Win32 API Programming

(C) Richard R. Eckert

Win32 APl Programming
» Event-driven, graphics oriented
» Example: User clicks mouse over a
program’ swindow area--
—Windows decodes HW signals from mouse
—figures out which window user has selected
— sends amessage to that window’ s program:
« "User has clicked over (X,Y)”
* "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows
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Overview of Win32 API Program
Structure--2 main tasks:
* Initia activities
* Process messages from Windows (the
message |oop)
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PSEUDOCODE
« Initialize variables, memory space
« Create & show program's Window
e Loop
— Fetch any msg sent from Windows to this pgm
—If messageisWM_QUIT
« terminate program, return control to Windows
—If messageis something else
« take actions based onmsg & parameters
« return control to Windows

« End Loop
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Essential Parts of a Windows Pgm

* |. The source program (.c/.cpp file):
—A. WinMain() function
* 0. declarations, initiaization, etc.
* 1. register window class
« 2. create awindow based on aregistered class
« 3. show window, make it update its client area

* 4. the message loop (get messages from Windows,
dispatch back to Windows for forwarding to
correct callback message-processing function

—B. WndProc(): the msg-processing function
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« Il. The resource script (.rcfile):
— contains resource (Windows static) data
—separate from code and dynamic data
—compiled by a separate "Resource Compiler”
—Examples:
« Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables
— Separation of resources and program code==>
« reduced memory demands
* separates tasks of programmer & designer
« can change user interface w/o touching code
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Example Program

» See First Windows Program: winappl.cpp

* URL:
http://www.cs.binghamton .edu/~reckert/360/winappl. htm
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TheWinMain() Function
¢ int PASCAL WinMain (HINSTANCE hinstance
HINSTANCE hPrevinstance
LPSTRIpszCmdLine, int "CmdShow);
* WinMain() startsfirst
* integer exit code returned to Windows
» PASCAL I-to-r parameter passing on stack
* 4 parameters passed in from Windows
— hinstance: a handle, identifies current pgm instance
— IpszCmadLine: string containing command line args
— nCmdShow: how window is to appear when shown
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Hungarian Notation
* help clarify variable types
* precede name with key letters representing
type
» named after Hungarian Microsoft
programmer, Charles Simonyi
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prefix data type

by BYTE (unsi gned char)

b BOOL (int, TRUE=1 FALSE=0)

c char

dw DWORD (4-byte unsigned | ong)
fn function

h handl e

| long (4 bytes)

n short (int) near pointer

p poi nt er

sz nul |l -term nated char string

w word (two bytes)
I psz long ptr to null-termnated str
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Register Clas{ & wndclass);

typedef struct tag??WNDCLASS {

UINT style;

LRESULT CALLBACK IpfnwndProc )();
int  cbClsExtra;

int cbWndExtra;

HINSTANCE hinstance;

HICON hlcon;

HCURSOR hCursor ;

HBRUSH hBackground;

LPSTR IpszMenuName

LPSTR IpszClassName } WNDCLASS;
if ('RegisterClass (& wndclass)) return O;
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CreateWindow() arguments:

window class name

window caption

window style ( Boolean OR of style masks)

initial x , y position in pixels

initial width , height

parent window handle (if main window, NULL)
window menu handle (NULL if class menu used)
program instance handle (passed in from Windows)
crestion parameters (lfor extradata, usually NULL)
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ShowWindow (hWnd,nCmdShow);

» makes window visible on screen
* hWnd: which window to make visible

» NCmdShow: how (normal, minimized, etc.)

— set by Windows environment when program
is started;

— vaueispassed in from Windows;
— "normal” can be overridden
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UpdateWindow (hWnd);

« Causesclient areato be updated
« Painted with background brush
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The Message L oop

 User interaction-->amsg sent to a window

* Lotsof other actions-->messages

* A message structure:
—HWND hwnd; // target window handle
—UINT message; // msg ID value--WM_***
—WPARAM wParam; // data passed in mgg
—LPARAM |Param; // more datainmsg
—DWORD time; // time msg was sent
—POINT pt; // mouse cursor position (X,y)
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GetM essage()

 Program must keep checking for messages

» Use message loop w/ GetM essage()

» BOOL GetMessage(
LPMSG IpMsg, //ptr to msg struct
HWND hwnd, //target window
UINT wMsgl, //1st msgin range
UINT wMsg?2, //last msg in range)
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GetM essage()

Reads next msg from app's msg queue

Fills MSG struct pointed to by first param
Placein aloop:
while (GetMessagg(& msg, NULL, O, 0))
{..}

return(msg.wParam);
Returns non-0, except for WM_QUIT msg
—Terminates msg loop & returns control to

Windows

(C) Richard R. Eckert




The Main Message Loop

Application’s

Windows System WinMain() function

CreateVindow (]

Is there a message
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The Window Procedure

« "callback" function (called by Windows)

« Should contain a switch/case statement :
—Looks at message ID of current message
—Acts appropriately on "interesting” messages

— Forwards other messages to default Window
procedure--DefWindowProc()
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M essage Processing

