O0O00o000000OO I o rrrrrnaTrn

CS-360
GUI & Windows Programming

Dr. Richard R. Eckert
Computer Science Department
SUNY Binghamton
Fall, 2001

MWEF, 2:20-3:20 P.M.
AA-GO7

O0O00o000000OO I o rrrrrnaTrn

Course Information
m Office: EB-N6
m Phone: 777-4365
m OfficeHours. TBA
m Email: reckert@binghamton. edu

m http://www.cs.binghamton. edu/~reckert/

& CS-360 link for syllabus, notes, programs,
assignments, etc.

m ClassListserv:
« ¢s360-1@listserv.binghamton.edu
m TA Information: TBA

Oo0oo0000O0MOO I r o rrrrrm

Course Prerequisites

m CS-220, Computer Organization and
Assembling Language Programming
m CS-240, Data Structures

m Some knowledge of C or C++ helpful
« Not essential

Oo0oo0000O0MOO I r o rrrrrm

Text Book Information
m Required:

« Ivor Horton, "Beginning Visual C++ 6 (A
Complete Visua C++ Package)," Wrox Press,
1998, ISBN 1-86100-196-7. (For MFC)

m Recommended:

Charles Petzold, "Programming Windows,"
Fifth Edition, Microsoft Press, 1999, ISBN 1-
57231-995-X. (For Win32 API)

o Paul E. Kimball, "The X Tookit Cookbook,"
Prentice Hall PTR, 1995, ISBN 0-13-973132-6.
(For X-Windows Programming)

m Many Books on Reserve

Oo0oo0000O0 O I rrrrrmro

Evaluation

m Programming Assignments 45%
m Term Examinations (2) 40%
m Fina Project 15%

Oo0oo0000O0 O I rrrrrmro

Policies
m Assignments

o Individua

« Due on due date, but can be turned in to CS-360
drop drawer outside CS Department any time
that day or night

+ 5% off for every day late

+ Weekends and holidays not included

+ No assignments accepted more than one week

late
m Originality

+ Any work found to be copied will be grounds

for an Fin the course

O0O00o000000OO I o rrrrrnaTrn

Course Schedule (weekly)

1. Intro to GUIs & Windows Programming

2. Using Visuad Studio,Win32 API Programming

3. MFC Programming: App/Window Approach

4. MFC Programming: Doc/View Approach

5. Graphics, Animation, Bitmaps, Timers

6. Windows Controls, Dialog Boxes

7. Printing, Mapping modes, Seridization, File
/O

8. Clipboard, DLLs

9. Multimedia, Data Bases

O0O00o000000OO I o rrrrrnaTrn

Course Schedule (continued)

10. ActiveX Controls

11. Multitasking & Multithreading

12. Network & Web Programming

13. Introduction To Visua Basic

14. The X Window System

15. X Toolkit Intrinsics, OSF/Motif Toolkit

Oo0oo0000O0MOO I r o rrrrrm

Introduction To GUIsand
Windows Programming

Oo0oo0000O0MOO I r o rrrrrm

User Interfaces

m Connection between the computer and
the user

B Two types:
+ Command Line
+ GUI--Graphical (Visua)

Oo0oo0000O0 O I rrrrrmro

Command Line Interfaces

m User types commands ==> must
remember

m Results Scroll by
m Text-based
m “Interactive’ but hard to use

m No direct interaction between user and
screen

Oo0oo0000O0 O I rrrrrmro

Visual (Graphical) Interfaces

m Show Graphical Objects on screen
+ eg., images, icons, buttons, scroll bars
m User interacts using pointing device
m Intuitive
Objects can be dragged, buttons pushed, €tc....
m Better way of using screen space
Panes can overlap
+ Underlying panes can be brought to forefront
+ Desktop metaphor (like papers on a desk)
+ Well, not exactly!

