
1

Windows Dialog
Boxes, Text Boxes,

and List Boxes

Richard R. Eckert

Dialog Boxes

? Popup child windows created by Windows
? Used for special-purpose input & output

– A principal I/O mechanism in Windows

? Contain several child window controls
? Layout & what it does is are predefined
? In .NET they’re just another Form

– Derived from class Form

? We can design our own dialog boxes
? Five predefined “Common Dialog Boxes”

Types of Dialog Boxes

?Modal
?Modeless
?System Modal

Modal
? While visible, user can't switch back to parent

window
– (But user can change to other applications)

? User must explicitly end dialog box
– Typically by clicking "OK" or "Cancel" buttons

inside

? Most common type of dialog box
? Example: "About" box available with most

Windows apps
? Message Boxes are simple Modal Dialog Boxes

System Modal

?A variety of modal dialog box
?With these user can't switch to other

applications while dialog box is active
?A throwback to Win16

Modeless

?User can switch between dialog box and
the parent window

?Used when dialog box must be visible
while user interacts with the parent

? Example: dialog box resulting from
"Find" or "Replace" menu item
of many Windows applications

2

Common Dialog Boxes
? Predefined Modal Dialog Boxes that enable user to

perform common I/O operations in a standard way
? Five of them -- all date back to Windows 3.1
? Contained in classes derived from

System.Windows.Forms.CommonDialog
– FileDialog

? Open/Save files in an easy and standard way
– ColorDialog

? Choose colors in an easy and standard way
– FontDialog

? Select fonts in an easy and standard way

– PageSetupDialog
– PrintDialog

? Both related to printing

? User interactions with common dialog box set
properties that can be read & used afterwards

Using Common Dialog Boxes
1. Instantiate a common dialog object, e.g. ColorDialog:

ColorDialog colordlg = new ColorDialog();

2. Set its properties
colordlg.Color = this.BackColor;

3. Call its ShowDialog() method to invoke the dialog box
? Since Modal, execution halts until user dismisses the dialog box
colordlg.ShowDialog();

4. Use its properties changed by user actions
this.BackColor = colordlg.Color;

– Almost always contain “OK” & “Cancel” buttons
? “Abort”, “Ignore”, “No”, “Retry’, ‘Yes” buttons are also defined
? Button pressed by user is contained in DialogResult

– DialogResult.OK, Dialog.Result.Cancel, etc.

if (colordlg.ShowDialog() == DialogResult.OK)
this.BackColor = colordlg.Color;

– Example program: Common-Color-Dialog

Common Font Dialog Box
? Allows the user to change fonts
? Class FontDialog

– Properties:
? Font font
? Color Color
? bool ShowColor
? bool ShowEffects
? bool ShowApply
? bool ShowHelp

– Instantiate and start with ShowDialog() member
function just as for the Common Color dialog Box

? Example program: Common-Color-Font-Dialog

Using Visual Studio Designer to
Create Common Dialog Boxes

? Just drag them from the toolbox onto the
form

?Their properties can be accessed easily in
their Properties Windows

?Still have to write code to invoke them
– ShowDialog()

?And code to use their changed properties

Programmer-Defined Dialog Boxes

? Define our own dialog boxes containing whatever
controls are required for custom I/O

? Just define and instantiate a second class derived
from class Form in the application
– Encapsulates everything about the dialog box
– Set desired properties
– Add desired controls and event handlers
– Start it with the object’s ShowDialog() method
– Main form’s code stops executing until user dismisses

the dialog box
? DialogResult property returned by ShowDialog() will identify

which button in dialog box was pressed to terminate it

Dialog-Manual Example Program
?Main form created with VS Designer as usual

– Contains a “Start Dialog Box” button And a Label
control
? When user clicks the button, a modal dialog box with “OK”

and “Cancel” buttons appears
? The name of the button pressed by the user to dismiss the

dialog box will be displayed in the main form’s label control

– The dialog box’s buttons, properties, and button click
handler methods are all defined in a second Form class
? Handlers should set Dialog Box’s DialogResult property

– The second form class was coded manually
? Much easier to use Visual Studio to add the second dialog

box class, set its properties, and add its button click handlers

3

Dialog-Designer Example Program
? Same functionality as Dialog-Manual application
? Add dialog box

