ASP.NET Web Services
and Web Clients

Web Services Overview
* The World Wide Web has opened up the

possibility of large-scale distributed computing

» Web Applicationsonly allow interaction between a
client browser and web server hosting a web page

» Web Services create web-based apps that interact
with other apps running on other computers
— A Web Application isintended for viewing by a person
using a browser

— Web Service: a program with which any other program
can interact. Web Server program has no user interface

— Web Client: a program that consumes (uses, interacts
with) aweb service

* Could be aWeb Form, a Windows Form, or even a command
line application
* The web client usually has some sort of user interface

Some Example of Web Services

e There arelots of them out there

* http://seekda.com has a great Web Services
search engine
» Microsoft’'s TerraService

— Provides a programmatic interface to amassive
database of geographic data

* http://terraservice.net
* When you build aweb client with Visual Studio,
the “ Add Web Reference” Browser tool can be
used to find more online services

— UDDI (Universal Description Discovery Integration)
Directories

ASP.NET Web Services
» Before ASP.NET, distributed computing was
highly dependent on OS and language

» ASP.NET web services and clients are entirely
independent of either
— Could have aweb service written in VB running on
Windows 2000 consumed by aweb client written in
C++ running on a UNIX box

 What is needed?

— Both client and server must use industry standard
protocols
» SOAP — Simple Object Access Protocol: a lightweight
object-oriented communication protocol based on XML

* XML —the language of SOAP
— Anextension of HTML

How Web Services Work

* A web service contains one or more functions or

methods called over the internet

— Clients call exposed methods of the web service
using standard internet protocols

— Both client and server must be connected to the
internet

— Methods are invoked by HTTP requests

— Data format used for requestsis usually SOAP

* Self-describing text-based XML documents

 Only requirement is that both server & client be ableto
send & receive messages that conform to the proper
protocol standard

Seguence of Events

* Client makes acall to the web service method

— It appears as though it’ s talking directly to the web
service over the internet

— But the actua call is being made to a“proxy class’ local
to the client
 Proxy is asubstitute or stand-in for the actual code to be called
» An object that provides alocal representation of aremote
service

e It'sreally aDLL that handles all the complexities of encoding
& sending requests over the internet and getting responses back

* It “marshalls” the call to exposed methods across the internet
* Proxy class object must be created by the client app

— Done by Visual Studio when you create a“web reference”

— Actually it’s done by the Wsdl.exe (Web Services Description
Language) utility program

Web Service/Client I nteraction

Client Server

&=
Object
|1

Server — ChannEI
Proxy 1

> — Server

Channel e

=

|
1
|
|
|
|
Client !
1
1
|
|
|
|
|

Internet

Writing Web Services
« Hand Code

— Difficult to parse HTTP/SOAP/ XML requests and
generate HTTP/ISOAP/ XML responses

o Usethe.NET Framework
— Easy: ASP.NET does most of the work for you
— Managed apps = fewer runtime errors
— Store code in a.asmx file
— .aamx file begins with <@ WebService...> directive

* Must identify a Class encapsulating the web service

* Class definition has a [WebService...] attribute to assign a
name and description of the service

* Each class method has a [WebMethod...] attribute that
describes the functionality of the method

— Can be done manually or with VS Designer

Manual Adding Web Service

<%@ WebService Language="C#" Class=" AddService" %>
using System;
using System.Web.Services;

[WebService (Name="Add Service", Description="Adds two integers over Web")]
class AddService
{

[WebM ethod (Description="Computes sum of two integers")]
public int Add(int a, int b)
{

return a+b;
}
}

» Store thiswith a.asmx extension in the default [1S
directory (c\inetpub\wwwroot)
— eg., AddService.asmx

Testing the Web Service

e 1. Just cal it up in abrowser
— http://localhost/ AddService.asmx
— ASP.NET responds to the HTTP request by generating an
HTML page for the browser
» Name and description of the service appear
* Also the names of methods provided by the server that, when clicked,
allow the user to test them

» Alsoalink toaWSDL (Web Services Description Language) XML

document describing in detail the “service contract”
— Thisisan HTML document with 2wsdl at the end of its URL

» 2. Or writea.NET client program to use the service
— e.g., AddClient — a Windows Form application

— Must add a Web Reference to the AddService.asmx web
service
» Proxy classisgenerated ASP.NET
— And invoke its Add(...) method after instantiating the proxy
class object

AddClient Code

localhost.AddService myaddservice = new |localhost.AddService();
int z= myaddservice Add(x, y);

Creating a Wen Servicew/ Visual Studio
e Using IS (if not use the Visual Web Devel oper)

— “File” | “New” | “Web Site” | “ASP.NET Web Service”
e “Project Type': C#
« “Location”: HTTP, http://local host/WebserviceName

— Project directory will be put in the home (Inetpub\wwwroot) directory of
your 1S server

— Creates Service.asmx file
e Executed by IIS
— Gives access to the web service
— Specifies the implementation class of the web service

— And Service.csfile
» contains skeleton C# code for the web service

* Notethe “WEB SERVICE EXAMPLE HelloWworld()”
— Comment it out or remove it

« Just add the methods you want the service to expose at that placein the
Service.cs file
— Change its name (Service) everywhere it appears:
« class name, constructor, also twice in .asmx file
»_Alsorenamethetwofiles

Example Web Service: ConvertTemperature

» Has temperature conversion methods ctf() and ftc():
[WebMethod (Description="Converts a Centigrade temperature to Fahrenheit")]
public float ctf(float ctemp)

{ return (1.8F* ctemp + 32.0F); }
[WebMethod (Description="Converts a Fahrenheit temperature to Centigrade")]
public float ftc(float ftemp)
{ return ((5F/9F)* (ftemp - 32.0F)); }
— Note use of [WebMethod] attribute
» Specifiesthat these methods are available to be used by web clients
* Description will appear if serviceistested in a browser

