
1

Microsoft Visual Studio:
An Integrated Windows
Program Development

Environment

Microsoft Visual Studio
• Self-contained environment for Windows

program development:
– creating
– compiling
– linking
– testing/debugging

• IDE that accompanies Visual C++, Visual
Basic, Visual C#, and other Microsoft Windows
programming languages

• See Chapter 2 & Appendix C of the Deitel text
• Also Appendix C of the Gregory text

2

Visual Studio Capabilities
• Generate starter applications without

writing code
• View a programming project in many

different ways
• Edit source and include files
• Build the application’s user interface

visually
• Build (compile and link) an application
• Debug an application while it runs
• Obtain online help
• Lots of others

Some Visual Studio Components

• The Editors:
C, C++, C#, VB source program text editors

• cut/paste, color cues, indentation
• generate source text files

Resource Editors
• Resources: Windows static data
• Determine look and feel of an application

– icons, bitmaps, cursors, menus, dialog boxes, etc.

• graphical, WYSIWYG
• generate resource script (.rc) files
• integrated with text editor
• Done visually

3

• Unmanaged Code C/C++ Compiler
– translates source programs to machine language
– detects and reports errors
– generates object (.obj) files for linker

• Managed Code .NET Language Compilers
– Many of them ? multi-language interoperability
– Translate source programs to MSIL
– Generate a “Portable Executable” that must be

translated by the CLR
• Resource Compiler

– Reads .rc file
– Generates binary resource (.res) file for linker

.NET Language Compilers

The Linker
• Reads compiler .obj and .res files
• Accesses C/C++/Windows libraries
• Generates executable (.exe or .dll)

4

Program Build and Run in the
.NET Framework

Common
Language
Runtime

5

The Debugger
• Powerful source code debugger
• Integrated with all parts of Visual Studio
• Features

– breakpoints
– tracing through/over functions
– variable watch windows
– much more

• See Appendix C of Deitel text book

The Wizards
• AppWizard

– Windows code generator for MFC apps
– automatically creates working program

templates & skeleton code
• ClassWizard

– facilitates easy extension of AppWizard-
generated classes

– creation of new classes
– used to tailor AppWizard-generated MFC &

.NET skeletons
– Accessible in the Properties Window in .NET

6

Help
• Hover over key words in edit window and a

one-line help message appears
• More detailed help can be obtained by:

– ‘Start Page’ – ‘Developer Center’
• To access the MSDN Online Library

• Easier to use the ‘Help’ Menu Item
– ‘Dynamic Help’ – context sensitive

• Click on text in edit window and corresponding
topic appears in help window

• Click on topic in help window to get help
– ‘Contents’: Select a topic
– ‘Search’: Enter a topic
– ‘Index’: Enter/choose a topic

MSDN Library (on Web)

• Go to: http://msdn.microsoft.com
– Search MSDN for desired topic
– Some examples:

• Windows API reference
• MFC reference
• Windows forms class library

7

Using Visual Studio

• To prepare many kinds of applications
– Win32 Console Applications (DOS programs)
– Win32 API Apps in C or VC++
– MFC Apps in VC++
– DLLs
– .NET Windows Forms Apps in Managed C#, VB,

VC++, and other languages
– ASP.NET Web Apps and Services
– ADO.NET Data Base Apps
– Others

Visual Studio Layout
• Menu Bar
• Several Tool Bars
• View Windows (to the side)

– Solution Explorer
– Class View
– Resource View
– Properties Window

• Working Area (main window)
– Text Editor to enter/modify source code
– Resource Editors
– Tab between different work areas

• Output Window & Status Bar (bottom).
– System Messages (errors)

• Windows can be moved around, docked and undocked

8

Toolbars
• Contain Icons--instant routes to main menu

functions
• Many of them
• May not be visible
• If not, right click on any visible toolbar
• Brings up following popup window
• Can activate a toolbar by clicking on its

check box

9

Keyboard Shortcuts
• All Menu/Toolbar selections are available

from the keyboard using key combinations
• Can be faster
• More information in Online Help

– ‘Index’ | ‘Keyboard Shortcuts’ | ‘Predefined’

10

Solutions and Projects
• Solution

– A single application
– Can contain one or more projects

• In Managed applications, projects can be in different
languages

– Overall solution information stored in a .SLN file
– Open this when you want to work on a solution

• Project
– Basic component of an application
– Collection of files:

• Source, headers, resources, settings, configuration
information, many more

Important Visual Studio Generated Files

• .sln Solution
• .vcproj Project
• .c, .cpp, .cs C/C++/C# Windows App source code
• .h C/C++ header
• .rc Resource script
• .res Compiled resource
• .ico Icon
• .bmp Bitmap image
• .exe Executable program
• .dll Dynamic Link Library
• .aspx ASP.NET Web Form source code
• .asmx ASP.NET Web Service source code