– With project name selected in Solution Explorer:
? Select from main menu: Project | Add Windows Form
? Or right click on project name and select Add | Add Windows Form…

– In either case the “Add New Item” dialog box comes up
? Change the default name to SimpleDialogBox

– VS Designer will create a new file containing the new class
– As usual, add the “OK” & “Cancel” buttons to the new form by

dragging them from the tool box
– And add their click event handlers by double clicking on them

or using the properties window (lightning bolt)

? Add “Start Dialog Box” button on main form
? And its click event handler as usual

– In the handler add code to instantiate the dialog box, set its
properties, and start it

Adding an Icon to the Dialog Box
?Set the form’s Icon property
?One way:

– this.Icon = new Icon(“info.ico”);
? But this icon is in C: \Program Files\Microsoft Visual

Studio .NET\Common7\Graphics\icons\Computer\
– Could give the complete path name
– Or copy it to the project’s debug directory

– Better to include it as an embedded resource in the
assembly
? Visual Studio can do that

– Go to form’s properties box and click on the Icon Property’s
“Icon …” box

– Navigate to the desired icon and select it

Using Images in Resources (a parenthesis)

? Making an image file part of your project so the file
doesn’t have to be on the computer running the app.
– Add the image file to the project

? ‘Project’ | ‘Add Existing Item’ and select the image file

– Embed it in the executable by:
? In Solution Explorer:

– Click on the image object
– In the Properties window change “Build Action” to “Embedded

Resource”
– In code use the Bitmap class constructor:

? Bitmap(Type type, String resource);
? GetType() can be used to obtain the type

Image img = new Bitmap(GetType(), “flower.jpg”);
? Then use the image as usual

– See ImgEmbedded example program

Getting Data from a Dialog Box
? Dialog boxes usually allow user to provide data for the

application
? How to get data from the dialog box to the parent form:

– Could use public fields (variables)
? So other classes (the parent form) can access them

– Better to use public properties
– Must be defined in the dialog box class
– Properties with their get/set accessors can be coded manually
– Easier to use Visual Studio

? Class View: Right click on the class | Add | Add Property
– Brings up Property Wizard
– Just fill in the information
– Visual Studio adds skeleton code at the right place
– Tailor it as needed

– See DlgBoxPropertiesTest Example
? Displays which of three buttons in a Dialog Box was pressed
? Note use of this.Close() in Exit button handler to dismiss the Dialog Box

Radio-Check-Dialog Example
? Radio-Check application modified using a dialog box

– Two classes:
? ColorFillDialogBox class encapsulates a dialog box that allows the

user to choose a color and fill option
– Colors are shown in radio buttons in a group box

• Create and add the radio buttons in a loop

• Selected color (ColorRect) is a Property added to the class
get/set accessors index thru all controls in the color groupbox

• Note use of Color. FromName(…) that creates a Color from a string
– Fill is a check box

• Check box state (Fill) is another Property added to the class
get/set accessors return/set Checked property of the checkbox

? Main Form1 class has a button to start the dialog box
– Dialog Box’s Color and Fill Properties are used to change class-level

variables after dialog box is dismissed

– Paint event is forced
• Paint handler draws or fills a rectangle according to values of the

class level variables

Modeless Dialog Boxes

?Stick around after invoked
?Start with Show() member method of

DialogBox class
– Not ShowDialog(), which starts it as a modal

dialog box
– We’ll come back to these later

4

More Windows Controls
Text Input Controls

? Text Box
– Formerly called an Edit Control

– Allows user to type in text
? Can be single line or multiline

? List Box
– Presents a scrollable list of selections for user to choose

? Combo Box
– Combines the features of a Text Box and a List Box

Text Boxes
? Simplest is derived from TextBox class

– RichTextBox class provides additional functionality
– Both are derived from TextBoxBase class

? Some Properties:
– string Text
– int MaxLength // max # of characters
– int TextLength // (get only)
– bool Multiline
– string[] Lines // for multiline text boxes
– int Lines.Length // # of lines

? Most useful event:
– TextChanged -- actually defined in Control parent class
– Method: OnTextChanged ()
– Delegate: EventHandler
– Argument: EventArgs