O0O00o000000OO I o rrrrrnaTrn

Graphical Interfaces, Continued

m Use graphics to organize user workspace

m Environment alows many tasksto be
performed simultaneously

m Different tasks share screen space
m Visudly rich way of conveying information
m WY SIWY G display of documents

O0O00o000000OO I o rrrrrnaTrn

Main Feature of GUIs;

m THE WINDOW

+ Rectangular area of screen onto which a
program draws text and graphics.

+ User interacts with program using pointer
deviceto select objectsinside.

+ Some window components:

+ border, title bar, client area, menu bar, scroll bars,
max/min/close buttons, tool bars, etc.

Oo0oo0000O0MOO I r o rrrrrm

Brief History of GUIs

m 1968: ARPA-funded Stanford Research
Center (Doug Engelbart)

m First windows (screen dliced up into
overlapping panes)
m Only textua info

m Underlying windows could be popped to the
top

m Selection done with light pen
m Invented the mouse

Oo0oo0000O0MOO I r o rrrrrm

Xerox PARC--Alto Computer

+1970

oFirst GUI

+Cursor tracked position of mouse
SWYSIWYG

+Windows with precise text

o Displayed more than just text

o First interactive painting program
e Technology “acquired” by Apple

Oo0oo0000O0 O I rrrrrmro

Recent History (PCs)

m 1983: Apple Lisa (failure)
m 1984: Apple Macintosh--standard for GUIs
m 1985: Microsoft rel eases Windows 1.0
+ Difficult to program
+ Proneto crashing
+ Needed hardware not yet available
m 1987: Windows 2.0 («till real mode only)

m 1988: Windows/386 (Virtual 86 mode on
386==>multiple DOS sessions in windows)

Oo0oo0000O0 O I rrrrrmro

Recent History (Microsoft)

m 1990: Windows 3.0
« 80x86 protected mode, up to 16 Meg memory,
cooperative multitasking
m 1992: Windows 3.1, Windows for
Workgroups 3.11

« TrueType fonts, multimedia, protected mode
only; Networking
m 1993: Windows NT
« 32-bit flat memory space, 16 MB, thread-based

pre-emptive multitasking, separate from DOS,
multi-platform, networking, secure)

O0O00o000000OO I o rrrrrnaTrn

Recent History (Microsoft)

m 1995; Windows 95

+ Runs on 4 Meg, long file names, plug and play,
new controls, new desktop/window style

o Hybrid 16/32 bit OS, depends on DOS, lacks
security of NT, no portability to RISC
m 1998: Windows 98
+ Integrated Web functionality
m 2000: Windows 2000
o Like 98, more stable, independent of DOS

O0O00o000000OO I o rrrrrnaTrn

Other GUI-Windowing Systems

m |IBM OS/2: Presentation Manager
m Sun Microsystems. Java
* AWT
* Swing
« Platform independent
¢ DK isfree
m The X Window System
« Developed at MIT
+ Networked graphics programming interface
« Independent of machine architecture/OS (but
most used under UNIX)

Oo0oo0000O0MOO I r o rrrrrm

Course Content

m Microsoft Windows Visua C++

+ Using Microsoft Developer Studio (Visua
Studio 97)

+ Win32 APl Programming

+ MFC Programming

+ Visua Basic

+ X-Windows Programming

+ Example programs and notes online at:

+ http://www cs.binghamton.edu/~reckert/
+“CS-360" link

Oo0oo0000O0MOO I r o rrrrrm

Win32 APl Programming

Event-Driven Programming (M essages)
Menus and other Resources

Text and Graphics

Mouse and Keyboard

Bitmaps, Animation, Timers

Child Window Controls

Child and Popup Windows

Dialog Boxes

The Clipboard

Oo0oo0000O0 O I rrrrrmro

MFC Programming

The MFC Class Hierarchy

The Application/Window Approach

The Document/View Approach

Using “AppWizard” & “ClassWizard”
Drawing, Menus, & Dialog Boxes with MFC
File Handling and Printing