» Modify top line of file: the [WebService attribute

[WebService (Namespace = "http://tempuri.org/", Name="ConvTemp2008", Description =
"Performs Centigrade Fahrenheit temperature conversions over the web")]

* tempuri: Temporary Uniform Resource Identifier (name)
 Default namespace used by V S to distinguish this service from others on web

— “Name” and “Description” will appear in the HTML page generated
when user calls up the service in a browser
+ “Name” determines name of Praxv class created bv client

Running and Testing the Web Service
* Run the Web Service from Visua Studio just asfor any
other application
— “Debug” | “Start without debugging”
— Brings up the following web page in your browser:

) ConvertTemp Web Service - Microsoft Internet Explorer = —lof x|
Fle Edit View Favorites Tools Help | o
ek i) - Iﬂ IEL‘ 4 |y Search ¢ Favorites wMed\a 5{3| " @ @

Address |.§;_'] http: fflocalhost/ConvertTemperature /Service 1,asmx j ﬂ Go

Links (=) TOSHIBA Access @] Customize Links (@] Free Hotmal P RealPlayer &) Windows] Windows Media

ConvertTemp)

Performs Centigrade Fahrenheit temperature conversions over the web

The following operations are supperted. For a formal definition, please review the Service De ption.

. fic
Converts a Fahrenheit temperature to Centigrade
Converts a Centigrade temperature to Fahrenheit
-
4] | »

& Dane [[NJiocalintranet Vo
— Clicking on ftc or ctf allows you to test the service' s methods

Creating aWeb Client for the Service
» Can use Visua Studio to build a Windows Form or Web
Form application to use the Web Service
» Example“ ConvertTempClient”
— A Windows Form app

ol
Fahrenhett Temperature Certigrade Temperature
212 I'I 0o

Convert to Certigrade I Convert to Fahrenheit I

— User enters Fahrenheit or Centigrade temperature in a textbox
— Presses appropriate button

— Other textbox will contain the converted temperature

Using Visual Studio to Create a Web Client that
consumes a Web Service on thelocal computer
o Start a Windows Application project as usual

 Drag the controls over to the form and rename them as usua
» Add aWeb Reference

— In Solution Explorer, right click on References
— Click on “Add Web Reference”, or “Project | Add Web Reference”
« “Add Reference Browser’ page comes up

» Select “Web Services on the Local Machine” and choose the ConvertTemp
service

* Click “Add Reference’ button
— A new “Web References” folder also was created
» Contains a node name after the domain name where the Web serviceis

— Also notice in Class View that under {} localhost, a ConvertTemp
class has been added

» Thisisthe proxy class and contains the local representations of the ftc and
ctf methods

Web Client Creation: Coding

* Double click the Convert Fahrenheit to Centigrade button

and add the following button click event handler code
localhost.ConvTemp2008 obj = new localhost.ConvTemp2008();
string fstr = textBoxFahr. Text;
float ftemp = float.Parse(fstr);
float ctemp = obj.ftce(ftemp);
textBoxCent.Text = ctemp.ToString();

» Double click the Convert Centigrade to Fahrenheit button

and add the following button click event handler code
localhost.ConvTemp2008 obj = new localhost.ConvTemp2008();
string cstr = textBoxCent. Text;
float ctemp = float.Parse(cstr);
float ftemp = obj.ctf(ctemp);
textBoxFahr.Text = ftemp.ToString();

» When you run the program, it will use the web service to
perform the temperature conversions

Existing Web Services

« Example: Zip Code Distance calculator
— http://teachatechie.com/GJIT TWebServiced ZipCode.asmx
— Its GetDistance() function takes the zip codes of
two cities and computes the distance between
them

— There are many other functions provided by this
web service

» We can use this or any other Web Servicesin our
own Applications

A Zip Code Distance Client

» Creating aWeb Client to use the “ZipCode” web
service from teachatechie.com

— Use Visua Studio to create a new C# Windows
Application (e.g., ZipDistance2008)
— Add aweb reference:
* In Solution Explorer right click on References and choose

“Add Web Reference”
— Or“Project” |“Add Web Reference”
* http://teachatechie.com/GJT TWebServices ZipCode.asmx
in the URL Fed
« Scroll down to GetDistance function and click on it
— Givesadiaog box in which you can test the function
— Also gives SOAP request and response code containing data types
* Click the “Add Reference” button
— Thisadds new classes to the project (proxy classes):
» ZipDistance2008.com.teachatechie...

ZipDistance2008 User interface

» Drag over the following from the tool box:
— Two text boxes (textBoxZipl, textBoxZip2)

— Two label controlsto label the text boxes
* “First City Zip code”
* “Second City Zip Code”

— A labd control to hold the computed distance
(Iabel Distance)

— A “Cadculate Distance’ button (buttonCalc)
» Add abutton click event handler to the button

Coding the ZipDistance Application

— Add code to the button s click event handler to:

* retrieve the the zip codes entered by the user into the two
textboxes

* Instantiate a ZipCode web service object

» call the ZipCode object’s GetDistance(string, string) method

» et the label Distance label control’s Text property to the result
(converted to a string):

private void buttonCalc_Click(object sender, System. EventArgs €)

{
ZipDistance2008.com.teachatechie.ZipCode zd = new
ZipDistance2008.com.teachatechie.ZipCode();

string z1 = textBoxZipl.Text; string z2 = textBoxZip2.Text;
decimal dist = zd.GetDistance(z1, z2);
label Distance.Text = dist. ToString();

}
— When you run it, you' re using the remote web service

11