11

• Many are very big and can (should) be removed!
• .obj Compiler machine code translation
• .ilk Incremental link file
• .pch Precompiled header (huge!!!)
• .pdb Precompiled debugging info
• .idb Incremental debug info
• .ncb intellisense database
• .aps Supports viewing resources
• Others
• Can be deleted

Temporary Visual Studio Generated
Files

Program Configurations
• Debug

– appends debugging information
– produces more and larger files

• Release
– no debugging information
– optimized for size, performance, & efficiency

12

Setting the Configuration
• Click ‘Build’ on Main Menu
• Choose ‘Configuration Manager’
• Choose desired configuration (‘Debug’ or

‘Release’) in Configuration Manager’s
‘Active Solution Configuration Box’

• Default is ‘Debug’

Creating a Win32 API Windows
Application with Visual Studio

• Startup
– click ‘Start’ on Task Bar – ‘All Programs’
– ‘Microsoft Visual Studio 2005’ | ‘Microsoft

Visual Studio 2005’
• Creating a new Win32 API solution

– ‘File’ | ‘New’ | ‘Project’ from Menu Bar
– In ‘New Project’ box, select ‘Visual C++’ ‘Win32’

from ‘Project Types:’ & click on ‘Win32 Project’
in ‘Templates’

– Set the ‘Location’ to a convenient directory &
name the project (e.g. win32app1)

– ‘OK’

13

• Click ‘Application Settings’ in resulting
‘Win32 Application Wizard’ Box
– Select ‘Windows Application’ from

‘Application Type’ radio buttons
– Select ‘Empty Project’ from ‘Additional

Options’ check boxes
– Click ‘Finish’

• Inserting source files into project:
– Open a new C++ file & type or copy/paste the code

into the program:
• ‘File’ | ‘New’ | ‘File’ from menu
• Choose ‘Visual C++’ from ‘Categories’, C++ file (.cpp)

from ‘Installed Templates’, & click ‘Open’
• Type or paste source code into the resulting Edit window
• Save the file in the project’s subdirectory as a C++ source

file, giving it an appropriate name (e.g., win32app1)
– Add the source file to the project:

• Choose ‘Project’ | ‘Add Existing Item’ from menu
• Click on the file you saved (e.g. win32app1.cpp)
• Confirm that it was added to the project by expanding

‘Source Files’ in the Solution Explorer Window
– If Solution Explorer is not visible, select ‘View – Solution Explorer’

from the menu

14

• Alternative Way of Adding a Source File
to a Project:
– You can also copy an existing source code file

into the project’s subdirectory
– Then as before:

• Choose ‘Project’ | ‘Add Existing Item’ from the
menu

• Select the .cpp file & click ‘Open’
– Should appear in Solution Explorer window
– Open it by double clicking on it

• Building the Solution:
– ‘Build’ | ‘Build Solution’ from menu
– Project will be compiled/linked
– Messages/errors will appear in Output

Window

• Running the Program:
– ‘Debug’ | ‘Start’ from menu

• Shortcut key: F5

– Or ‘Debug’ | ‘Start Without Debugging’ from
menu
• Shortcut key: Ctrl-F5

15

Compiling from Command Line
• Command Line Compilers:

– C++: CL.EXE
– C# : CSC.EXE
– Visual Basic: VBC.EXE

• All are run from a DOS session, but
directory paths must be set correctly

• Easiest to start a Visual Studio 2005
Command Prompt (paths already set)
– From Task Bar:

• Start | All Programs | Microsoft Visual Studio 2005 |
Visual Studio Tools | Visual Studio 2005 Command
Prompt

Command Line Compiling, continued

• To compile our first Visual C++, Win32 API
application (win32a1.cpp) from the command line:
– cl kernel32.lib user32.lib gdi32.lib win32a1.cpp
– Note that any required libraries (DLLs) must be

specified
• There are many compiler options:

– See Online Help:
– ‘Index’ | ‘cl.exe compiler’ | ‘building programs’
– For C#: ‘Index’ | ‘csc.exe’

• We won’t be using command line compilers much
in this course, but they’re there if you need them

16

• Cleanup:
– Copy solution, project, source, header, resource

files to disk
– Copy .exe file from project's Debug directory
– Best: Delete all temporary files & copy entire

solution (project directory) to floppy or CD
– Delete project directory from hard drive

• Exiting Developer Studio:
– ‘File’ | ‘Exit’ from menu

