Windows M ultimedia

Some M ultimedia Devices

» Some multimedia devices:
— Waveform audio device (sound card)
 converts microphone & other analog audio to digitized sasmples (ADC)
 can be stored as WAV files
 can be played back (DAC)

¢ Alsousualy hasaMIDI device
— Musical Instrument Digital Interface
— plays musical notesin response to short binary messages (MIDI codes)
— can be attached to aMIDI input device (music keyboard)

— CD Audio through the CD-ROM drive

— Video for Windows device (AV1 video device)
¢ plays movie/animation files ((AV1)

— QuickTime and MPEG movies

— Video capture boards (different compression schemes)
— Laserdisc players & video cassette recorders

— Others (DVD)

Win32 MM Support & Documentation

» Extensive Win32 API support for multimedia devices
— Low-level support
— High-leve support

« MSDN online documentation:;

— Platform SDK/Graphics & Multimedia Services/Multimedia
Reference

— Platform, SDK, & DDK/Platform SDK/Reference/Multimedia
Command Strings

— Visual Studio .NET Help (Index):
* Visua Studio Help on “MCI Command Strings”

Media Control Interface

 MCI (MediaControl Interface)
— High level multimedia control functions

— Has commands common to all multimedia hardware
* Possible since most use record/play metaphor
— Open adevice for input or output
— If input, record; If output, play
* When done, close the device

— Some MCI Device Names:

» cdaudio, waveaudio, sequencer (MIDI), videodisc, vcr,
overlay (analog video in awindow), dat (digital audio tape),
digitalvideo

» Categorized as “smple” or “compound”

— Simple devicesdon’t usefiles (e.g., cdaudio)
— Compound devices do (e.g., waveaudio use WAV files)

Two Forms of MCI

» Send command messages (like Windows
messages) to MCl

— (need to include bit-encoded flags and C data
structures)

» Send text stringsto MCI

— Good for use from scripting languages with string
functionality and smple to use

— MCI converts the strings to command messages

Sending Stringsto M Cl

* mciSendString() function:

error = mciSendString(sCmd, sRetStr, iReturn, hCallback);
e Cmd--the MCI command string (specifies command & device)

SRetStr--return string buffer (NULL if none used)
iReturn--size of return string buffer (0 if none used)
hCallback--Handle to Callback window (NULL if none used)
— Window to display info if “notify” flag was specified in cmd string
— Usualy NULL

— Returns 0 if command is successful, an error code if not
Error code can be used as a parameter to mciGetErrorString()

— Many command strings possible

* SeeMSDN online help

* In.NET, seehédpon:
— mciSendString, mciGetErrorString
— MCI Command Strings

Using Win32 Functions (like M Cl)
From .NET
MCI is not directly accessible from .NET
Also mciSendString() is C++, not C#
But we can still use MCI and other Win32 API
functions from .Net languages
Key isto use “Platform Invocation Services’

— “Interop Services”
— A generaized mechanism that alows calling
functions that are imported from DLLs
— Drawbacks:
» Code is no longer managed code
» And it’s no longer platform independent

Win32 from .NET, continued

» Mustinclude: System.Runtime.lnteropServices;
» And then prefix any declarations of Win32 API

functions to be used with:

[DIlmport(* xxx.dlI”)]

— DIlImport: A storage-class attribute:
* A Microsoft-specific extension to C/C++
» Enablesimporting functions, data, objectsfromaDLL

— Where xxx.dll isthe DLL that contains the function
* For MCI functionsthat DLL iswinmm.dl|

* Also the declaration must include public, static,

extern to be usable from a .NET application

* And then use equivalent .NET language data types

for the parameters and for the type returned by the
function

mciSendString() in .NET
Unmanaged Code

Its VC++ the parameter types are:
— LPCTSTR, LPTSTR, UINT, HANDLE

And it returns MCIERROR: a C++ DWORD
Corresponding C# parameter types would be;

— string, string, uint, intPtr

— In C# DWORD isimplemented as an int
So declare mciSendString as:

[DlImport("winmm.dll")]

public static extern int mciSendString

(string SCmd, string sRetStr, uint iReturn, intPtr hCallback);

