
Data Bases and
ADO.NET

Relational Databases
• Most data handling today done with relational

databases
– Logical representations of data that allow

relationships among data to be considered without
concern for the physical structure of the data

– Composed of tables (like spreadsheets)
– Lots of proprietary formats
– Some database sources:

• Microsoft SQL Server
• Access
• Oracle
• Sybase

– Microsoft ADO.NET can handle data from multiple
locations (servers) stored in different formats

ADO.NET
• Based on Microsoft’s ActiveX Data Objects

– Data stored and transferred in Extensible Markup
Language (XML)

– Allows simple access to database data in many
formats

• Easy-to-use classes represent tables, columns, rows inside
relational databases

• Introduces DataSet class representing a set of data from
related tables encapsulated as a single unit preserving the
integrity of the relationships between them

– Basic types of database connections:
• SQLClient for SQL Server
• OleDb for all other database formats

– Can be used to obtain/update data from sources such as Access,
Oracle, Sybase, DB2, etc.

• Many others supported

Database Terminology
• Each database file can hold multiple tables
• A table:

– Each row represents data for one item
• Called a record

– Each column used to store a different data
element
• Elements represented in columns are called fields

Last Name First Name Phone

Smith John 777-1111
Jones Mary 777-2222

Records

Fields

Database Terminology, continued
• Primary Key Field

– Used to identify a record in a table
– A field that contains unique data not duplicated in

other records in the table
• e.g., social security number for employees

• Current Record
– Anytime a table is open, one record is considered to

be the current record
• As we move from record to record in a table the current

record changes

Queries

• A query retrieves information from a
database

• SQL (Structured Query Language) is the
standard for expressing queries
– We won’t need to be experts in using it since

Visual Studio .NET provides a “Query
Builder” tool to construct SQL queries

XML Data
• Industry standard for storing and transferring data

– Specs at: www.w3.org/XML
• Most database formats store data in binary

– Cannot be accessed by other systems or pass through
firewalls

• Data stored in XML is text
– Identified by tags similar to HTML tags

• Not predefined as in HTML
• We can define our own XML tags to indicate their content

– So very flexible for describing any kind of data

• Use of XML allows programs to communicate
even though they are written in different languages
and run on different hardware

Overview of XML

• Machine-Readable and Human-Readable
Data

• Defines the Data Content and Structure
• Allows Developer to Define his/her Own

Tags and Attributes

<employee>
<name>Jake</name>
<salary>25000</salary>
<region>Ohio</region>

</employee>

XML Schemas

• A schema describes fields, data types, and
any constraints on the data

• Defines the structure of an XML document
• A schema is expressed in XML as well
• Use of schemas permits strong typing and

data validation

Using ADO.NET
• Data from a database can be displayed on a

Windows Form or a Web Form
• Add controls to the form and bind the data to the

controls
– Controls can be what we’ve already seen:

• label, text box, list box, combo box, etc.
– Or special controls designed just for data:

• DataGridView

• ADO.NET classes are in the System.Data
namespace

Reading Database Data with a
DataReader

• A simple way to go – like network & file I/O
• Connected model
• Create and open a DataConnection

– Establishes a link to the data source, which is a specific
database file and server

• Then create a Database Command associated
with the connection that specifies the data to be
accessed
– This is an SQL query

• Execute the command
• Use a DataReader to read the data
• Display the data

Creating a Connection
• ADO.NET provides several types of Connection

objects
• Two important ones:

– SqlConnection
• Only for connecting to a Microsoft SQLServer database

– OleDbConnection
• For connecting to other database systems such as Access

• Can set up a data connection by constructing a
Connection object
– Connection string specifies details

• Or use Visual Studio’s “Server Explorer” to set
one up
– Start it with “View” | “Server Explorer”

An Example: Manual Coding to Read
the contents of a Database Table

• Windows Form Example: DataReadingForm
– Reads and displays data from a small Access

database: rnrbooks.mdb
• Contains two tables:

– “Books” with the following fields:
» ISBN, Title, Author, Publisher, and other fields

– “Subjects” with the following fields:
» SubjectCode, Subject

DataReadingForm Example
• The important code:

OleDbConnection thisConnection = new
OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\360\Programs_managedVCSharp\rnrbooks.mdb");

thisConnection.Open();
OleDbCommand thisCommand = thisConnection.CreateCommand();
thisCommand.CommandText = "SELECT Title, Author FROM Books";
OleDbDataReader thisReader = thisCommand.ExecuteReader(); //create reader
while (thisReader.Read())
{ //display DataReader’s data rows in a text box called displayTextBox

displayTextBox.Text += "\r\n" + thisReader["Title"] + thisReader["Author"];
}
thisReader.Close();
thisConnection.Close();

Disconnected ADO.NET Data Access
• 1. Set up a Data Connection

– Establishes a link to the data source
• 2. Set up a DataAdapter

– Handles retrieving and updating the data
– Data adapter uses “Command” objects to retrieve/store records

from/to the database and can be used to:
• 3. Create a DataSet:

