CS-360
GUI & Windows Programming

Dr. Richard R. Eckert
Computer Science Department
SUNY Binghamton
Fall, 2008

Section 01: MWF, 8:30-9:30 A.M., S2-243
Section 02: TR, 8:30-9:55 A.M., EB-N25

Course Information

Office: EB-N6

Phone: 777-4365

Office Hours: W, R 1:30-2:30 P.M.
Email: reckert@binghamton.edu

http://www .cs.binghamton.edu/~reckert/

— CS-360 link for syllabus, notes, programs,
assignments, €tc.

Class Listserv:
— CS360-L @listserv.binghamton.edu
TA Information: TBA

Course Prerequisites

» CS5240, Data Structures
» Some knowledgeof C or C++

Text Book | nformation

* Required:
— Deitd, et.dl., “Visua C# 2005: How to Program”,
2nd Edition, PH/Pearson, 2005, ISBN 0-13-152523-9
» Recommended:

— Kate Gregory, “ Specia Edition Visua C++ 6 .NET”,
Que, 2002, ISBN 0-7887-2466-9

— Bradley & Millspaugh, “Programming in C# 2005”,
McGraw-Hill, 2008, ISBN 978-0-07-351718-6
* Many Books on Reserve
— See Resarve List in Course Syllabus

Softwar e

» Microsoft Visual Studio 2005 or 2008 Professional
Edition
— 2005 available at most University public computer
facilities
— Get your own copy of either

* From Microsoft Academic Alliance
— All registered BU students
— Will be made accessible after “Add/Drop” deadline

* |t also comes with the Bradley & Millspaugh book
o Smaller NET 2005 or 2008 “Express Editions” free
from Microsoft:

— Visua C++ 2005/08, Visua C# 2005/08, SQL Server
2005/08 Visua Web Developer 2005/08 Express Editions

— http://msdn.microsoft.com/vstudio/express/

Evaluation

e Programming Assignments 40%
* Term Examinations (2) 40%
* Quizzes 10%
 Final Project 10%

Policies
* Assignments
— Individual

— Due on due date, but can be turned in to CS-360
drop drawer in filing cabinets outside CS
Department any time that day or night

— 5% off for every day late
» Weekends and holidays not included

— No assignments accepted more than one week late
« Originality
— Any non-original work (work found to be
copied) will be groundsfor an F in the course

— Individual assignments
» Studentsdo NOT work in teams

Cour se Schedule (weekly)

1. Intro to GUIs & Windows Programming,
Using Visua Studio
2. Win32 API Programming

3. MFC Programming: App/Window &
Doc/View Approaches

4.Visua Studio .NET & C#, Classes, Windows
Forms, Events, Essential Structures

5. Graphics, Animation, Timers, DateTime
6. Mouse, Images, Bitmaps

7. Text, Fonts, Keyboard, Printing

8. Pages & Transformations, Menus

Cour se Schedule (continued)

9. Controls: Buttons, Labels, TextBoxes,
Scrollbars, Listboxes, etc.

10. Dialog Boxes, Common Dialog Boxes,
File/Stream 1/O

11. Clipboard, Multimedia
12. Network Programming, TCP/IP Sockets
13. DataBasesand ADO.NET

14. XML, Web Forms, Web Controls,
ASP.NET

15. ASP.NET Web Services

16. Other Windowing Systems: X Windows,
Java AWT/Swing

Introduction To GUlsand
Windows Programming

User Interface

» Connection between the computer and
the user

e Two types:
—Command Line
—GUI: Graphical (Visual)

Command Line Interfaces
User types commands, must remember valid commands
Results Scroll by
Text-based
“Interactive’ but hard to use
Only kind of interface available until 1970s

Visual (Graphical) Interfaces

» Show Graphical Objects on screen
— e.g., images, icons, buttons, scroll bars
» User interacts using pointing device
* Intuitive
— Objects can be dragged, buttons pushed, etc....
» Better way of using screen space

— Panes can overlap
— Underlying panes can be brought to forefront

— Desktop metaphor (like papers on a desk)
» Wdll, not exactly!

Graphical Interfaces, Continued

» Use graphics to organize user workspace
—Visually rich way of conveying information

» Environment allows many tasks to be
performed simultaneously

 Different tasks share screen space
s WYSIWYG

Main Feature of GUIs
* The Window

— Rectangular area of screen onto which a
program draws text and graphics

— User interacts with program using a
pointer device to select objectsinside

— Some window components:

* border, title bar, client area, menu bar, tool
bars, scroll bars, max/min/close buttons,
etc.