TextBox-Simple Example Program

?Creates a TextBox and a Label control
?Any time user changes text in the TextBox,

it is reproduced in the Label control
– Program handles the TextBox’s TextChanged

event

?Created with VS Designer
– Just drag the TextBox and Label from the

toolbox, change their properties, and add the
TextChanged event handler

MultiLine Text Boxes
? Just set Multiline property to true
? Another property:

– Lines
? An array of strings that contains the text contained
? Since it’s an array, Lines also has a Length property

? Can add scrollbars
– ScrollBars property:

? None, Horizontal, Vertical, Both
? For horizontal to work, WordWrap property must be set to

false

? Give Notepad-like functionality
? Example: TextBox-Multiline

Non-textual Data in a TextBox

? Use Parse() method to convert Text property of a control
to its numeric form before using in a computation

? Each data type has its own Parse() method, e.g.:
– int.Parse(); float.Parse(); decimal.Parse();

? Example – two text boxes:
– numTxtBox and priceTxtBox

int num = int.Parse(numTxtBox.Text); //get number of items
decimal price = decimal.Parse(priceTxtBox.Text); //get price per item
float totPrice = price*num; //compute total price

5

Formatting Data for Display
? Display numeric data in Text property of a label,

textbox, or listbox
? Use ToString() and “format specifier codes”

– Can format a numeric value to a string containing such
features as: $, comma, decimal point, %

– Also can specify # of digits to right of decimal point
? xxx.ToString(“format code”)

? Some format codes (example: 1123.42817):
– “C” currency $1,123.43
– “F0” fixed point 1123
– “F3 fixed point 1123.428
– “N” number 1,123.43
– “N3” number 1123.428

Compute-Interest Example
? Text Boxes for:

– Principal, Interest Rate, Number of Years

? Labels for each
? Label for computed Total Interest
? Computes Total Interest:

– Interest = Principal*Rate*Years
– Note Parsing to get values from Text Boxes
– And formatting to display result
– Also note use of M or F suffix on numeric constants

? M: decimal
? F: float
? C# defaults to double

? But what if user enters the wrong type of data?
– Use a try/catch block
– See ComputeInterestTryCatch example

List Boxes and Combo Boxes
? List Box

– Contains lists of items that can be selected
– Entire list is shown
– User selects items
– Selected item is highlighted
– Encapsulated in class ListBox

? Combo Box
– Text box combined with a list box
– List box can be displayed at all times or pulled down
– User selects item from list & item is copied to text box
– One type allows user to type into text box
– Encapsulated in class ComboBox

? For both, scroll bars are added automatically as
needed

List Box “Items” Property
? The list of Items in a list box is a collection (like ArrayList)

– These collections have methods that allow programmer to:
? Add items, insert items, remove items, refer to individual items, count

items, get selected item, & clear the collection
– listBox1.Items.Add(ItemValue);
– listBox1.Items.Insert(IndexPosition, ItemValue);
– listBox1.Items.Remove(ItemValue);
– listBox1.Items.RemoveAt(IndexPosition);
– Referring to a given item:

? listBox1.Items[IndexPosition];

– Number of items in list
? listBox1.Items.Count

– SelectedIndex Property – stores index of item selected
? int x = listBox1.SelectedIndex; // retrieve index of selected item
? listBox1.SelectedIndex = 3; // select item 3 (will appear selected)

– listBox1.Items.Clear(); // remove all items from list

Using Designer to Fill a List Box
at Design Time

? Select the List Box control on the form
? Scroll Properties window to “Items” property
? Click on “…” to open “String Collection Editor”

– Type in the items in the list, ending each with Enter key

? Note in Designer Generated Code:
– listBox1.Items.AddRange(new object[] {“str1”, “str2”, …});

ListBox-Simple Example

? Initial list box contents set at design time
? “Add Item” button allows user to add items

to the list box using a text box
? “Get Current Selection” button displays

currently-selected item from the list box in a
label control

6

Combo Box

?Very Similar to a List Box
?Has an associated Text Box control

– Text property is what is typed by user
– Text property can be set in code

?DropDownStyle Property
– Simple, DropDown, or DropDownList

? DropDown means user can type or select

