
1

ASP.NET Web Services
and Web Clients

Web Services Overview
• The World Wide Web has opened up the

possibility of large-scale distributed computing
• Web Applications only allow interaction between a

client browser and web server hosting a web page
• Web Services create web-based applications that

interact with other apps on other computers
– A web application is intended for viewing by a person

using a browser
– Web Service: a program with which other programs can

interact without any user interface
– Web Client: a program that consumes (uses, interacts

with) a web service
• Could be a Web Form, a Windows Form, or even a command

line application
• The web client usually has some sort of user interface

Some Example of Web Services
• There are lots of them out there
• http://www.xmethods.net has quite a few
• Microsoft’s TerraService

– Provides a programmatic interface to a massive
database of geographic data

– http://terraservice.net
• When you build a web client with Visual Studio,

the “Add Web Reference” Browser tool can be
used to find online services
– UDDI (Universal Description Discovery Integration)

Directories

ASP.NET Web Services
• Before ASP.NET, distributed computing was

highly dependent on OS and language
• ASP.NET web services and clients are entirely

independent of either
– Could have a web service written in VB running on

Windows 2000 consumed by a web client written in
C++ running on a UNIX box

• What is needed?
– That both client and server use industry standard

protocols
• HTTP – protocol used by the web
• SOAP – Simple Object Access Protocol: a lightweight

object-oriented communication protocol based on XML
• XML – the language of SOAP

How Web Services Work
• A web service is simply a function or method

call over the internet
– Clients call exposed methods of the web service

using standard internet protocols
– Both client and server must be connected to the

internet
– Data format used to communicate is usually SOAP

• Self-describing text -based XML documents

– Systems at both ends of the connection are loosely
coupled (OS, language, object model, etc. are not
important)

• Only requirement is that both server & client be able to
send & receive messages that conform to the proper
protocol standard

Sequence of Events
• Client makes a call to the web service

– It appears as though it’s talking directly to the web
service over the internet

– But the actual call is being made to a “proxy class” local
to the client

• Proxy is a substitute or stand-in for the actual code to be called
• An object that provides a local representation of a remote

service
• It’s really a DLL that handles all the complexities of sending

requests over internet and getting responses back
• “ marshalls” the call to exposed methods across the internet
• Proxy class object must be created by the client app

– Done by Visual Studio when you create a “web reference”
– Actually it’s done by the Wsdl.exe (Web Services Description

Language) utility program

2

Web Service/Client Interaction Creating a Web Service w/ Visual Studio
• Easy with Visual Studio (IIS must be installed)

– “File” | “New” | “Project”
• “Project Type”: C#
• “Template”: ASP.NET Web Service
• “Location”: http://localhost/WebServiceName

– Project directory will be put in the home (Inetpub/wwwroot)
directory of your IIS server

– Creates .asmx and .asmx.cs files which contain
skeleton code for the web service

– .asmx file will contain the implementation of the web
service

• Note the “WEB SERVICE EXAMPLE HelloWorld()”
method that has been commented out

• Just add the methods you want the service to expose at that
place in the .asmx .cs file

Example Web Service: ConvertTemperature
• Has temperature conversion methods ctf() and ftc():

[WebMethod (Description="Converts a Centigrade temperature to Fahrenheit")]
public decimal ctf(decimal ctemp)
{ return ((9M/5M)* ctemp + 32M); }
[WebMethod (Description="Converts a Fahrenheit temperature to Centigrade")]
public decimal ftc(decimal ftemp)
{ return (5M/9M)*(ftemp - 32M); }

– Note use of [WebMethod] attribute
• Specifies that these methods are available to be used by web

clients
• Description will appear when service is tested in a browser

• Added to top of file: a [WebService] attribute
[WebService (Name="ConvertTemp ", Description = "Performs Centigrade Fahrenheit

temperature conversions over the web")]

– “Name” and “Description” will appear in the HTML page
generated when user calls up the service in a browser