• A temporary set of data tables stored in the computer’s memory
• ADO.NET datasets are disconnected

– So data in memory does not keep an active connection to data source
– Much better: Many more clients can connect and use the data server

• DataAdapters’s Fill(-,-) method gets a data table into the DataSet
– Uses SQL in a “Command” object to specify data to retrieve/update

• 4.. Add controls on the Windows Form or Web Form
– Display the data from the DataSet and allow user interaction

• 5. Write C# code to put the data into the controls

Connections, Data Adapters, Datasets

Example using a DataAdapter and a
DataSet

• DataReadingWithDataSet
– Also reads data from the rnrbooks.mdb database

• Also coded manually

Steps to Follow
– Instantiate and Open an OleDbConnection to the DB

OleDbConnection thisConnection=new OleDbConnection (@"Provider=
Microsoft.Jet.OLEDB.4.0; Data Source=
C:\360\Programs_managedVCSharp\rnrbooks.mdb");

thisConnection.Open();
• @-string literal to avoid escape chars: @”c:\x\a.txt" is equivalent to

"c:\\x\\a.txt"

– Create an OleDbDataAdapter specifying an SQL SELECT
command using the Connection

OleDbDataAdapter thisAdapter =new OleDbDataAdapter("SELECT ISBN, Title, Author
FROM Books", thisConnection);

– Instantiate and Fill a DataSet with data from one of the
DB tables using the OleDbDataAdapter

DataSet thisDataSet = new DataSet();
thisAdapter.Fill(thisDataSet, "Books");

– Index through the rows of the Table to get and display
their values of their fields in a multiline text box

foreach (DataRow r in thisDataSet.Tables["Books"].Rows) //each row in “Books” Table

tBox.Text += r["ISBN"] + "\t" + r["Title"] + "\t" + r["Author"] + "\r\n";

Finding Items in a Database Table
• Extract a DataTable from the DataSet

DataTable table = thisDataSet.Tables(“Books”);

• Set up an array of DataRows to hold the rows in
which there’s a field matching a search criterion

DataRows[] foundRows;

• Use DataTable’s Select(…) method with an
appropriate filter
– Selects one or more records in a DataSet
foundRows = table.Select(s_query);
– Here s_query is a string giving a selection criterion

• e.g., “title = ‘Megatrends’ ”

• Index through DataRows array and display results
• See DataSelectRow example

Using ADO.NET in Web Forms
• Just use Visual Studio to create a new ASP.NET

Web Form
– “File” | “New” | “Web Site” | “ASP.NET WebSite”

• As usual the .aspx and .aspx.cs files will be in the default
IIS Server directory
– C:\inetpub\wwwroot\project-name

• Can then run the app from a browser on any machine
– URL:

• http://machine-domain-name-or-IP-address/directory/app.aspx

• DatabaseWeb.aspx example has same functionality as
DataSelectRow example, but it’s now a Web Form
– Run it from a browser

Changing the Contents of a Database
• SELECT query strings retrieve data
• Other actions to change data in a database:

– Updating, Adding, Inserting, Deleting records
• All done in the same way:

– Fill a DataSet with data retrieved from a DataAdapter
• As in previous examples

– Modify (change, add, delete) the data in the DataSet
• Use a CommandBuilder object associated with the

DataAdapter
– After modifications, persist the DataSet changes back

to the database by calling da.Update(….)
– This won’t work without the CommandBuilder object

• See DataUpdate06 for an updating example

Adding a Row
• Again set up a Connection and a DataAdapter
• Create a CommandBuilder object
• Create and Fill a DataSet
• Create a new row with DataSet Table’s NewRow() method

DataRow dr = thisDataSet.Tables[“Books”].NewRow();

• Give values to all its fields
dr[“ISBN”] = “New ISBN”;
dr[“Title]”=“New Title”;
dr[“Author”]=“New Author”;

• Add the row with the Table’s Rows.Add() method
thisDataSet.Tables[“Books”].Rows.Add(dr);
– Row will be added and Rows.Length property will be incremented

• Update DataAdapter to make change permanent
thisAdapter.Update(thisDataSet, “Books”);
– Only the changed fields are updated
– Again, this will fail if there is no CommandBuilder object

Deleting a Row
• After setting up the Connection, DataAdapter,

CommandBuilder, and DataSet:
– If you know the rows, just use retrieve each one and use

its Delete() method, for example:
DataRows[] rows = ds.Tables[“Books”].Select(criterion);
foreach (DataRow r in rows) r.Delete();

– Or find the row to be deleted:
• Determine the primary key before filling the data set:

thisAdapter.MissingSchemaAction = MissingSchemaAction.AddWithKey;
thisAdapter.Fill(thisDataSet, “Books”);

• Use DataSet Table’s Rows Find(p-key) method to find the row:
DataRow foundRow = thisDataSet.Tables[“Books”].Rows.Find(“222-444”);

• Returns a DataRow if successful, null if not

– Delete the row using the Delete() method:
foundRow.Delete();