Dialog-Based MFC Applications & Common Dialog Boxes
DLLs; Windows Multimedia

Working with data bases (ODBC)
Multitasking and Multithreading

OLE, ActiveX Controls

Network Programming (TCP/IP)
HTML-based Applications with MFC

Oo0oo0000O0 O I rrrrrmro

I ntroduction to Windows
Programming in Visual Basic

m A quick introduction

O0O00o000000OO I o rrrrrnaTrn

X-Windows Programming

m Client/Server Model
+ X Display Servers

m XLIB Programming

m Toolkitsand Widgets
+ XtIntrinsics
+ OSF/Motif

O0O00o000000OO I o rrrrrnaTrn

Windowing Systems Features

mConsistent user interface
+ Display within awindow
+ Menusto initiate program functions

+ Make use of child window “controls’:

+ predefined windows used with main program
window

+examples: buttons, scroll bars, edit controls,
list boxes, drop-down list boxes, combo
boxes

+Dialog box--popup window containing
several controls

Oo0oo0000O0MOO I r o rrrrrm

Consistent User Interface,
continued

m Programs have same look and fedl
m Same built-inlogic to:
« draw text/graphics
« display menus
& recelve user input
econtrols, dialog boxes, use of mouse

Oo0oo0000O0MOO I r o rrrrrm

Multitasking

m Every program acts like a RAM-resident
popup

m Programs run * simultaneously”

m Each program occupies its own window
< User interactswith program in its window

m User can switch between programs

Oo0oo0000O0 O I rrrrrmro

Windows Multitasking Features

m Cooperétive (Windows 3.xx)
+ Programs give up control so others can run
+ Programs coexist with other programs
m Preemptive (Windows NT, 95, 98)
Thread-based: System timer alocates time
dlices to running program threads
m Under both systems, code is moved or
swapped into and out of memory as needed

Oo0oo0000O0 O I rrrrrmro

Windows Object Orientation

m A window is handled like a C++ object
« Has a user-defined type (Windows class)
« Instances of class created at runtime
+ Messages sent to windows affect their behavior

O0O00o000000OO I o rrrrrnaTrn

Windows Memory Management

m Older versions: 16-hit, segmented memory
Dictated by processor architecture
+ Hard to program

m Newer versions: 32-hit, flat memory model
« Easier to program

m Asold programs terminate, new ones start
+ Code swapped into and out of memory

m Fragmentation can occur

m Windows must consolidate memory space

m Moves blocks of code/data continually

O0O00o000000OO I o rrrrrnaTrn

Memory Management, continued

m Programs can share code located in other
files (Dynamic linking)

Oo0oo0000O0MOO I r o rrrrrm

Static vs. Dynamic Linking
m Static Linking

+ code incorporated into executable at link time
m Dynamic Linking
+ Codeis put into separate modules
+ These are loaded at run time
Linker generates relocation information

+ Only that is put into executable
+ Smaller programs

+ DLL loaded when needed

+ Relocation info used to get DLL function code
as needed

Compiled.obj File

Runtime Library File

Contains several
functions

Finished Executable Program
Includes twe library functions

Static Linking

Compiled.obj File

Import Library contains
DLL ftn. relocation info.

Linker

Dynamic Link Library

Executable Pgm.l

Relocation
Info.

Calls ftns. in DLL when needed

Ojects loaded into memory

Dynamic Linking

Oo0oo0000O0 O I rrrrrmro

Pros/Cons of Dynamic Linking

m Smaller programs (code is not in program)
m DLL can be used by many programs with

no memory penalty
+ Only loaded once!

m Updatesto DLLsdon’t require
recompilation of programs using them

m Disadvantage--DLL must be present a run
time ==> no standa one programs

O0O00o000000OO I o rrrrrnaTrn

Device Independent Graphics

Interface

m Windows programs don't access hardware devices
directly

m Make callsto generic functions within the
Windows ‘ Graphics Device Interface’ (GDI)

m The GDI tranglates these into HW commands

Program =% GDI == Hardware

O0O00o000000OO I o rrrrrnaTrn

Device Independent Graphics Interfacd

m May use device drivers (HW control
programs)

