Dialog Boxes

Dialog Boxes

= Popup child windows created by Windows

= Used for special-purposeinput & output
— Principal 1/0 mechanism in Windows

= Contain several child window controls

=« Layout & what it doesisare predefined
(template--aresour ce)

« How it doesis determined by a" Dialog box
procedure”

« Destroyed immediately after use

Rule of Thumb: Dialog Boxes vs.
programmer-defined child windows

= Dialog box: For simple popup windows that
use normal window controlsand do little
painting on theclient area

= Popup/child windows: Use when extensive
painting or nonstandard behavior needed

= Main advantage of dialog boxes:
— Easeof construction with the dialog box editor
— Ease of communicating with its controls

Stepsin Using:

« 1. Set up thetemplatein the resour ces
(rcfile)
— Specifies controlsused, their style/layout
— Can be prepared "visually" with Visual
Studio dialog box editor
— Or "manually" with atext editor

= 2. (Win32 API) Writethe dialog box procedure

— Codetocarry out dialog box'stasks
— Placed in .cpp file
— Provides message-processing capability
— Messages from controls handled inside this
procedure
— Messages can be sent to the dialog box
— A callback function like main window procedure
WndProc()
— But not thesame
« Part of the callback isinside Windows
* It interprets some keystrokes (tab)
« It callsour procedure

= 2. (MFC) Instantiate aCDialog object

Typesof Dialog Boxes

= Moda
= Moddess




M odal

= Whilevisible, user can't switch back to parent
window
— (Can changeto other apps)

= User must explicitly end dialog box
— Typically by clicking" OK" or "CANCEL" buttons
inside
« Most common type of dialog box
= Example: " About" box available with most
Windows apps
= Message Boxesaresimple M odal Dialog Boxes

System Modal

= A variety of modal dialog box

= With theseuser can't switch to other
applicationswhile dialog box is active
= A throwback to Win16

M odeless

& User can switch between dialog box and
the parent window

= Morelike popup windows

= Used when dialog box must be visible
whileuser interactswith the parent

= Example: dialog box resulting from
"Find" or " Replace" menu item
of many Windows apps

Stepsin Designing, Creating, Using a
Modal Dialog Box: Win32 API
1. Determine child window controlsneeded inside

2. Design dialog box template (easiest with dialog
box editor)

3. Writemessage-processing function

4. Activate dialog box by calling DialogBox()

— Typically in responseto menu item selection in
WndProc()

5. Resulting dialog box stays on screen until call
to EndDialoy)

— from inside dialog box function

DialogBox()

= Parameters:
— 1. App'sinstance handle

— 2.Dialog box ID name
« Specified in dialog box template when .rc file created

— 3. Handleof dialog box's parent window

— 4. Address of dialog box functionthat will processits

messages
« A callback function
=« Createsmodal dialog box from app'sdialog box
templateresour ces
= Displaysdialog box & switchesmsg-processing toit
= Control returned when itsmsg-processing function
terminates dialog box

WM_INITDIALOG Message

=« Likeordinary an window's
WM_CREATE message

= Processed before window (dialog box) is
made visible

= Good place to put dialog box
initialization code

———BveattinaEhebiatoty




EndDialog()

= Destroys dialog box

=« Returnscontrol to function (WndProd)) that
called DialogBox()

= Parameters:

=« 1. window handle passed to dialog box function

(hDlg)
= 2.integer valuereturned by DialogBox ()

— Way of getting info from dialog box function to
calling program

User Interaction with Dialog
Box Controls

«WM_COMMAND message

— LOWORD(wParam) containscontrol ID (as
usual)

— IParam, wParam contain message data (as
usual)

Exchanging Data with a Dialog Box

« Exchanging data between dialog box function
and app's WndProc()

= SendMessage() could be used to send message
to control inside, BUT:
— Need to know control'shandle
— Not known since Windows creates the controls
— IDsareknown--specified in resour cetemplate

= Use GetDIgltem() toget control'shandle:
— hControl = GetDIgltem(hDIg, controlI D);

= Then SendMessage(hControl, Msg, wParam,
|Param);

= Both functions can be combined using
SendDIgltemMessage():

= SendDlgltemMessage(hDlg, controll D,
Mgy, wParam, |Param);

— Sends Msgto control whose I D iscontroll D

Using Modal Dialog Boxes in MFC

= Dialog boxes are encapsulated by CDialog
class (derived from CWnd)