• “Name” determines name of Proxy class created by client

Running and Testing the Web Service
• Run the Web Service from Visual Studio just as for any

other application
– “Debug” | “Start without debugging”
– Brings up the following web page in your browser:

– Clicking on ftc or ctf allows you to test the service’s methods

Creating a Web Client for the Service
• Can use Visual Studio to build a Windows Form or Web

Form application to use the Web Service
• Example “ ConvertTempClient”

– A Windows Form app

– User enters Fahrenheit or Centigrade temperature in a textbox
– Presses appropriate button
– Other textbox will contain the converted temperature

Using VS to Create a Web Client
• Start a Windows Application project as usual
• Drag the controls over to the form and rename them as usual
• Add a Web Reference:

– In Solution Explorer, right click on references
– Click on “Add Web Reference”

• “Add Reference Browser” page comes up
• In Visual Studio 2003, click on “Browse to Web services on the local

machine” and navigate to the web service
• In Visual Studio 2002 you must type in the URL

– http://localhost/ConvertTemperature/Service1.asmx
» If the service were on some other server, you’d specify its URL

• Click “Add Reference” button
– A new “Web References” folder also was created
– Also notice in Class View that under {} localhost, a ConvertTemp

class has been added
• This is the proxy and contains the local representations of the ftc and ctf

methods

3

Web Client Creation: Coding
• Double click the Convert to Centigrade button and add the

following button click event handler code
localhost.ConvertTemp obj = new localhost.ConvertTemp ();
string fstr = textBoxFahr.Text;
decimal ftemp = decimal.Parse(fstr);
decimal ctemp = obj.ftc(ftemp);
textBoxCent.Text = ctemp.ToString ();

• Double click the Convert to Fahrenheit button and add the
following button click event handler code
localhost.ConvertTemp obj = new localhost.ConvertTemp ();
string cstr = textBoxCent.Text;
decimal ctemp = decimal.Parse(cstr);
decimal ftemp = obj.ctf(ctemp);
textBoxFahr.Text = ftemp.ToString();

• When you run the program, it will use the web service to
perform the temperature conversions

Existing Web Services

• www.xmethods.net lists many of them
• Example: Zip Code Distance calculator from

imacination.com web services
– User provides zip codes of two cities and the

service computes the distance between the cities
– Computes other things as well

• We can use these or any other web services
in our own Applications

A Zip Code Distance Client
• Creating a Web Client to use the “Zip Code

Distance” web service from imacination.com
– Use Visual Studio to create a new C# Windows

Application (ZipDistance)
– Add a web reference:

• In Solution Explorer right click on ZipDistance and choose
“Add Web Reference”

• Type http://webservices.imacination.com/distance/ in the
Address Field

• Scroll down to the WSDL link and click on it
– The wsdl file will appear in the left hand window
– This is the “contract” describing the methods the server provides
– It’s generated automatically by Visual Studio Designer

• Click the “Add Reference” button
– This adds a new class to the project:

» ZipDistance .com.imacination.WebServices.DistanceService

ZipDistance User interface

• Drag over the following from the tool box:
– Two text boxes (textBoxZip1, textBoxZip2)
– Two label controls to label the text boxes

• “First City Zip code”
• “Second City Zip Code”

– A label control to hold the computed distance
(labelDistance)

– A “Calculate Distance” button (buttonCalc)

• Add a button click event handler to the button

– Add code to the button’s click event handler to:
• retrieve the the zip codes entered into the two

textboxes by the user
• call the web service’s GetDistance(string, string)

method
• set the labelDistance label control’s Text property to

the result (converted to a string):
private void buttonTemp_Click(object sender, System.EventArgse)
{

TempZipcodeClient.net.xmethods.www.TemperatureService obj =
new TempZipcodeClient.net.xmethods.www.TemperatureService();

labelTemp.Text = "Temperature is " +
obj .getTemp(textBoxZip.Text).ToString();

}

– When you run it, you’re using the remote web service

Coding the ZipDistance application

