Details of WndProc()--
– menu item clicked==>WM_COMMAND msg

• LOWORD(wParam)==IDM_RECTANGLE
("Rectangle” menu item clicked):

– draw red-outlined rectangle (pen) with solid cyan
interior (brush)

• LOWORD(wParam)==IDM_CIRCLE ("Circle"
clicked):

– draw blue-outlined circle (pen) with crosshatched
magenta interior (brush)

(C) Richard R. Eckert

– LOWORD(wParam)==IDM_CLEAR ("Clear Screen”
clicked):
• call InvalidateRect() ==> Windows sends WM_PAINT

msg
– client area needs to be repainted
– default Window Procedure repaints client area with

class background brush
– effectively erases window's client area

– LOWORD(wParam)==IDM_QUIT ("Quit” clicked):
• program calls DestroyWindow()
• causes Windows to destroy window
• and send a WM_DESTROY message
• which causes app to terminate

(C) Richard R. Eckert

• left mouse button pressed ==>
WM_LBUTTONDOWN msg
– get cursor’s x,y coordinates from lParam

• use LOWORD & HIWORD macros
• output "L" at (x,y) on screen DC with TextOut()

• right mouse button pressed ==>
WM_RBUTTONDOWN msg

• output "R” at (x,y) on screen DC with TextOut()

(C) Richard R. Eckert

– User hits ANSI character keyboard key/s ==>
WM_CHAR msg (wParam=char code)
• copy character into a buffer
• output buffer to upper left corner w/TextOut()

– User takes action to close window (double
clicks on System menu or hits Alt-F4) ==>
WM_DESTROY message
• post WM_QUIT message to app's queue
• causes program to exit event loop and return

control to Windows

(C) Richard R. Eckert

Using Dev Studio to Create a
Win32 API application visually
1. create .cpp source file with a text editor

• must have: #include “resource.h”

2. Get into Developer Studio, open a New
Workspace, & create a Win32 application
• ‘File | New | Projects tab | Win32 Application’

3. Prepare the C++ source file
• ‘File | New | C++ Source File’

– Enter File name (winapp2)

– Make sure ‘Add to project’ Box is checked
– Type in or copy/paste code

9

(C) Richard R. Eckert

4. Create the .rc file
• ‘File | New | Files Tab | Resource Script’
• Give it the name winapp2

5. Select ‘Insert | Resource | Icon | New’
• brings up icon editor
• draw desired icon
• hit <Enter> --> Icon Properties Dialog Box
• for ID type “MYICON” (must be in quotes)
• give name to .ico file

(C) Richard R. Eckert

6. Select ‘Insert | Resource | Menu | New’
• brings up menu editor
• double click in dotted rectangle on gray menu bar
• in resulting "Menu Item Properties" box, remove

Pop-up check mark
• enter ID: IDM_CIRCLE and Caption: &Circle
• do same for &Rectangle, Clear &Screen, &Quit

menu items (IDs: IDM_RECTANGLE,
IDM_CLEAR, and IDM_QUIT

(C) Richard R. Eckert (C) Richard R. Eckert

7. Minimize Menu Editor box (menu name is
IDR_MENU1)
• right click on that & click on "Properties" in

resulting dialog box
• brings up "Menu Properties" box”
• change ID to "MYMENU" (must be in quotes)

8. Build the project

(C) Richard R. Eckert (C) Richard R. Eckert

Copy Project to a Diskette

• Delete all the temporary files from the
workspace’s Debug Directory
– Everything except the .exe file

• Copy the entire workspace directory to your
diskette

• If using a public computer, delete the
workspace directory from the hard disk

