
1

The Internet:
Networking with

Stream-based Sockets

The Internet
• A Global Network of Networks
• ARPANet : SRI, Utah, UCLA, UCSB, (1969)

– Defense Dept. Advanced Research Projects Agency (DARPA)
– Stanford Research Institute (Doug Engelbart)
– Designed to survive bomb attacks
– Distributed control, Expandable

• Ethernet
– Global standard for interconnecting computers
– Xerox PARC (Early 70s)
– Client/Server architecture

• Exponential Growth
– Tens of Millions of Computers
– Hundreds of millions of Users

The Internet

• A Packet Switched Network
– Like Postal System
– Messages broken up into packets (like

envelopes)
--
| Error Detect | Data | Header |
| (Check Sum) | | (Addresses) |

Computer Node Addresses:

• IP (Internet Protocol)
– 32 bit numeric address in four 8-bit fields:
– 128.226.6.4 (bingsuns IP Address)

| |
network computer
(city/state) (street/number)

• TCP (Transmission Control Protocol):
• Send Site: Breaks message into packets
• Receive Site: Collects & Reassembles

packets in proper order

“Best” routing is chosen using
Routers

2 4

1
3

7
5

6

Domain Names

• Synonyms for IP Addresses
• bingsuns.binghamton.edu

| |
individual largest
machine domain

– Synonym for 128.226.6.4
• Internet Domain Name Server (DNS)

software maps domain names to IP
addresses

2

Common High-Level Domain
Names

• com: commercial
• edu: educational
• gov: government
• mil: military
• org: other organization
• net: network resources
• --: country name

– e.g., ca = Canada

The .NET Dns Class
• In System.Net namespace
• Dns: a static class that retrieves information

about a specific host from the DNS
– Info returned in an instance of the IPHostEntry class
– If the specified host has more than one entry in the

DNS database, IPHostEntry contains multiple IP
addresses and aliases

– Dns.GetHostByName(string hostName) method
• Returns an IPHostEntry object containing host information

for the address specified in hostName
• That object’s AddressList property can be used to set up an

array of IPaddresses that corresponds to the hostnames

• See GetIPAddress example program

Networking Software

• Client/Server Model
– Client Program -- seeks a service from remote

computer
– Server Program -- provides a service to a client

running on a remote computer
– Computers usually connected over a network
– Examples

• Print Server
• File Server
• Information Server

Client/Server Model

Information Servers
• Program handles requests for information
• Some examples

– e-mail: electronic mail service
– telnet: remote logon service
– ftp: file transfer service
– gopher: net browsing service (text based)
– archie/veronica: automated net search services
– WAIS: automated file content search service
– Net News: network bulletin board service
– WWW: hypermedia access to internet (Web

page service)

Telnet Client
• A remote logon client
• You need an account on remote machine
• Starting Windows Telnet client (from command

prompt):
telnet
– You’ll be prompted for a domain name or IP address
– Then can look at commands by entering ‘help’

• Another way of starting telnet:
telnet domain -name or IP-address

• You provide logon ID & password
• Starts a session with the remote machine

• Also available in BU’s BUICK Suite

3

FTP--File Transfer Protocol
• Many "anonymous" ftp servers

– provide access to public or password-protected files
– Usually used to transfer files between computers

• Starting Windows ftp client (from DOS
command prompt):
ftp domain -name or IP-address

• Response:
ftp> User:
Ftp> Password:

• Getting help:
ftp> help

• WS_FTP GUI version available in BU’s BUICK
Suite

Network Communication Between
Computers

•Applications running on different computers can
communicate with each other

–Server App: Waits for other apps on other computers to
open a communication connection

–Client App: Attempts to open a connection

•When connection is established, data can be
exchanged
•Either can close the communication
•Connections:

–Two programs running on different computers that are
communicating with each other form a connection

–Data is sent and received along the connection

Socket Stream
• Basic object used to perform network communication
• Used to read/write messages going between applications

– (Like a file stream in file I/O)

• A Socket is a communication "endpoint“
– There's a socket at each end of the connection

• Windows support for sockets: in the Winsock API
– MFC encapsulates this in the CAsyncSocket base class

• Provides complete, event-driven socket communications
• Lowest level support

– Notes at: www.cs.binghamton.edu/~reckert/360/17b_sockets_f03.html

• Higher level support from derived classes like CSocket

• .NET encapsulates socket support in:
– System.Net.Sockets namespace
– With sockets, networking is viewed like file I/O

• Read from or write to a socket connection as easily as to a file

Making a Socket Connection to a Process
Running on Another Computer

– Specify the IP Address of computer where other
application is running
• Identifies a machine

– Also specify the Port the application is listening on
• Identifies the program that should handle the

communication
– e.g. port 80 is reserved for web document transfer

• Like telephone communication: (Dial number and
extension)

• Can be any number from 0 to 65535
– But numbers 0 to 1023 may be used by the operating

system
– So use numbers greater than 1023

Details of Establishing a Simple Server
(Using Socket Streams)

1. Create a TcpListener class object
• TcpListener myListener= new TcpListener(5000);

– Parameter is port number to which to bind the server on the machine
it’s running on

