Using ActiveX Controls

Microsoft ActiveX Controls

- Reusable software components that can be

plugged into many different programs

Allows you to design & use custom controls

Like concept of hardware components

Expansion of OLE technology

— Enables combining documents created with
different apps into a single doc

— ActiveX allows it to work in a distributed
environment (e.g., the internet)

COM Technology

= Microsoft’'s Component Object Model

=« Interface and interaction model

= Defines how to construct ActiveX objects &
how interfaces are designed

= A COM “Interface”:
— Like a function call into an ActiveX object
— COM specifies how function must be built & called
— And how to pass data & events to/from controls
— Not specific to any language

« ActiveX controls can be used with many
different tools (n Gy Access FoxPro, \/R)

Automation

« Key technology in ActiveX

« Enables an app embedded in another app
to activate itself & control its part of the
user interface

— Does its thing and shuts itself down when user
moves on

— e.g., an Excel spreadsheet in a Word document

Servers and Containers
=« Embedding an ActiveX object in another app
= Embedded object is implemented as an
ActiveX“server”
= Containing object called a “container”
« A server can also be a container
- (e.g., Internet Explorer)
=« ActiveX control:a special case of ActiveX server
— ActiveX controls cannot run on their own
— Stored in an .ocx file

& In MFC any class derived from CWnd can be an
ActiveX control container

Interaction between control &

container
= Occur through three IDispatch Interfaces
— Events
— Properties
— Methods

IDispatch Interfaces

TR sgeateh
{events
—0
Atived ArtiveX
ConCainer oA ekt Comlrol
{Propriies)
IVispadeh
[T B
e
Tt

ActiveX Control Properties
« Attributes of controls visible to and usually
modifiable by container
— Stock: e.g., background color, default font
— Custom: related to functionality of control
= Provided by container but maintained by
control

= Must also specify property aspects
— name shown to container

— internal variable used in code

ActiveX Control Events

the container application
— Usually as a result of user action

=« Control sends event to container when
something occurs inside control

— e.g., mouse clicks, pressed buttons, expiring
timers

« Triggering of events done in the IDispatch
interface in the container

& Calls a handler function in the container
« Two types: Stock & Custom

« Notification messages sent from the control to

ActiveX Control Methods

« Functions exposed by control and called by
container

=« Use Visual Studio Wizards to add methods to
a control

— Specify name, return type, & parameters

Adding an ActiveX Control to a
Dialog Box
& Right click on dialog box
— Click “Insert ActiveX control”
— “Insert ActiveX Control” dialog box appears

« Scroll through ActiveX controls registered on
system

— Select the one you want

= Click “OK” and control will be added

Configuring an ActiveX Control

= Just as with other controls, use Class Wizard
(Properties Box) to add message-handling

functions and to associate with an MFC
objects

= Add member variables just as though it were
a standard control

« Most controls will have many properties
exposed as variables and many methods

(member functions)

An Example: Using the Microsoft
Hierarchical Flex Grid Control

& Grid Control
— Like a mini spread sheet
— Divided into rows and columns --> cells
— Tracks active cells, size & contents of each cell
— Data in a cell obtained through a member function call
— You can:
« Retrieve current row, cell, column information

« Set attributes (font, size, contents) for current cell
* Retrieve attributes of current cell

The GridCtrl App

A GrdTin

4

Preparing the App

= New MFC AppWizard (exe) application
— Choose Dialog-based application type

— In Advanced Features, make sure ActiveX
Controls check box is selected

— Name it GridCtrl

Adding the Microsoft ActiveX

FlexGrid Control

= Right click on App’s dialog box
— Click “Insert ActiveX control”
— “Insert ActiveX Control” dialog box appears

= Scroll through ActiveX controls registered on
system
— Select “Microsoft Flex Grid Control 6.0”

= Click “OK” and control will be added to app’s
dialog box

=« Expand size of control

& Click on grid control to bring up its properties
box, change following properties:
— ID: IDC_GRID
— Rows: 5, Fixed Rows: 1
— Cols: 5, Fixed Cols: 1
— ScrollBars: 0-None
= Add an edit control
— ID: IDC_EDIT

= Add a “Calculate” button
- ID: IDC_CALC

= Add and attach member control variables to edit
and grid controls in the CGridCtrIDIg class:

Resource ID Category Type Variable name

IDC_EDIT Control CEdit m_edit
IDC_GRID Control CMSFlexGrid m_grid

=~ Add protected member variables to
CGridCtriDIg class:

— BOOL m_bEditing
—int m_nRow
—int m_nCol

& Add initialization code to
CGridCtrIDIg::OnlInitDialog
— See listing
« Use Class Wizard to add a “Button Click”
event handler for the Grid control
— Class: CGridCtrIDIg
— Lightning bolt (Events)
— Object ID: IDC_GRID
— Message: Click
— Handler Function: default ClickGrid()
« Add code to ClickGrid()
— See listing

Recomputing the Totals

= Add a click event handler to the “Calculate”
button
— Object ID: IDC_CALC
— Class: CGridCtrIDIg
— Message: BN_CLICKED
— Function: default OnCalc()
« Add code to OnBnClickedCalc()
— See listing
= Build the Application

