
1

Dialog Boxes

Dialog Boxes
? Popup child windows created by Windows
? Used for special-purpose input & output

– Principal I/O mechanism in Windows
? Contain several child window controls
? Layout & what it does is are predefined

(template --a resource)
? How it does is determined by a "Dialog box

procedure"
? Destroyed immediately after use

Rule of Thumb: Dialog Boxes vs.
programmer-defined child windows

? Dialog box: For simple popup windows that
use normal window controls and do little
painting on the client area

? Popup/child windows: Use when extensive
painting or nonstandard behavior needed

? Main advantage of dialog boxes:
– Ease of construction with the dialog box editor

– Ease of communicating with its controls

Steps in Using:

? 1. Set up the template in the resources
(.rc file)
– Specifies controls used, their style/layout
– Can be prepared "visually" with Visual

Studio dialog box editor
– Or "manually" with a text editor

? 2. (Win32 API) Write the dialog box procedure
– Code to carry out dialog box's tasks
– Placed in .cpp file
– Provides message-processing capability
– Messages from controls handled inside this

procedure
– Messages can be sent to the dialog box
– A callback function like main window procedure

WndProc()
– But not the same

• Part of the callback is inside Windows
• It interprets some keystrokes (tab)
• It calls our procedure

? 2. (MFC) Instantiate a CDialog object

Types of Dialog Boxes

?Modal
?Modeless
? System Modal

2

Modal
? While visible, user can't switch back to parent

window
– (Can change to other apps)

? User must explicitly end dialog box
– Typically by clicking "OK" or "CANCEL" buttons

inside

? Most common type of dialog box
? Example: "About" box available with most

Windows apps
? Message Boxes are simple Modal Dialog Boxes

System Modal

?A variety of modal dialog box
?With these user can't switch to other

applications while dialog box is active
?A throwback to Win16

Modeless

?User can switch between dialog box and
the parent window

?More like popup windows
?Used when dialog box must be visible

while user interacts with the parent
? Example: dialog box resulting from

"Find" or "Replace" menu item
of many Windows apps

Steps in Designing, Creating, Using a
Modal Dialog Box: Win32 API

1. Determine child window controls needed inside
2. Design dialog box template (easiest with dialog

box editor)
3. Write message-processing function
4. Activate dialog box by calling DialogBox()

– Typically in response to menu item selection in
WndProc()

5. Resulting dialog box stays on screen until call
to EndDialog()
– from inside dialog box function

DialogBox()
? Parameters:

– 1. App's instance handle
– 2. Dialog box ID name

• Specified in dialog box template when .rc file created

– 3. Handle of dialog box's parent window
– 4. Address of dialog box function that will process its

messages
• A callback function

? Creates modal dialog box from app's dialog box
template resources

? Displays dialog box & switches msg-processing to it

? Control returned when its msg-processing function
terminates dialog box
– By calling EndDialog() ;

WM_INITDIALOG Message

? Like ordinary an window's
WM_CREATE message

? Processed before window (dialog box) is
made visible

?Good place to put dialog box
initialization code

3

EndDialog()
? Destroys dialog box
? Returns control to function (WndProc()) that

called DialogBox()
? Parameters:
? 1. window handle passed to dialog box function

(hDlg)
? 2. integer value returned by DialogBox()

– Way of getting info from dialog box function to
calling program

User Interaction with Dialog
Box Controls

?WM_COMMAND message
– LOWORD(wParam) contains control ID (as

usual)
– lParam, wParam contain message data (as

usual)

Exchanging Data with a Dialog Box
? Exchanging data between dialog box function

and app's WndProc()
? SendMessage() could be used to send message

to control inside, BUT:
– Need to know control's handle
– Not known since Windows creates the controls
– IDs are known--specified in resource template

? Use GetDlgItem() to get control's handle:
– hControl = GetDlgItem(hDlg, controlID);

? Then SendMessage(hControl, Msg, wParam,
lParam);

? Both functions can be combined using
SendDlgItemMessage():

? SendDlgItemMessage(hDlg, controlID,
Msg, wParam, lParam);
– Sends Msg to control whose ID is controlID

Using Modal Dialog Boxes in MFC
? Dialog boxes are encapsulated by CDialog

class (derived from CWnd)
? 1. App derives its own dialog box from CDialog

– E.g., CSampleDlg : public CDialog
– Constructor specifies that the parent constructor is

to be used

– Dialog box msg handling done w/ message maps
– Dialog box class declarations (.h file):

