
1

Visual Studio .Net
File I/O

Files
?Collections of related data stored on external

storage media and assigned names so that
they can be accessed later
– Entire collection is a file
– A file is made up of records

? One record for each entity stored in the file

? Each record broken down into fields (data elements)

Last Name First Name Phone

Smith John 777-1111
Jones Mary 777-2222

Records

Fields

Files and Streams

? Visual Studio handles data files using Streams
– When a file is opened for reading or writing it becomes a stream
– Designed to transfer a series of bytes from one location to anot her
– Read and write operations can be performed on a stream
– Streams can be more than just open disk files

? Data moving over a network is a stream
? Memory streams can also be created

? Most .NET File and Stream I/O support is implemented in
System.IO namespace

? Any file-handling project should include the statement:
using System.IO;

FileStream File I/O Class
? FileStream

– Most basic File I/O class
– Use to open, read from, write to, and close files
– To open or create a file, create an object of type

FileStream
– Some FileStream constuctors :

FileStream(strFileName, Filemode);
? Some Filemode properties: Create, Open, Append
FileStream(strFileName, Filemode, FileAccess);
? Some FileAccess properties: Read, Write, ReadWrite

– Some FileStream Methods:
int ReadByte();
int Read(byte[] abyBuffer, int iBufferOffset, int iCount);
void WriteByte (byte byValue);
Void Write(byte[] abyBuffer, int iBufferOffset, int iCount);

Problems with FileStream

? C# casting is not as flexible as C casting
– FileStream Read() and Write(() methods work only

with byte arrays
? For other data types the bytes in an array would have to be read

and assembled into other basic data types
? Very tedious

? Better to work with StreamReader and
StreamWriter classes for reading/writing text files

? Or BinaryReader and BinaryWriter classes for
reading/writing binary files
– Files that are not text files

Writing Data to a File
Sequentially Using StreamWriter

? Declare and instantiate a new StreamWriter object
– In constructor specify name of the data file

StreamWriter phoneStreamWriter ;
phoneStreamWriter = new StreamWriter("Phone.txt”);“

– Opens the file for writing);

? Use StreamWriter’s Writeline() method to copy text data
(a string) to a buffer in memory

phoneStreamWriter .WriteLine(“777-1111”);

? After all data is written call StreamWriter’s Close()
method

phoneStreamWriter .Close();

– Transfers the data from the buffer to the file and releases system
resources used by the stream

– Usually done just before closing the window form

2

FileStream-Write Example
Program

? “Name” and “Phone” text boxes allow user to
enter a name and a phone number

? A StreamWriter object will save names and phone
number to a file
– File name is hard-coded when StreamWriter object is

instantiated
? This occurs in the form’s constructor
? Causes the file to be opened

? “Save” button: Click handler saves the current
name and phone number at the end of a file

? “Exit” button: Click handler calls the
StreamWriter’s Close() method & closes the form

Reading Data from a File Using
StreamReader

? Declare and instantiate a StreamReader class object
– In constructor specify the file name

StreamReader phoneStreamReader;
phoneStreamReader = new StreamReader("Phone.txt");

? Use ReadLine() method to read next data item (string)
string str = phoneStreamReader.ReadLine();

– Use a loop to retrieve multiple records
– Use Peek() method to check for end of file

? Looks at next element without reading it
? Value returned after peeking beyond last item is -1

? When done, close stream with StreamReader’s Close()
method

phoneStreamWriter .Close();

FileStream-Read Example
Program

? Form has “Name” and “Phone” label controls to display each name
and phone number stored in a file

? When form is first loaded in Form1’s “Load” event handler:
– try/catch block attempts to instantiate a FileStreamReader object

? File name to open is hard-coded in constructor
? If successful, a call is made to a helper function DisplayRecord()
? DisplayRecord() uses FileStreamReader’s Peek() method to see if there

are more records to read
– If so, its ReadLine() method reads the next name and number records from

the file (same order as written) and stores them in the label co ntrols

? “Next” Button: Click handler calls helper function DisplayRecord()
to read and display next name & phone number from the file

? “Exit” button: Calls the StreamWriter’s Close() method and closes
the form

Appending data to a File

?As we’ve used StreamWriter, if the file exists at
construction time, its contents will be destroyed

?Another constructor for StreamWriter():
– StreamWriter(string strFileName, bool bAppend)
– If bAppend is true, the file is not destroyed

? Data can be appended to it

Common File Dialog Boxes
? OpenFileDialog

– Allows user to browse directories or enter a file name for a file
to open

? SaveFileDialog
– In same way, allows user to select or enter a file name to save
– It just adds two new properties to OpenFileDialog:

? CreatePrompt: true means if file specified by user doesn’t exist, display a
message box asking if user really wants to create the file

? OverwritePrompt: true means dialog box will prompt for confirmation if
selected file already exists – to avoid undesired overwriting

– If these properties are not needed, use OpenFileDialog for both
opening and saving

? Both return a fully qualified file name the user selects
from a list box or types into a text box
– This can then be used to read from that file or to save data to it

Some Important OpenFileDialog
Class Properties

? Name Name of OpenFileDialog object (VS Designer default:
OpenFileDialog1)