– Finally make change permanent with an Update(…):
thisAdapter.Update(thisDataSet, “Books”);

Executing SQL Commands
• Behind the scenes a CommandBuilder really uses a DataAdapter’s

Delete, Insert, Select, and Update commands
• After a DataAdapter populates a DataSet, the DataAdapter we can issue

any of the following commands:
• DeleteCommand, InsertCommand, SelectCommand, UpdateCommand

These are OleDbCommand objects that specify how the data adapter deletes,
inserts, selects, and updates data in the database

– Set their CommandText property to the SQL to be executed in a
query:
thisAdapter.SelectCommand.CommandText = “SELECT ISBN, Title, Author FROM

Books WHERE Title = ‘Best Book’;

– The DataAdapters’s Fill() member then causes its SelectCommand
to execute and fill the DataSet with result of the query

– Then bind the result to a control such as a textbox
• textBox1.DataBindings.Add(new Binding ("Text", thisDataSet, "Books.ISBN"));

– It works the same way for the DataAdapter’s UpdateCommand,
DeleteCommand, and InsertCommand

– Example: DataSQLSelect2007

Using Visual Studio Designer to Set
Up Access to the Data Base

• The tasks of setting up the DataConnection, the
DataAdapter/DataTable, and the DataSet are
automated

• In addition VS facilitates simple navigation
through database tables with a BindingNavigator
object

• Result is a database application with a LOT of
functionality without writing any code

Creating a Data Base Project with
Visual Studio 2005

• Start a new VS Windows Application
– Change Name and Text properties

• Add a Data Source
– Menu: “Data” | “Show Data Sources”

• Brings up “Data Sources” Window

– Click on “Add New Data Source”
– Select “Database” and click “Next”
– Click on “New Connection” button
– In “Add Connection” dialog box:

• Choose Microsoft Access Database File
• Browse to directory containing the dbase file and Open it

– Click “Test Connection” and then “OK”
• Click “Next” and respond “yes” to question about copying files to

your project folder
• Click “Next” and the database objects in the DB will appear

• From Configuration Page called “Choose
Your Database Objects”:
– Expand the “Tables” node to view its tables

and the fields in the tables
– Expand the node and check the fields you want

to access
• (e.g., ISBN, Titles, Author)

– Click on “Finish”

Using the Data Source in the App
• Menu: “Data” | “Show Data Sources”

– Brings up a “Data Sources” Window
• Add Data-Bound Controls to the form

– Expand the Books node in Data Sources
– Drag each field node over to the form

• Visual Studio will create data-bound text boxes with appropriate labels on
the form

– Other data-bound controls could be chosen
» Click down-arrow next to the data field in Data Sources window

• Also creates a Binding Navigator tool bar underneath the form’s title bar
– Permits adding, deleting, saving, and navigation through database

• Also in area below the form a DataSet, a BindingSource, and a
TableAdapter objects are created

– TableAdapter is a single-table version of a DataAdapter

• Run the application
– Lots of new toolbar functionality without writing any code!!

Adding a DataGridView Control to Form

• Displays all the records in the Database table in a
spreadsheet-like format

• Very easy to use VS Designer to add the control:
– Just drag the desired table from the Data Sources

window
– Resize resulting DataGridView control on the form
– Run the program

• DataGridView control is already connected to the database
• If you click on any row in the grid the data in the other

controls change to match the selected row
• No code needs to be added – Visual Studio generated all

the needed code

Using ADO.NET with Web Forms
• Because of client/server/client round trips and stateless nature of

web pages, all controls must be explicitly bound
• Set DataBindings in form’s properties window or in code
• Simple Data Binding

– Connects one control to one data element
• Use to display a field value in controls that display one item (e.g., listbox)

– Do at design time using control’s property window, or in code:
textBox1.DataBindings.Add(“Text”, dsBooks1, “Books.Author”);

• Also, in a web app with a listbox, each time user makes a selection
from the list, a postback occurs
– After postback, the Web page redisplays and the Page_Load event occurs

• Logic in Page_Load event handler must be modified or the dataset for the
list elements will be recreated

• Use the fact that a page’s IsPostBack property is set to false the first time
a page displays and true every time after that

• For list controls AutoPostBack property must be set to true for
SelectedIndexChanged event handler to execute on the server

Some Code for Web Forms

private void Page_Load(object sender, System.EventArgs e)
{

if (!IsPostBack)
{

daTitles.Fill(dsTitles1);
titlesDropDownList.DataBind();

}
}

Making ADO.NET Projects Portable
• When moving DB projects from one computer to

another, connection information must be changed
• Database must be available on new computer

– Or ConnectionString must specify where it is
• Easiest to put database file in the project’s bin

directory and change the DataSource in the
ConnectionString in the Form_Load event handler:
Private void Form1_LOAD(object sender, System.EventArgs e)
{

conRnR.ConnectionString =
“Provider=Microsoft.Jet.OLEDB.4.0;DataSource=rnrBookd.mdb”;

daTitles.Fill(dsTitles1);
}

• DataSource can be another machine/file

