
1

ASP.NET Web Services
and Web Clients

Web Services Overview
• The World Wide Web has opened up the

possibility of large-scale distributed computing
• Web Applications only allow interaction between a

client browser and web server hosting a web page
• Web Services create web-based apps that interact

with other apps running on other computers
– A Web Application is intended for viewing by a person

using a browser
– Web Service: a program with which any other program

can interact. Web Server program has no user interface
– Web Client: a program that consumes (uses, interacts

with) a web service
• Could be a Web Form, a Windows Form, or even a command

line application
• The web client usually has some sort of user interface

2

Some Example of Web Services
• There are lots of them out there
• http://seekda.com has a great Web Services

search engine
• Microsoft’s TerraService

– Provides a programmatic interface to a massive
database of geographic data

• http://terraservice.net

• When you build a web client with Visual Studio,
the “Add Web Reference” Browser tool can be
used to find more online services
– UDDI (Universal Description Discovery Integration)

Directories

ASP.NET Web Services
• Before ASP.NET, distributed computing was

highly dependent on OS and language
• ASP.NET web services and clients are entirely

independent of either
– Could have a web service written in VB running on

Windows 2000 consumed by a web client written in
C++ running on a UNIX box

• What is needed?
– Both client and server must use industry standard

protocols
• SOAP – Simple Object Access Protocol: a lightweight

object-oriented communication protocol based on XML
• XML – the language of SOAP

– An extension of HTML

3

How Web Services Work
• A web service contains one or more functions or

methods called over the internet
– Clients call exposed methods of the web service

using standard internet protocols
– Both client and server must be connected to the

internet
– Methods are invoked by HTTP requests
– Data format used for requests is usually SOAP

• Self-describing text-based XML documents
• Only requirement is that both server & client be able to

send & receive messages that conform to the proper
protocol standard

Sequence of Events
• Client makes a call to the web service method

– It appears as though it’s talking directly to the web
service over the internet

– But the actual call is being made to a “proxy class” local
to the client

• Proxy is a substitute or stand- in for the actual code to be called
• An object that provides a local representation of a remote

service
• It’s really a DLL that handles all the complexities of encoding

& sending requests over the internet and getting responses back
• It “marshalls” the call to exposed methods across the internet
• Proxy class object must be created by the client app

– Done by Visual Studio when you create a “web reference”
– Actually it’s done by the Wsdl.exe (Web Services Description

Language) utility program

4

Web Service/Client Interaction

Writing Web Services
• Hand Code

– Difficult to parse HTTP/SOAP/XML requests and
generate HTTP/SOAP/XML responses

• Use the .NET Framework
– Easy: ASP.NET does most of the work for you
– Managed apps ? fewer runtime errors
– Store code in a .asmx file
– .asmx file begins with <@ WebService…> directive

• Must identify a Class encapsulating the web service
• Class definition has a [WebService…] attribute to assign a

name and description of the service
• Each class method has a [WebMethod…] attribute that

describes the functionality of the method
– Can be done manually or with VS Designer

5

Manual Adding Web Service
<%@ WebService Language="C#" Class="AddService" %>
using System;
using System.Web.Services;

[WebService (Name="Add Service", Description="Adds two integers over Web")]
class AddService
{

[WebMethod (Description="Computes sum of two integers")]
public int Add(int a, int b)
{

return a+b;
}

}

• Store this with a .asmx extension in the default IIS
directory (c:\inetpub\wwwroot)
– e.g., AddService.asmx

Testing the Web Service
• 1. Just call it up in a browser

– http://localhost/AddService.asmx
– ASP.NET responds to the HTTP request by generating an

HTML page for the browser
• Name and description of the service appear
• Also the names of methods provided by the server that, when clic ked,

allow the user to test them
• Also a link to a WSDL (Web Services Description Language) XML

document describing in detail the “service contract”
– This is an HTML document with ?wsdl at the end of its URL

• 2. Or write a .NET client program to use the service
– e.g., AddClient – a Windows Form application
– Must add a Web Reference to the AddService.asmx web

service
• Proxy class is generated ASP.NET

– And invoke its Add(…) method after instantiating the proxy
class object

6

AddClient Code
localhost.AddService myaddservice = new localhost.AddService();

int z = myaddservice.Add(x, y);

Creating a Web Service w/ Visual Studio
• Using IIS (if not use the Visual Web Developer)

– “File” | “New” | “Web Site” | “ASP.NET Web Service”
• “Project Type”: C#
• “Location”: HTTP, http://localhost/WebserviceName

– Project directory will be put in the home (Inetpub\wwwroot) directory of
your IIS server

– Creates Service.asmx file
• Executed by IIS

– Gives access to the web service
– Specifies the implementation class of the web service

– And Service.cs file
• contains skeleton C# code for the web service
• Note the “WEB SERVICE EXAMPLE HelloWorld()”

– Comment it out or remove it
• Just add the methods you want the service to expose at that place in the

Service.cs file

– Change its name (Service) everywhere it appears:
• class name, constructor, also twice in .asmx file
• Also rename the two files