2. Call TcpListener object’s Start() method
• myListener .Start();

– Waits indefinitely (listens on specified port) for connection requests

3. Use TcpListener’s AcceptSocket () to make connection
between server and client when request is received

• Socket myConnection= myListener .AcceptSocket();
– Blocks until connection is attempted and then returns a Socketobject

» Socket object will be null if connection was not made
» Its Connected property will be true after socket is connected

4. Create a NetworkStream associated with the socket
• NetworkStream myNetStream = new NetworkStream(myConnection);

– This will be used to do the reading and writing as in File I/O

Using the Server Socket Stream
Connection

5. Create BinaryReader and BinaryWriter objects for
transferring data across the stream

BinaryWriter myWriter = new BinaryWriter(myNetStream);
BinaryReader myReader = new BinaryReader(myNetStream);

6. Use BinaryReader/BinaryWriter objects to read/write
data

string receiveStr , sendStr;
receiveStr = myReader.ReadString();

– Reads a line of text from the stream (sent by the client)
myWriter .Write(sendStr);

– Writes the string to the stream (to the client)

7. When done, close readers, writers, network stream, and
connection socket

myReader.Close(); myWriter.Close();
myNetStream.Close(); myConnection.Close();

4

Details of Establishing a Simple Client
(Using Socket Streams)

1. Create a TcpClient class object
TcpClient myClient = new TcpClient();

2. Try to connect to a server
• Call object’s Connect(IP address, port) method

– Specify IP address (or domain name) of machine server is running on
and server’s port number in the two parameters

myClient.Connect(“localhost”, 5000);
– “localhost” = “loopback” = 127.0.0.1 means same machine as server
– Will throw an exception if no Server available

3. Get a NetworkStream associated with the TcpClient
NetworkStream myNetStream = myClient.GetStream();
– This will be used to do the reading and writing as in File I/O

Using the Client Socket Stream
Connection

4. Create BinaryReader and BinaryWriter objects for
transferring data across the stream

BinaryWriter myWriter = new BinaryWriter(myNetStream);
BinaryReader myReader = new BinaryReader(myNetStream);

5. Use BinaryReader/BinaryWriter objects to read/write
data

string receiveStr , sendStr;
receiveStr = myReader.ReadString();

– Reads a line of text from the stream (sent by the server)
myWriter .Write(sendStr);

– Writes the string to the stream (to the server)

6. When done, close readers, writers, network stream, and
TCP client

myReader.Close(); myWriter.Close();
myNetStream.Close(); myClient.Close();

Using Threads with Sockets
• Whenever we try to establish and use a connection, the

thread we do it in blocks until the connection is
established
– Blocking also takes place when reading or writing data

• To avoid the entire application from freezing, run this
code in a separate thread

A Network Chat Client/Server System
• A Server and a Client Application

– See Sections 19.1-19.4 in your Deitel text book
– Also the ChatServerand ChatClientexample program code on the CS-360

Sample Programs web pages

• ChatServer application waits for a client application to connect to
a specified port on its computer

• ChatClient application attempts to connect to that port on that
machine

• Both ChatServer and ChatClient have a single-line “input” text
box and a multi-line “display” text box

• When a connection is established, either can type text in its in put
text box and the text will appear in the other’s display text box

• The communication is done through socket streams

ChatServer Application
• Form’s constructor starts a new thread to accept client connections

– Thread’s RunServer() method does the work (executes when thread starts)
– Creates and starts a TcpListeneron port 5000
– Listens for a connection attempt from a client

• Connection is made (socket obtained) with listener’s AcceptSocket() method
• Uses socket’s NetWorkStream() method to get a socket stream
• Creates binary reader and writer to read/write data over the socket stream connection
• Enters into a do/while loop that continually uses the binary reader to read a string

from the socket stream
– Any string read is added to the text displayed in the “display” text box
– Do/While loop continues until the socket is disconnected or a “>>CLIENT

TERMINATE” string is received
• After do/while loop exits, the reader, writer, network stream, and socket are closed

• Input text box’s KeyDown handler
– Writes the text in the input text box to the socket stream using its binary writer

whenever the user types <Enter> as long as the connection is valid
• If the text entered is “TERMINATE”, closes the connection socket

• An event handler for the form’s “Closing” event is added
– Calls System.Environment.Exit(System.Environment.ExitCode) to close the app

• Exit() method of Environment class closes all threads associated with the app

ChatClient Application
• Same overall structure as the ChatServer
• Form’s constructor starts a new thread to connect to the server

– Thread’s RunServer() method does the work
• Instantiates a TcpClient and run its Connect(“localhost”, 5000) method

– Connects to the server on the same machine
– This call blocks until connection request is accepted

• Uses TcpClient’s GetStream() method to get a socket stream
• Creates a binary reader and a binary writer to read/write data over the socket

stream connection
• Enters into a do/while loop that continually uses the binary reader to read a string

from the socket stream and display it in the form’s “Display” text box
• After do/while loop exits, the reader, writer, NetWorkStream, and TcpClient are

all closed and app is closed using the Application.Exit() method

• Input text box’s KeyDown handler
– Write the text in the input box to the socket stream using its binary writer as in

the ChatServer app

• For both the server and the client, it would be much better to u se
Try/Catch blocks, as in the examples on the website