Program [54GDI Driver|chy Hardwarg

m Thus graphics1/O donein a“standard” way

m Programswill run unatered on other HW
platforms

Oo0oo0000O0MOO I r o rrrrrm

Windows API

m The interface between an application and
Windows

m A library of functions Windows programs
can cal

m Severa versions
+ Winl6 (16 bit apps for Windows 3.xx)
* Win32 (32 bit apps for Windows NT/95)

« Win32s (patches Win16 to create 32 bit apps
that run under Windows 3.xx)

Oo0oo0000O0MOO I r o rrrrrm

Classical Win32 APl Windows
programming
m Use C to accessraw API functions directly
m No C++ classlibrary wrappersto hide API
m Hard way to go, but most basic
m Faster executables
m Provides understanding of how Windows
and application program interact
m Establishes afirm foundation for MFC
programming
m Wewill try to do both

Oo0oo0000O0 O I rrrrrmro

Class-based MFC Windows
Programming

m Microsoft' sMFC Library
m Borland’'sOWL Library
m Characteristics:
« Encapsulate the API functionsinto classes

« Provide alogica framework for building
Windows applications

Oo0oo0000O0 O I rrrrrmro

MFC Library

m Microsoft's C++ Interface to Windows API
m O-O Approach to Windows Programming
m Some 200 classes

m API functions encapsulated in the MFC

m Classes derived from MFC do grunt work
m Just add datalfunctions to customize app

m Provides a uniform application framework

C++ Windows Application

MFC Library

Win32 API |

l

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

O0O00o000000OO I o rrrrrnaTrn

Microsoft Visual C++

m Developer Studio IDE

m 2 Windows application development systems
« C programs using Win32 API
& C++ programsusing MFC
m Some Developer Studio IDE Components
+ Text/Resource Editors
C/C++, Resource Compilers
o Linker
+ Debugger
* Wizards
¢ On-lineHelp

Oo0oo0000O0MOO I r o rrrrrm

Some MFC Characteristics

m Reusable code
m Smaller executables
m Faster program devel opment
« But a steep learning curve is required
« And thereislessflexibility
m Programs must bewrittenin C++
m Require the use of classes==>
+ Programmer must know OOP

Oo0oo0000O0MOO I r o rrrrrm

Sequential Programming
(Console Apps)
m Standard programming--program solicits
input (polling loop)
m Approach follows a structured sequence of
events
m Example--averaging grades:
< Input name
< Input first grade
< Input second grade
< Input third grade, etc.
« Calculate average
< Output average

Oo0oo0000O0 O I rrrrrmro

Event-Driven Programming

m Designed to avoid limitations of sequential,
procedure-driven methodologies

m Process user actions (events) as they
happen: non-sequential

m Program doesn’t solicit input

m OS detects an event has happened (e.g..,
there'sinput) and sends amessage to the
program

m Program then acts on the message

m Messages can occur in any order

Application Operating System User Actions
(Events)
Event Interpreter (—|_ F——
Messages:
Type a nuber

Loop

Message

I have a name
I have a grade

Click 'Compute
Compute the average

Average' hutton

Others--in
any Sequence

L meszage

The Event-Driven Programming Paradigm

O0O00o000000OO I o rrrrrnaTrn

Sequential vs. Event-Driven Programming
m Standard Sequentia programming:

+ Program does something & user responds

« Program controls user (the tail wags the dog)
m Event-Driven Programming:

+ Used by Windows

+ User does something and program responds

o User can act at any time

« User controls program (the dog wags the tail)

+ OSreally isin control (coordinates message

flow to different applications)
+ Good for apps with lots of user intervention