7

Example Web Service: ConvertTemperature
• Has temperature conversion methods ctf() and ftc():

[WebMethod (Description="Converts a Centigrade temperature to Fahrenheit")]
public float ctf(float ctemp)
{ return (1.8F * ctemp + 32.0F); }
[WebMethod (Description="Converts a Fahrenheit temperature to Centigrade")]
public float ftc(float ftemp)
{ return ((5F/9F)*(ftemp - 32.0F)); }

– Note use of [WebMethod] attribute
• Specifies that these methods are available to be used by web clients
• Description will appear if service is tested in a browser

• Modify top line of file: the [WebService] attribute
[WebService (Namespace = "http://tempuri.org/", Name="ConvTemp2008", Description =

"Performs Centigrade Fahrenheit temperature conversions over the web")]
• tempuri: Temporary Uniform Resource Identifier (name)
• Default namespace used by VS to distinguish this service from others on web

– “Name” and “Description” will appear in the HTML page generated
when user calls up the service in a browser

• “Name” determines name of Proxy class created by client

Running and Testing the Web Service
• Run the Web Service from Visual Studio just as for any

other application
– “Debug” | “Start without debugging”
– Brings up the following web page in your browser:

– Clicking on ftc or ctf allows you to test the service’s methods

8

Creating a Web Client for the Service
• Can use Visual Studio to build a Windows Form or Web

Form application to use the Web Service
• Example “ConvertTempClient”

– A Windows Form app

– User enters Fahrenheit or Centigrade temperature in a textbox
– Presses appropriate button
– Other textbox will contain the converted temperature

Using Visual Studio to Create a Web Client that
consumes a Web Service on the local computer

• Start a Windows Application project as usual
• Drag the controls over to the form and rename them as usual
• Add a Web Reference:

– In Solution Explorer, right click on References
– Click on “Add Web Reference”, or “Project | Add Web Reference”

• “Add Reference Browser” page comes up
• Select “Web Services on the Local Machine” and choose the ConvertTemp

service
• Click “Add Reference” button

– A new “Web References” folder also was created
• Contains a node name after the domain name where the Web service is

– Also notice in Class View that under {} localhost, a ConvertTemp
class has been added

• This is the proxy class and contains the local representations of the ftc and
ctf methods

9

Web Client Creation: Coding
• Double click the Convert Fahrenheit to Centigrade button

and add the following button click event handler code
localhost.ConvTemp2008 obj = new localhost.ConvTemp2008();
string fstr = textBoxFahr.Text;
float ftemp = float.Parse(fstr);
float ctemp = obj.ftc(ftemp);
textBoxCent.Text = ctemp.ToString();

• Double click the Convert Centigrade to Fahrenheit button
and add the following button click event handler code
localhost.ConvTemp2008 obj = new localhost.ConvTemp2008();
string cstr = textBoxCent.Text;
float ctemp = float.Parse(cstr);
float ftemp = obj.ctf(ctemp);
textBoxFahr.Text = ftemp.ToString();

• When you run the program, it will use the web service to
perform the temperature conversions

Existing Web Services

• Example: Zip Code Distance calculator
– http://teachatechie.com/GJTTWebServices/ZipCode.asmx

– Its GetDistance() function takes the zip codes of
two cities and computes the distance between
them

– There are many other functions provided by this
web service

• We can use this or any other Web Services in our
own Applications

10

A Zip Code Distance Client
• Creating a Web Client to use the “ZipCode” web

service from teachatechie.com
– Use Visual Studio to create a new C# Windows

Application (e.g., ZipDistance2008)
– Add a web reference:

• In Solution Explorer right click on References and choose
“Add Web Reference”

– Or “Project” | “Add Web Reference”

• http://teachatechie.com/GJTTWebServices/ZipCode.asmx
in the URL Field

• Scroll down to GetDistance function and click on it
– Gives a dialog box in which you can test the function
– Also gives SOAP request and response code containing data types

• Click the “Add Reference” button
– This adds new classes to the project (proxy classes):

» ZipDistance2008.com.teachatechie…

ZipDistance2008 User interface

• Drag over the following from the tool box:
– Two text boxes (textBoxZip1, textBoxZip2)
– Two label controls to label the text boxes

• “First City Zip code”
• “Second City Zip Code”

– A label control to hold the computed distance
(labelDistance)

– A “Calculate Distance” button (buttonCalc)

• Add a button click event handler to the button

11

– Add code to the button’s click event handler to:
• retrieve the the zip codes entered by the user into the two

textboxes
• Instantiate a ZipCode web service object
• call the ZipCode object’s GetDistance(string, string) method
• set the labelDistance label control’s Text property to the result

(converted to a string):
private void buttonCalc_Click(object sender, System. EventArgs e)
{

ZipDistance2008.com.teachatechie.ZipCode zd = new
ZipDistance2008.com.teachatechie.ZipCode();

string z1 = textBoxZip1.Text; string z2 = textBoxZip2.Text;
decimal dist = zd.GetDistance(z1, z2);
labelDistance.Text = dist.ToString();

}

– When you run it, you’re using the remote web service

Coding the ZipDistance Application