Brief History of GUIs

1968. DARPA-funded Stanford Research
| nstitute (Doug Engelbart)

First windows (screen sliced up into
overlapping panes)

— Multi-window display

Only textual information

— Underlying windows could be popped to the top
Selection done with light pen

— Imprecise and hard to use so he invented the
mouse

Xerox PARC--Alto Computer

= 1970s

& First GUI

= Cursor tracked position of mouse

= Windows with precise text

= Digplayed more than just text

= First interactive painting program

= Technology “acquired” by Apple and later by
Microsoft
= Wozniak & Jobs ... Bill Gates

«=Book: “Firein the Valley’
«=Movie: “Pirates of Silicon Valley”

Recent History (PCs)

1977: First Personal Microcomputers:

— Radio Shack TRS-80, Commodore Pet, Applell
1981: IBM PC, DOS (command line)

1983: Apple Lisa (failure) —first PC GUI
1984: Apple Macintosh — standard for GUIs

1985: Microsoft released Windows 1.0 OS for
Intel-8086/88 architecture

— Difficult to program
—Prone to crashing
— Needed hardware not yet available

— First of many versions of Windows for 80x86
culminating in XP and Vista

Many Subsequent Versions of

Windows— Most Recent:

» Take advantage of architectural features
built into Intel Pentium processors

— 4 Gigabytes of flat memory per process
- PVAM

— Thread-based pre-emptive multitasking
* Networking + integrated Web functionality
* More secure and reliable
» Fancy user interface
 Latest multimedia(DVD)
» Microsoft .NET Framework isbuiltin

Microsoft .NET Framework

— A software system that addresses new software
requirements

* 1. Windows Forms for standalone GUI and Windows
applications

» 2. New paradigm for Windows distributed applications
» 3. New features for manipulating relational data bases
» Language Independent

* Architecture can exist on multiple platforms

* Programs can be written in multiple languages

* New way of designing & creating applications that share work
between components
— local and distributed over the internet

» New security and reliability features

10

Other GUI-Windowing Systems

* IBM OS/2: Presentation Manager

* Sun Microsystems: Java
— AWT
— Swing
— Patform independent
— JDK isfree

e The X Window System
— Developed a MIT, late 1980s
— Networked graphics programming interface
— Independent of machine architecture/OS (but
mostly used under UNIX/LINUX)

Course Content

» Microsoft Windows Visual Studio .NET
— Using Microsoft Visud Studio

— Win32 API Programming and MFC Programming using
Visual C++

— The .NET Framework: Programming Windows Forms,
Web Applications, Web Services, and Data Base
Applications using C#

o If time:
— Introduction to X-Windows Programming
— Java AWT/Swing

» Example programs and notes online at:

o http://www.cs.binghamtonedu/~reckert/
* “CS-360" link

11

Windowing Systems Features

e Congstent user interface

— Information displayed within a window

— Menus to initiate program functions

— Make use of child window “controls’

— Point and click user interaction with window
» All programs have same look and feel
» Same built-in logic to:

— draw text/graphics

— display menus

— receive user input

«controls, dialog boxes, use of mouse

Multitasking

Many programs run “simultaneously”

Each program creates/controls its own
window

User interacts with program via its window

User can switch between programs by
switching between windows

12

Windows M ultitasking
Features

» Cooperative (Windows 3.xX)
— Programs must give up control so others can run
— Programs coexist with other programs

* Preemptive (Windows NT, 95, 98, XP, 2000,
2003, Vista)

— Thread-based: System timer alocates time dices
to running program threads

» Under both systems, code is moved or
swapped into and out of memory as needed

Windows Memory M anagement

o Older versions: 16-bit, segmented memory
— Dictated by processor architecture

— Hard to program
* 64 kilobyte memory segment limitation

* Newer versions. 32/64-hbit, flat memory model
— Easier to program
— Each process sees 4 Gigabytes of virtual memory
» Asold programs terminate, new ones start
— Code swapped into and out of memory
— Windows OS does this automatically

» Programs can share code located in other files
(Dynamic Linking)

13

Static vs. Dynamic Linking

 Static Linking
— Code incorporated into executable at link
time
e Dynamic Linking
—Code s put into separate modules (DLLS)
—These are loaded at run time as needed

Compiled.obj File Buntime Library File

Linker Conta%ns several
functions

Finished Executable Program

Includes two library functions

Static Linking

14

Import Library contains
Compiled.obj File DLL ftn. relocation info.

@/

Dynamic Link Library

Executable Pgm.

BEelocation
Info.

Calls ftne. in DLL when needed

Ojects loaded intc memory

Dynamic Linking

Pros/Cons of Dynamic Linking

Smaller programs (code is not in program)
DLL can be used by many programs with
no memory penalty

— Only loaded once!

Disadvantages.:

— DLL must be present at run time ==> no
standalone programs

—“DLL Hdl” when new DLL versons come out

Most of the Windows OS isimplemented as
DLLs

15

Device Independent Graphics

» Windows programs don’t access hardware
devices directly

* Make callsto generic functions within the
Windows ‘ Graphics Device Interface’ (GDI
or GDI+)

» The GDI/GDI+ trand ates these into HW
commands

Program —> GDI — > Hardware

Windows API

« Application Program Interface

& The interface between an application and the
Windows OS
= A library of functions Windows programs
can call
= Several versions
= Win32 APl most important

#(32 bit apps for Windows
NT/95/98/X P/2000/2003/Vista)

16

Classical Win32 APl Windows
Programming

Use C to access raw API functions directly
No C++ class library wrappers to hide API
— But C++ compiler can be used