* What goesinside the message |oop:
Trand ateMessage (& msg)--
"Cooks" keyboard input
Convertsraw key codesto ANS| codes
DispatchMessage (& msg)--
Sends message on to Windows, which
forwardsit to pgm's "Window Procedure':
WhdProc()--
2nd member of WNDCLASS structure
Programmer must write this function
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WndProc()

LRESULT CALLBACK WndProc (
HWND hwnd, UINT wMessage,

WPARAM wParam, LPARAM |Param)
Parameters--

Same asfirst four fields of MSG structure:
—window associated with message

—message ID (what messageis)

—msg data (wParam & |Param)
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TheWM_DESTROY Message
* Sent by OS when window is destroyed
» WndProc() should respond by calling:
—PostQuitMessagsg);
» Windows sends WM_QUIT msg to queue
» wParam =0 implies:

—0 returned by GetMessage() in WinMain()
— 0 program exits WinMain()'s message loop
—and return to Windows
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WINDOWS Wi DESTROY MESSAGE PROCESSING

Windows System
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application

Should call:

nnnnnnn

Some other important messages

« WM_COMMAND--User clicked on menu item,
LOWORD(wParam)= menu item ID

« WM_*BUTTONDOWN--left/right mouse button
pressed (* =L or R, |Param=x,y coordinates)

« WM_MOUSEMOV E--mouse moved (IParam=x,y
coords)

* WM_CHAR--User pressed valid ANSI code character
keyboard key combination (wParam=ANSI code)

« WM_PAINT--Part of window was exposed & should be
redrawn

« WM_KEYDOWN--keyboard key pressed (wParam~
virtual key code)
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[1. The Resource Script (.rcfile)
» Resources--static data

» Example: amenu
 Defined in ascript (.rc) file--

#i ncl ude "resource. h"

MYMENU MENU

BEG N
MVENUI TEM "&Circl e”, | DM _Cl RCLE
MENUI TEM " &Rect angl e", | DM_RECTANGLE
MVENUI TEM " Cl ear &Screen”, | DM_CLEAR
MVENUI TEM " &Qui t ", IDMQU T

END
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The Resour ce header (.h file)
/] resource.h

#define | DM _ClI RCLE 40006
#defi ne | DM_RECTANGLE 40007
#define | DM_CLEAR 40008
#define IDMQU T 40009

* Must be#includedin .CPP & .RCfiles

e Can use Visua Studio's resource editorsto
prepare rc & .hvisually
— 1D numbers generated automatically
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Key idea with menus:

« when menu item is selected
—Windows sendsaWM_COMMAND msy
—low word of wParam=sdlected item ID
—extract with macro LOWORD()

—then do switch/case on LOWORD(wParam) to
perform correct action
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TEXT AND GRAPHICS OUTPUT
* Displaying something in a window

» Text & graphics done one pixel at atime

» Any size/shape/position possible

* Design goal: Device Independence

(C) Richard R. Eckert




Device I ndependent Graphics
Interface

» Windows programs don't access hardware
devicesdirectly

» Make calsto generic drawing functions
within the Windows ‘ Graphics Device
Interface’ (GDI) -- aDLL

» The GDI trandates these into HW
commands

Program =3 GDI == Hardware
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Device Independent Graphics

Interface
m May use device drivers (HW control

programs)
Program [54GDI Driver|chy Hardwarg

m Thusgraphics1/O donein a“standard” way

m Programs will run unaltered on other HW
platforms
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Device Context

» Windows pgmsdon’t draw directly on HW

» Draw on “Device Context” (DC)
— Abstracts the device it represents
—Like apainter’s canvas
— Specifies drawing attribute settings

* eg., textcolor
— Contains drawing objects
* e.g., pens, brushes, bitmaps, fonts
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The DC and the GDI

Windows Drawing Using the GDI and the DC

Device
Context
(ne)

Drawing
Commands

Graphics

Application Device Hardware
DI Interface | Hardware

functions | (GDI) Commands
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Some GDI Attribute Settings

ATTRIBUTE DEFAULT  FUNCTION

Background color ~ white SetBkColor ()
Background mode OPAQUE SetBkM ode()
Clipping Region wholesurf.  SelectClipRgn()
Current Position (0,0) MoveToEx()
Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT  SetMapMode()
Text Color Black SetTextColor()
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Some GDI Drawing Objects

Object Default What itis

Bitmap none image object

Brush WHITE_BRUSH areafill object

Font SYSTEM_FONT text font object
Pen BLACK_PEN line-drawing object

Color Palette DEFAULT_PALETTE colors

» Can be created with GDI functions
* Must be selected into aDC to be used
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Windows Drawing '"0bjects” and the DOC
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Color in Windows

» Uses four-byte numbers to represent colors
» Simplest method--direct color:
—typedef DWORD COLORREF;

|0 Blue (0-255) | Green (0-255) | Red (0-255) |

—MSB=0:
« ==> RGB color used (default)
« other bytes specify R, G, B intensities
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RGB() Macro

Specify Red, Green, Blueintensities
RGB() generates a COLORREF value
can be used in color-setting ftns), e.g.
COLORREF cr;
cr=RGB (0,0,255); /* blue*/
Example usage in a program
SetTextColor (hDC,RGB(255,0,0)); //red text
SetBkColor(hDC,RGB(0,0,255)); //blue bkgnd
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A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP,