? Title Title bar of dialog box
? FileName Name of file selected/entered by user, including path
? CheckFileExists Display error message if file does not exist; set to false for

saving a file since you want to create a new file if it doesn’t
exist; leave true (default) to read an existing file

? CheckPathExists Same, but for the file path
? Filter Filter file extensions to display in “Files of Type” combo

box, e.g.: “Text Files (*.txt)|*.txt|All Files (*.*)|*.*”
? InitialDirectory Directory to display when dialog box opens; set to

“Applications.StartupPath” to begin in same directory as
application’s executable

3

File-Write-OpenFileDialog
Example Program

? Adds “File” | “Open” menu item to FileStream-Write
example program
– “Open” menu item starts an OpenFileDialog box for user to

select or type in a file to write names and phone numbers to
? Checks to see if file is already open first

– If so, it closes it before starting the OpenFileDialog box and
instantiating a StreamWriter object (opening the selected file)

– “Save” button handler checks to see if file is open, and if
so, saves current name and phone number
? If not, puts up a message box to warn user, then calls the “Open”

menu click handler so user can select the file to open
? Also clears the text boxes and sets the focus to the “Name” text box

– “Exit” menu item click handler closes the file if it’s open
before closing the form

File-Read-OpenFileDialog
Example Program

? Adds “File” | “Open” menu item to FileStream-Read
example program
– Click “Open” menu item to start an OpenFileDialog box

for user to select or type in a file to read names and phone
numbers from
? Checks to see if file is already open first

– If so, it closes it before starting the OpenFileDialog box and
instantiating a StreamReader object (opening the selected file)

– “Next” button handler Peeks to make sure we’re not at the
end of file, then reads the next name an number, and
displays them in the label controls
? Note that initially “Next” button’s enable property is set to fa lse

– Makes no sense for user to ask for the next item if file is not open

– “Exit” menu item click handler closes the file if it’s open
before closing the form

Other System.IO File Handling
Static Methods

– Determining whether a file exists
? bool File.Exists(string strFileName)

– Copying a file
? File.Copy(string strSrcFN, string strDestFN)

– Moving a file
? File.Move(string strSrcFN, string strDestFN)

– Deleting a file
? File.Delete(string strFileName)

Retrieving a File’s Properties

?System.IO.File class has many methods
– GetCreationTime (string strFN)
– GetLastAccessTime (string strFN)
– GetLastWriteTime (string strFN)
– GetAttributes (string strFN)

? Returns a FileAttributes enumeration
? Stores bit -packed boolean Attribute Flags:

– Archive, Directory, Hidden, Normal, ReadOnly, System,
Temporary

• Do boolean AND to determine if a given attribute is
true (bit is set)

Manipulating Directories

?System.IO.Directory Class
?Use its static methods just like the File

methods
?Some of its static methods:

– Directory.CreateDirectory(string strDirName)
– Bool Directory.Exists(string strDirName)
– Directory.Move(string strSrc, string strDest)
– Directory.Delete(string strDirName)

Serialization

? Saving/Retrieving complex objects instantiated
from a class

? Serialization refers to converting an object’s state
to a stream of bits that can be saved

? Deserialization refers to reading the data back and
recreating the object

? Declare a class as Serializable and use a formatter
to serialize the object
– BinaryFormatter stores data in binary form
– SoapFormatter stores data in an XML format (Web)

4

Using Serialization: Saving an Object
? Include using statements

Using System.IO;
Using System.Runtime.Serialization;
Using System.Runtime.Serialization.Formatters.Binary;

? Declare the class as Serializable; for example:
[Serializable ()] public class Book { … };

? In the form’s code:
– Instantiate the object; for example:

Book bookObject = new Book();

– Declare a FileStream object that includes the name of the file
FileStream bookStream= new FileStream(“books.txt”, FileMode.Create);

– Declare a formatter object; for example:
BinaryFormatter bookFormatter new BinaryFormatter();
Use Formatter object’s Serialize() method to save the object
bookFormatter .Serialize(bookStream, bookObject);

– Close the FileStream
bookStream.Close();

Using Deserialization: Recreating
an Object

? Read the object back with the Deserialize() method of the
formatter

? Steps:
– Declare a formatter object; for example:

BinaryFormatter bookFormatter= new BinaryFormatter();

– Create a FileStreamobject; for example:
FileStream bookStream= new FileStream(“books.txt”, FileMode.Open);

– Use formatter’s Deserialize() method, converting the input to the
desired object type; for example:

bookObject = (Book) bookFormatter.Deserialize(bookStream);
– Use the object’s fields/properties as desired
– Close the stream

bookStream.Close();

File-Serializable-Book Example Program
? A “Book” class encapsulates information about a book

– Properties:
? Title
? Quantity
? Price
? Total

– Method:
? ComputeTotal()

? Main form:
– Text boxes to enter information about a book
– A “Compute Total” button to calculate the total
– File Menu:

? Save Record
– Uses serialization to save a book object’s data to disk

? Retrieve Record
– Uses serialization to retrieve a book object’s data from disk

