
1

Microsoft Visual 
Studio .NET:
An Integrated 

Windows Program 
Development 
Environment

Using Microsoft Visual 
Studio .NET

Self-contained environment for Windows 
program development:
– creating
– compiling
– linking
– testing/debugging

IDE that accompanies Visual C++, Visual 
Basic, Visual C#, and other Microsoft 
Windows programming languages

Visual Studio Capabilities
Generate starter applications without writing 
code
View a programming project in many different 
ways
Edit source and include files
Build the application’s user interface visually
Compile and link
Debug an application while it runs
Obtain online help
Lots of others

Some Visual Studio 
Components

The Editors
C/C++, C#, VB source program text editors

• cut/paste color cues, indentation,
• generates text files

Resource Editors
• icons, bitmaps, cursors, menus, dialog boxes, etc.
• graphical, WYSIWYG, Integrated
• generates resource script (.rc) files
• integrated with text editor
• Done visually

C/C++ Compiler
– translates source programs to machine language
– detects and reports errors
– generates object (.obj) files for linker

Resource Compiler
– Reads .rc file
– Generates binary resource (.res) file for  linker

VC++ Unmanaged Code 
Compilers The Linker

Reads compiler .obj/.res files
Accesses C/C++/Windows libraries
Generates executable (.exe or .dll)



2

The Debugger

powerful source code debugger
integrated with all parts of Dev Studio
Features
– breakpoints
– tracing through/over functions
– variable watch windows
– much more

The Wizards
AppWizard
– Windows code generator for MFC apps
– automatically creates working program templates 

& skeleton code
ClassWizard
– facilitates easy extension of AppWizard-generated 

classes
– creation of new classes and response functions
– used to tailor AppWizard-generated MFC & .NET 

skeletons
– Replaced by Properties Window in .NET

Help

Can be accessed by:
– ‘Start Page’ – ‘Search Online’

• To access the MSDN Online Library
– Help Menu Item

• Dynamic Help – context sensitive
– pin it up as a fly-out

• Search
• Index

Win32 API Online Help

‘Help – Contents’
– Filtered by: (no filter)

MSDN Library
Windows Development

Win32 API
SDK Documentation

Reference
Functions by category
Functions in alphabetical order

MFC Online Help
‘Help – Contents’
– Filtered by: (Visual C++)

Visual Studio .NET
Visual C++

Visual C++ Reference
Visual C++ Libraries

MFC Reference
Hierarchy Chart
MFC Classes
Class Library Overview
MFC Classes (!!)
etc.   



3

MSDN Library (on Web)
Go to: http://msdn.microsoft.com
– Search MSDN for desired topic
– Good URL for MFC:
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vcmfc98/html/_mfc_class_library_reference_introduction.asp

Using Visual Studio .NET
To prepare many kinds of applications
– Win32 Console Applications (DOS programs)
– Win32 API Apps
– MFC apps
– DLLs
– Managed C++ Apps
– ATL Projects
– Web Services
– Others

Visual Studio Layout
Menu bar
Several tool bars
View Windows (left)
– Solution Explorer
– Class View
– Resource View
– Properties Window

Working Area (right)
– Text Editor to enter/modify source code
– Resource Editors

Output Window & Status Bar (bottom).
– System messages (errors)

Toolbars
Contain icons--instant routes to main 
menu functions
Many of them
May not be visible
If not, right click on any visible toolbar
Brings up following popup window
Can activate a toolbar by clicking on its 
check box



4

Solutions and Projects
Solution
– A single application
– Can contain one or more projects

• In Managed applications, can be in different 
languages

– Overall solution information stored in a .SLN file
– Open this when you want to work on a solution

Project
– Collection of files:

• Source, headers, resources, settings, configuration 
information

Important Visual Studio 
Generated Files

.sln             Solution

.vcproj          Project

.c or .cpp      C/C++ source

.h               C/C++ header

.rc              Resource script

.res             Compiled resource

.ico             Icon

.bmp             Bitmap image

.exe             Executable program

.dll             Dynamic Link Library (if used)

Many are very big and can (should) be removed!
.obj             Compiler machine code translation
.ilk             Incremental link file
.pch             Precompiled header (huge!!!)
.pdb             Precompiled debugging info
.idb            Incremental debug info
.ncb             Supports viewing classes
.aps             Supports viewing resources
others

Temporary Visual Studio 
generated files Program Configurations

Debug
– appends debugging info
– produces more and larger files

Release
– no debugging information
– optimized for size & efficiency

Setting the Configuration

Click "Build" on Main Menu
Choose "Configuration Manager”
Choose desired configuration  (“Debug” 
or “Release”) in “Active Configuration 
Box”
Default is “Debug”

Create a Win32 Application with 
Visual Studio

Startup
– click ‘Start’ on Task Bar – ‘All Programs’
– ‘Microsoft Visual Studio .NET’ – ‘Microsoft Visual Studio 

.NET’
Creating a new solution
– ‘File’ – ‘New’ – ‘Project’ from menu bar
– In ‘New Project’ box, select ‘Visual C++ Project’ from 

‘Project Types:’ & click on ‘Win32 Project’ in ‘Templates’
– Set the ‘Location’ to a convenient directory &name the 

project (e.g. win32app1)
– ‘OK’



5

Click ‘Application Settings’ in resulting 
‘Application Wizard’ Box
– Choose ‘Windows Application’ from 

‘Application Type’ radio buttons
– Select ‘An Empty Project’
– Click ‘Finish’
Click ‘OK’ in ‘New Project Information’ 

window

Inserting source files into project:
– Open a new C++ file & type or copy/paste the code 

into the program:
• ‘File | New | File’ from menu
• Choose ‘Visual C++’ from ‘Categories’, C++ file (.cpp) from 

‘Templates’, & click ‘Open’
• Type or paste source code in the resulting Edit window
• Save the file as a C++ source file, giving it an appropriate 

name (e.g., Win32App1)
– Add the source file to the project:

• Right click in the Edit window
• Click on ‘Move Win32App1.cpp’ into Project in the resulting 

popup window
• Confirm that it was added to the project by expanding ‘Source 

Files’ in the Solution Explorer Window
– If Solution Explorer is not visible, select ‘View – Solution 

Explorer’ from the menu

Alternative Way of Adding a Source 
File to a Project:
– Copy the file into the project’s directory

• Or use the Visual Studio Editor to type in the 
code & save it as a ‘C++ source file’ (.cpp) 

– Choose ‘Project – Add Existing Item’ from 
the menu

– Select the .cpp file & click ‘Open’

Building the Solution:
– ‘Build – Build Solution’ from menu

• Shortcut key: F7
– Project will be compiled/linked
– Messages/errors will appear in Output Window

Running the Program:
– ‘Debug – Start’ from menu

• Shortcut key: F5
– Or ‘Debug – Start Without Debugging’ from 

menu
• Shortcut key: Ctrl-F5
• or click exclamation point

Cleanup:
– Copy solution, project, source, header, 

resource files to disk
– Copy .exe file from project's Debug directory
– Best: Delete all temporary files & copy entire 

solution (project directory) to floppy
– Delete project directory from hard drive

Exiting Developer Studio:
– ‘File | Exit’ from menu