Some MCl Command String Commands:

* open -- initializes a multimedia device

» play— starts playing an open device

* stop -- stops playing from an open device

* record -- starts recording to a device

* seek -- move to a specified position on device

* save-- savesan MCl file

* close -- closes a device and associated resources
* set -- establish control settings for the device
 dgtatus -- returns information in 2d parameter

» Some device types.
— cdaudio -- Audio CD played on system's CD-ROM
— waveaudio -- WAV audiofiles
— AVIVideo -- .AVI video files

Some Example Command Strings

“ open cdaudio”
“play cdaudio”
“ close cdaudio”
"open new typewaveaudio dias mysound*
“record mysound”
"stop mysound"
"save mysound mysound.wav"
“ open myvoicewav dias voiceclip” //can open different types of mediafileslike this
"open AVIVideo!myclip.avi dias vidclip* //or specify a specific type

— the! separates dev_name from file_name
“play voiceclip” “stop voiceclip” “close voiceclip”
“play vidclip” “stop vidclip” “closeviddlip”
“set mysound time format milliseconds’
“status mysound length’ -- Returns duration of mysound in milliseconds
“set cdaudio time format tmsf”

— tmsf means tracks, minutes, seconds, frames (default format is msf)
“play cdaudio from 01:00:00:00 to 02:05:06:00"

— tt=track (1-99), mm=minute (0-59), ss=second (0-59), ff=frame (0-74)

— aframeis 1/75 of asecond
“status cdaudio position” -- Returns position on audio CD in current-time-format
“status cdaudio length track xx’ -- Returns current-time-format length of CD track xx

Examples
» MCI-PlayCD
— “Play” Button
» Opens and playscdaudio device
— "Stop” Button

* Stops and closes cdaudio device
* mciSendString-Test
— User can enter different command strings in atext tox
» MCI-Record-Play
— Must have a microphone attached to the computer

— “Begin Recording” and “End Recording” buttons
» Open, record, and save microphoneinput to a.WAYV file
— “Begin Playback” and “End “Playback” buttons
* Playsback the WAV file

Retrieving Data from MM Commands

» Some mciSendString() commands provide data
— Returned in second parameter: szRetStr
— Example: “status” command

» Also mciGetErrorString(err,errStr,lengErrStr);
— err was the value returned by mci SendString()
— errStr will contain text describing the error

* Problem: a C# string cannot grow dynamically

— Need another “dynamic” string-like data type to hold the data
returned in the 2"d parameter

— StringBuilder class (in System.Text) does the job
¢ Aninstance of this class represents a string-like object whose valueis
a“ mutable” sequence of characters
— Soit can be used to “receive’ areturn string object in a method
* One constructor:
StringBuilder sb = new StringBuilder(initLength);

Using StringBuilder with MM in .NET
» Declare 2"d parameter as type StringBuilder
» For example:

[DIlTmport("winmm.dll")]

public static externint mciSendString

(string SCmd, StringBuilder sRetStr, int iLength, intPtr
hCallback);

* Thenuseit, for example:
StringBuilder sb = new StringBuilder(256);
string s = “status cdaudio length”
int error = mciSendString(s, sh, 256, IntPtr.Zero);

» Then Convert returned StringBuilder object to astring
to be able to display it or useit, for example:
string sRet = sh. ToString();
e Don'tforget usng System.Text; at top of application
» Example Pgm: mcisendstring-mcierrorstring-strbuilder

Using Windows M edia Player

» A control that enables playing video/sound in many
formats

— MPEG, AVI, WAV, MIDI, etc.

e Additto Visua Studio Tool Box

— “Tools” | “Choose Toolbox Items” & “Choose Toolbox Items”
dialog box
e Click “COM Components” tab and scroll down to“Windows Media
Player”
* Click “OK” and note the control is added to the tool box
— Drag it to form and use it just like other controls
— Important property: URL — specifies media player control object
to be opened and played
» ExampleProgram: MediaPlayer
— Menu Item “Open” starts Common File Dialog Box
— Chosen file is loaded into Media Player Control