HDC hDC;

hDC = GetDC(hwnd);

hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOIldP = (HPEN)SelectObject(hDC, hNewP);

// DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOIdP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted

ReleaseDC(hwnd,hDC);
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Some GDI Drawing Primitives

* Arc(hDC,x1,y1,x2y2xStartyStartxEnd,yEnd);
« Ellipse (hDc, x1,y1,x2,y2);

» MovetoEx (hDC,x1,y1,IpPaint);

* LineTo(hDC,x1,y1);

« Polygon (hDC,points_array,nCount);

« Polyline (hDC,points_array,nCount);
 Rectangle (hDCx1,y1,x2,y2);

» SetPixd (hDC,x1,y1,colref);

» Many more (see on-line help)
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Stock Objects

* predefined in Windows

* obtain with GetStockObject();
—getsahandle to a predefined pen/brush/font

* Stock objects are maintained by Windows
—should not be deleted!

» Example
SelectObject

(hDc,GetStockObject(BLACK _PEN));
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Some Stock Objects
Object Choices

Pen  BLACK_PEN, WHITE_PEN, NULL_PEN

Brush DKGRAY_BRUSH, GRAY_ BRUSH,
BLACK_BRUSH, LTGRAY_BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font ~ ANSI_FIXED_FONT, ANSI_VAR_FONT,
DEVICE_DEFAULT_FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED_FONT

(C) Richard R. Eckert

Thewinapp2.cpp Application

* Details of WndProc()--

—menu item clicked==>WM_COMMAND msg
* LOWORD(wParam)==IDM_RECTANGLE
("Rectangle” menu item clicked):
—draw red-outlined rectangle (pen) with solid cyan
interior ( brush)
« LOWORD(wParam)==IDM_CIRCLE ("Circle"
clicked):
—draw blue-outlined circle (pen) with crosshatched
magenta interior (brush)
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— LOWORD(wParam)==IDM_CLEAR ("Clear Screen”
clicked):
« cdl InvaidateRect() ==> Windows sends WM_PAINT
msg
—client area needs to be repainted

—default Window Procedure repaints client area with
class background brush

—effectively erases window's client area
— LOWORD(wParam)==IDM_QUIT ("Quit” clicked):
« program calls DestroyWindow()
« causes Windows to destroy window
« and send aWM_DESTROY message
 which causes app to terminate
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* |eft mouse button pressed ==>
WM_LBUTTONDOWN msg
—get cursor’ s x,y coordinates from |Param
¢ use LOWORD & HIWORD macros
* output "L" at (X,y) on screen DC with TextOut()
* right mouse button pressed ==>
WM_RBUTTONDOWN msg
* output "R” at (x,y) on screen DC with TextOut()
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—User hits ANSI character keyboard key/s ==>

WM_CHAR msg (wParam=char code)
« copy character into a buffer
« output buffer to upper left corner w/TextOut()

— User takes action to close window (double
clicks on System menu or hits Alt-F4) ==>
WM_DESTROY message

* post WM_QUIT message to app's queue

 causes program to exit event loop and return
control to Windows
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Using Dev Studioto Createa
Win32 API application visually

1. creste .cpp sourcefilewith atext editor

*» must have: #include “resource.n”
2. Get into Developer Studio, open a New

Workspace, & create aWin32 application

* ‘File| New | Projects tab | Win32 Application’
3. Prepare the C++ source file

* ‘File| New | C++ Source File

— Enter File name (winapp2)

—Make sure *Add to project’ Box is checked
—Typein or copy/paste code
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4. Create the .rcfile
« ‘File| New | Files Tab | Resource Script’
« Give it the name winapp2
5. Sdlect ‘Insert | Resource | Icon | New’
« brings up icon editor
* draw desired icon
« hit <Enter> --> |con Properties Dialog Box
« for ID type “MYICON" (must be in quotes)
* give nameto .icofile
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6. Select ‘Insert | Resource | Menu | New'
* brings up menu editor
« double click in dotted rectangle on gray menu bar
* inresulting "Menu Item Properties’ box, remove
Pop-up check mark
« enter ID: IDM_CIRCLE and Caption: &Circle

« do samefor & Rectangle, Clear & Screen, & Quit
menu items (IDs: IDM_RECTANGLE,
IDM_CLEAR, and IDM_QUIT
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7. Minimize Menu Editor box (menu nameis
IDR_MENU1)

« right click on that & click on "Properties’ in
resulting dialog box
* brings up "Menu Properties’ box”
« change ID to "MYMENU" (must be in quotes)
8. Build the project
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Ea Script2
Ea Menu
.. B [IDR_MENU1

Menu Properties

44 B Resouce |

10: I"MYMENU" jPreview:

Language: I English [U1.5.] =~ l
LCondition: I
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Copy Project to a Diskette

» Déelete all the temporary files from the
workspace' s Debug Directory

— Everything except the .exefile

 Copy the entire workspace directory to your
diskette

* If using a public computer, delete the
workspace directory from the hard disk
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