= 1. App derives its own dialog box from CDialog
— E.g., CSampleDIg : public CDialog
— Constructor specifies that the parent constructor is
to be used
— Dialog box msg handling done w/ message maps
— Dialog box class declarations (.h file):
« Message handling functions
* Message map declaration

— Dialog box class implementation (.cpp file) defines:
« Dialog box message map

- 2. Creating the Dialog Box:
— Instantiate a Dialog class object
— Constructor of CDialog-derived class

should call CDialog constructor

« Arguments: ID of dialog box (specified in .rc
file), pointer to owner window

— CSampleDlg::CSampleDIlg(CWnd* pParent) :
Cdialog (CSampleDIg::IDD, pParent)

« Creates the dialog box (not activated yet)

« Initialization code should be put in CDialog’s
OnlnitDialog() handler function

— Invoked in response to WM_INITDIALOG message

e T o P
Messagehandter-fanetion-ch MS




& 3. Activating the Dialog Box
— Use CDialog's DoModal() member function
— Displays the dialog box
— Messages from dialog box controls go to
dialog box handler functions
— Continues until dialog box has been closed
» Use CDialog’s EndDialog() member function
« Causes DoModal() to return

* Message processing continues in parent
window

Communicating with Dialog Box Controls
(exchanging data)

=« Method 1
— Get a pointer to control’'s ID w/ CWnd::GetDlgltem ()
— Use pointer to send appropriate messages to control,
e.g. (for a list box in a dialog box):
« CLISTBOX* plistbox=(CListBox*)GetDIgltem(IDD_XXX);
* Plistbox->member_function();
— OK for non-Wizard-generated apps
— There’s a much easier way for Wizard-generated
apps

= Method 2
— Automatically built into Wizard-generated Apps
— Use DDX (Dynamic Data Exchange) mechanism
— DDX system moves data between dialog box
controls and variables in CDialog class
— Occurs when a call is made to
CWhnd::UpdateData(direction);

— Boolean parameter sets direction of data
movement
* TRUE & from controls to variables
* FALSE « from variables to controls

—_——m—————————————————————————————|

- MFC'’s CDialog:: OnInitDialog() calls
UpdateData(FALSE) automatically

— (Recall that this is called by your app to start the
dialog box)

« So Data from program variables is transferred automatically
to dialog box controls when the dialog box starts

l- MFC'’s CDialog::OnOK() calls
UpdateData(TRUE)
— (This is called when user clicks “OK” button inside
dialog box)

« So data from dialog box controls is transferred automatically
to program variables when user clicks the dialog box’s “OK
button)

« OnOK() then calls CDialog ::EndDialog ()

— So dialog box disappears and DoModal() returns
— Returns IDOK or IDCANCEL depending on user action

Adding a Modal Dialog Box to the o =
Sketching MFC Application
= Will allow the user to specify where -
the text is to be displayed =il

« And what the text will be

L




« Create a new Visual C++, MFC, SDI
application (as usual)
= Add the sketching code (see earlier
example)
= Add anew “Text” menu item (ID_TEXT)
= Add the new dialog box
— Project/Add Resource/Dialog/New
— Change ID to IDD_TEXT
— Caption: “Enter Text”
= Use the dialog box editor to drag over 3
static and 3 edit controls:
— Static Controls: “x", “y”, “Text String”
— Edit controls: IDC_X, IDC_Y, IDC_TESTEDIT

= Create the new Dialog Class

—Right click on an unoccupied area of the
dialog box & choose “Add Class” to
bring up the “MFC Class Wizard” Dialog
Box

— Class name: “ CTextDIg”

— Base class: “ Cdialog”

= Add New Class Variables (and
connect to controls)

—In Class View, right click on CTextDIg &

choose Add variable
* In resulting “Add member variable Wizard”
— Check “Control Variable” check box
— Control ID: IDC_X
— Category: Value
— Variable type: UINT
— Variable name: m_x

—In same way, attach UINT m_y to IDC_Y

— And Cstring m_text to IDC_TEXTEDIT

—_——m—————————————————————————————|

= Add handler code to newCView “ Text”
menu item
— In Class View select CView-derived class
— In Properties Wizard Box “Events” (lightning
bolticon):
« Scroll down to ID_TEXT
+ Add Command handler OnText()
« Edit the resulting code by adding:
CTextDlg dlg;
Dlg.DoModal();
pDC = GetDC(); (Assumes a CDC* pDC variable)
pDC -> TextOut(dlg.m_x, dig.m_y, dlg.m_text,
Istrlen(dlg.m_text) );
« At top of Cview .cpp file underneath the
other include statements, add:

= #include Tnvfl‘]lg h