Hard way to go, but most basic

Faster executables

Provides understanding of how Windows OS
and application program interact

Establishes a firm foundation for MFC and
NET programming

Class-based Windows Programming

* “Microsoft Foundation Class’ Library
(MFC)

* Microsoft NET “Framework Class Library”
(FCL)

» Borland' s “Object Window Library”
(OWL)

» Characteristics:
— Encapsulate the API functions into classes

— Provide alogical framework for building
Windows applications

— Object Orientation means reusable code

17

MFC Library

e Microsoft’'sfirst C++ Interface to Win32 API

» Most basic object oriented approach to
Windows programming

» Some 200 classes
» API functions encapsulated in the MFC
 Classes derived from MFC do grunt work
 Just add data/functions to customize

— Or derive your own classes from MFC classes
* Provides a uniform application framework
 Fast executables

C++ Windows Application

MFC Library

l

Win3?2 APT

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

18

Microsoft Visual Studio
Application Developer’'s IDE

Environment for creating different kinds of Windows apps

— CI/C++ programs using Win32 API

— C++ programs using MFC

— Multilanguage program development using .NET Framework Class
Library

Some Developer Studio IDE Components

— Text/Resource Editors

— C, C++, C#, Visua Basic, J, etc. Language Compilers

— Resource Compilers

— Linker

— Debugger

— Wizards

— On-lineHelp

Details later

Microsoft .NET Framework

— A software system that addresses new SW requirements
* 1. Windows Forms: standalone Windows applications
* 2. Windows distributed applications

— ASP.NET
— ADO.NET

* Language Independent

» Platform Independent Architecture

» New program development process
— Object oriented

— Providesincreased productivity
— New vision for using the Internet in software devel opment

* New security and reliability features

19

Components of .NET Framework
e Language compilers

The .NET Framework Class Library (FCL)

— Organized into “namespaces’

* like packagesin Java

— Handle thingslike: 1/0 (simple & file),
Windows Forms, Web Forms, Windows
Controls, User Interfaces, Drawing, Threading,
Exceptions, Networking, Web Services, Data
Bases (ADO), XML, ASP, Security,
Collections, ... lots of others

Common Type System (CTYS)

Common Language Specification (CLYS)

Common Language Runtime (CLR)

NET Architecture

Cremred

Microsoft NET Fr')amewor'k Architecture

[mssREN]

Microsoft
4 c# 4 JScript® 4

Common Language Specification

Framework Class Library

Common Language Runtime

=
]
o
)]
=
=
=
w
[==
S
wm
—
=
=
{=]
=
=
m
_‘

Windows LINUX

20

Compilation in the NET
Framewor k

@

| Compiler | | Compiler |

Compiler

MSTL Assembly

Unmanaged Code

Common Language Funtine JIT Compiler |

MManaged Code Common

Language
CLE Services Runtime
I

Win32APT + Operating System

The .NET Common Language Runtime

-NET PE Files (Metadata and IL)

© CLR's Virtual Execution Engine

Class Loader
" JIT Compilation

Verifier
AT Compiller

Execution Support and Management
Garbage milecton, secunty engine, code manager,
exception manager, thread support, et

Maror CLR components: the Virtual Execution System (VES)

21

NET Framework & theCLR

* Why two compilations?

— Platform independence
» .NET Framework can beinstalled on different platforms
» Execute .NET programs without any modifications to code
* E.g., “Mono”: A .NET Development System Project for LINUX
» Microsoft SSCLI (“Rotor”) free academic version of .NET
— Language independence
* Programs may consist of several .NET-compliant languages
» Old and new components can be integrated
» .NET programs not tied to a particular language

» Other advantages of CLR
— Execution-management features

» Manages memory, security and other features
— Relieves programmer of many responsibilities
— More concentration on program logic

— It'salso fast (compared to Java Virtua Machine)

Sequential Programming
Ver sus
Event-driven Programming

22

Sequential Programming (Console
Applications)

= Standard programming--program solicits input
(polling loop)

=« Approach follows a structured sequence of events
= Example--averaging grades:

& |nput name

& Input first grade

& |nput second grade

& Input third grade, etc.

= Calculate average

= Output average

Event-Driven Programming

Designed to avoid limitations of sequential,
procedure-driven methodologies

OS processes user actions (events) as they
happen: non-sequential

Program doesn’t solicit input

OS detects an event has happened (e.g..,
there’ sinput) and sends a message to the
program

Program then acts on the message

M essages can occur in any order

23

Lpplication Operating System

Event Interpreter

Messages:

I have a name
I have a grade
Message Compute the average

User Actions
(Events)

é_____L——— Type a hame

Type a nunber

Click 'Compute

End b wessage

bverage' button

Others--in
any segquence

The Event-Driven Programming Paradigm

Sequential vs. Event-Driven Programming

 Standard Sequential programming:

— Program does something & user responds

— Program controls user
* the tail wags the dog

» Event-Driven Programming:

— User does something and program responds

— User can act at any time

— User controls program
* the dog wags the talil

— OSredlly isin control (coordinates message
flow to different applications)

— Good for apps with lots of user intervention

24