• Message handling functions
• Message map declaration

– Dialog box class implementation (.cpp file) defines:
• Dialog box message map
• Message handler function definitions

? 2. Creating the Dialog Box:
– Instantiate a Dialog class object
– Constructor of CDialog-derived class

should call CDialog constructor
• Arguments: ID of dialog box (specified in .rc

file), pointer to owner window
– CSampleDlg::CSampleDlg(CWnd* pParent) :

Cdialog(CSampleDlg::IDD, pParent)

• Creates the dialog box (not activated yet)
• Initialization code should be put in CDialog’s

OnInitDialog() handler function
– Invoked in response to WM_INITDIALOG message

4

? 3. Activating the Dialog Box
– Use CDialog’s DoModal() member function
– Displays the dialog box
– Messages from dialog box controls go to

dialog box handler functions
– Continues until dialog box has been closed

• Use CDialog’s EndDialog() member function

• Causes DoModal() to return
• Message processing continues in parent

window

Communicating with Dialog Box Controls
(exchanging data)

? Method 1
– Get a pointer to control’s ID w/ CWnd::GetDlgItem()
– Use pointer to send appropriate messages to control,

e.g. (for a list box in a dialog box):
• CLISTBOX* plistbox=(CListBox*)GetDlgItem(IDD_XXX);
• Plistbox->member_function();

– OK for non-Wizard-generated apps
– There’s a much easier way for Wizard-generated

apps

? Method 2
– Automatically built into Wizard-generated Apps
– Use DDX (Dynamic Data Exchange) mechanism

– DDX system moves data between dialog box
controls and variables in CDialog class

– Occurs when a call is made to
CWnd::UpdateData(direction);

– Boolean parameter sets direction of data
movement

• TRUE ? from controls to variables
• FALSE ? from variables to controls

? MFC’s CDialog::OnInitDialog() calls
UpdateData(FALSE) automatically
– (Recall that this is called by your app to start the

dialog box)
• So Data from program variables is transferred automatically

to dialog box controls when the dialog box starts

? MFC’s CDialog::OnOK() calls
UpdateData(TRUE)
– (This is called when user clicks “OK” button inside

dialog box)
• So data from dialog box controls is transferred automatically

to program variables when user clicks the dialog box’s “OK
button)

• OnOK() then calls CDialog::EndDialog()
– So dialog box disappears and DoModal() returns

– Returns IDOK or IDCANCEL depending on user action
– Destructor destroys the dialog box

Adding a Modal Dialog Box to the
Sketching MFC Application

?Will allow the user to specify where
the text is to be displayed

?And what the text will be

5

? Create a new Visual C++, MFC, SDI
application (as usual)

? Add the sketching code (see earlier
example)

? Add a new “Text” menu item (ID_TEXT)
? Add the new dialog box

– Project/Add Resource/Dialog/New
– Change ID to IDD_TEXT
– Caption: “Enter Text”

? Use the dialog box editor to drag over 3
static and 3 edit controls:
– Static Controls: “x”, “y”, “Text String”
– Edit controls: IDC_X, IDC_Y, IDC_TESTEDIT

?Create the new Dialog Class
– Right click on an unoccupied area of the

dialog box & choose “Add Class” to
bring up the “MFC Class Wizard” Dialog
Box

– Class name: “CTextDlg”
– Base class: “Cdialog”

?Add New Class Variables (and
connect to controls)
– In Class View, right click on CTextDlg &

choose Add variable
• In resulting “Add member variable Wizard”

– Check “Control Variable” check box
– Control ID: IDC_X
– Category: Value
– Variable type: UINT
– Variable name: m_x

– In same way, attach UINT m_y to IDC_Y
– And Cstring m_text to IDC_TEXTEDIT

? Add handler code to new CView “Text”
menu item
– In Class View select CView-derived class
– In Properties Wizard Box “Events” (lightning

bolt icon):
• Scroll down to ID_TEXT
• Add Command handler OnText()
• Edit the resulting code by adding:

CTextDlg dlg;
Dlg.DoModal();
pDC = GetDC(); (Assumes a CDC* pDC variable)
pDC -> TextOut(dlg.m_x, dlg.m_y, dlg.m_text,

lstrlen(dlg.m_text));

? At top of Cview .cpp file underneath the
other include statements, add:

? #include TextDlg.h

