
1

Multithreading

A Process

• A Process is a running application
• A Process is composed of Threads

– e.g. a process may have:
• A GUI thread
• Several computational threads
• A file I/O thread
• A print thread

2

Multithreading
•Thread

–The fundamental unit of execution to which processor
allocates processor time

•A dispatchable unit of code

–Threads run concurrently and share the cpu(s)
•OS manages running threads with scheduling algorithms
•Switches processor time between threads
•Done so fast and efficiently that it appears all threads are
running simultaneously

–A .NET managed application begins as a single thread
•Can spawn additional threads to partition its tasks

–On multi-cpu system, applications can run faster since
different threads can run on different processors

Asynchronous Execution
•Threads run asynchronously with respect to each
other

–So independent units of work can be performed in parallel

•Example: a GUI application that enters into a long
computational loop

–Running as a single thread:
•While application’s single thread is computing, messages on the
message queue are ignored

–So the application’s user interface is frozen until computation finishes

–Running as two threads:
•Relegate the computational work to a background thread
•Now the primary thread is free to service the message queue

–App is now responsive to user input while computation is occurring

3

Multithreading Complexities
•Multithreaded applications are hard to write & debug
•Parallelism of concurrently running threads adds an
extra layer of complexity

–e.g., threads to write then read a data structure
•If both are in a single thread, we know write will occur first
•But if in separate threads, we don’t know in advance when each
thread is going to run

–Read first then write ? old (wrong) data will be read

•Threads need to be synchronized

–Also bugs are dependent on timing
•Very difficult to reproduce
•It’s almost impossible to be sure that a multithreaded program
is free of bugs

Threads in .NET

•Threading classes are in namespace:
System.Threading

–Most important class: Thread
•Represents a thread of execution
•Implements properties and methods that allow
programmer to launch and manipulate concurrently-
running threads

4

Some Thread Class Properties
•bool IsBackground

–false (default) means thread runs in foreground
–An application doesn’t end until all its foreground threads have finished

•string Name
–Retrieve/change a thread’s name

•Thread CurrentThread
–Static property returning a reference to the calling thread
–Use result to get or change properties of a thread

•ThreadPriority Priority
–ThreadPriority is an enumeration:

•Highest, AboveNormal, Normal (default), BelowNormal, Lowest
–Determines relative amount of processor time allotted to the thread
–Can be changed:

Thread myThread = Thread.CurrentThread;
myThread.Priority = ThreadPriority.AboveNormal;

•bool IsAlive

Starting Threads
•Instantiate a Thread object

–Give constructor a new “thread method”
•This is the method the thread executes when it starts
•Must be “wrapped” in the ThreadStart delegate

•Then use the thread’s Start() method
•Example:

Thread myThread = new Thread (new ThreadStart (myThreadMethod));

myThread.Start();

•Starts the thread and causes myThreadMethod() to run
•Your application must implement this method:

void myThreadMethod() { // code to run };

–Thread is now “alive” and remains alive until it terminates
–When the “thread method” returns, the thread ends

5

Threads-One & Threads-Two
Example Programs

• Form has “Toggle Background Color” & “Start Computation”
buttons and a label
– First button handler toggles background between red and green
– Second button handler starts a long, nested-loop computation

• When computation is done, label control is turned blue and displays an “All
Done” message

• Running as a single thread (as usual):
– After “Start Computation” button is clicked

• Program does not respond to “Toggle Background Color” button until
computation is done (seems to be dead)

• Running in two threads:
– Foreground thread starts a background thread to do the computation when

user clicks the “Start Computation” button
– Now the program responds to the “Change Background Color” button

while the computation is being done

Suspending & Resuming Threads

•Suspend() method temporarily suspends a
running thread

–Any thread can call Suspend() on any other
thread

•Resume() method starts it running again
–If a thread suspends itself, some other thread
must call Resume() on it to start it again

•Static method Sleep(int iMilliseconds)
–Suspend for specified number of milliseconds
–A thread can only call Sleep() on itself

6

Terminating a Thread

•Abort() method terminates a running thread
myThread.Abort(); //terminates myThread
–Always works for managed thread, but may not
if the application contains unmanaged code

•Many times a thread should pause until the
thread it is trying to abort terminates

–Join() method does that
otherThread.Abort(); // ask the other thread to finish
otherThread.Join(); // “joins” the other thread
•pauses until other thread finishes

Other Thread Complexities
•Starting and stopping threads is easy
•Making them work cooperatively with shared data
is not -- Thread synchronization is difficult
•One way of synchronizing threads:

–Use Monitors (System.Threading.Monitor class)
•Use “locks” so that only one thread can access data at a time

–Monitor.Enter(obj) static method acquires a lock – Thread can then
manipulate the object’s data

»All other threads are blocked from acquiring the lock and
accessing the data

–Monitor.Exit(obj) static method releases the lock

»Blocked thread can now acquire the lock and manipulate the data

•Can also set up a lock() block

–See Chapter 15 of the Deitel text book for details

7

Starting Processes on the System
•A Process component provides access to processes that are
running or can run on the system

–In System.Diagnostics namespace

•To run a process:
–Instantiate a new Process object
–Set its StartInfo.FileName property to the name of the
executable file

–Invoke its Start() method
Process myProc = new Process();
myProc.StartInfo.FileName = “c:\\Windows\\Notepad.exe”;
myProc.Start();

•StartProcess example program
–Allows user to start any application program on the system

