
1

CS-360
GUI & Windows Programming

Dr. Richard R. Eckert
Computer Science Department

SUNY Binghamton

Fall, 2001

MWF, 2:20-3:20 P.M.
AA-G07

Course Information
n Office: EB-N6

n Phone: 777-4365

n Office Hours: TBA

n Email: reckert@binghamton.edu

n http://www.cs.binghamton.edu/~reckert/
u CS-360 link for syllabus, notes, programs,

assignments, etc.

n Class Listserv:
u cs360-l@listserv.binghamton.edu

n TA Information: TBA

Course Prerequisites

n CS-220, Computer Organization and
Assembling Language Programming

n CS-240, Data Structures

n Some knowledge of C or C++ helpful
u Not essential

Text Book Information
n Required:

u Ivor Horton, "Beginning Visual C++ 6 (A
Complete Visual C++ Package)," Wrox Press,
1998, ISBN 1-86100-196-7. (For MFC)

n Recommended:
u Charles Petzold, "Programming Windows,"

Fifth Edition, Microsoft Press, 1999, ISBN 1-
57231-995-X. (For Win32 API)

u Paul E. Kimball, "The X Tookit Cookbook,"
Prentice Hall PTR, 1995, ISBN 0-13-973132-6.
(For X-Windows Programming)

n Many Books on Reserve

Evaluation

n Programming Assignments 45%

n Term Examinations (2) 40%

n Final Project 15%

Policies
n Assignments

u Individual
u Due on due date, but can be turned in to CS-360

drop drawer outside CS Department any time
that day or night

u 5% off for every day late
F Weekends and holidays not included

u No assignments accepted more than one week
late

n Originality
u Any work found to be copied will be grounds

for an F in the course

2

Course Schedule (weekly)

1. Intro to GUIs & Windows Programming

2. Using Visual Studio,Win32 API Programming

3. MFC Programming: App/Window Approach

4. MFC Programming: Doc/View Approach

5. Graphics, Animation, Bitmaps, Timers

6. Windows Controls, Dialog Boxes

7. Printing, Mapping modes, Serialization, File
I/O

8. Clipboard, DLLs

9. Multimedia, Data Bases

Course Schedule (continued)

10. ActiveX Controls

11. Multitasking & Multithreading

12. Network & Web Programming

13. Introduction To Visual Basic

14. The X Window System

15. X Toolkit Intrinsics, OSF/Motif Toolkit

Introduction To GUIs and
Windows Programming

User Interfaces

n Connection between the computer and
the user

n Two types:
u Command Line

u GUI--Graphical (Visual)

Command Line Interfaces

n User types commands ==> must
remember

n Results Scroll by

n Text-based

n “Interactive” but hard to use

n No direct interaction between user and
screen

Visual (Graphical) Interfaces

n Show Graphical Objects on screen
u e.g., images, icons, buttons, scroll bars

n User interacts using pointing device

n Intuitive
u Objects can be dragged, buttons pushed, etc....

n Better way of using screen space
u Panes can overlap
u Underlying panes can be brought to forefront

u Desktop metaphor (like papers on a desk)
F Well, not exactly!

3

Graphical Interfaces, Continued

n Use graphics to organize user workspace

n Environment allows many tasks to be
performed simultaneously

n Different tasks share screen space

n Visually rich way of conveying information

n WYSIWYG display of documents

Main Feature of GUIs:

n THE WINDOW
u Rectangular area of screen onto which a

program draws text and graphics.

u User interacts with program using pointer
device to select objects inside.

u Some window components:
F border, title bar, client area, menu bar, scroll bars,

max/min/close buttons, tool bars, etc.

Brief History of GUIs

n 1968: ARPA-funded Stanford Research
Center (Doug Engelbart)

n First windows (screen sliced up into
overlapping panes)

n Only textual info

n Underlying windows could be popped to the
top

n Selection done with light pen

n Invented the mouse

Xerox PARC--Alto Computer

u1970

uFirst GUI

uCursor tracked position of mouse

uWYSIWYG

uWindows with precise text

uDisplayed more than just text

uFirst interactive painting program

uTechnology “acquired” by Apple

Recent History (PCs)

n 1983: Apple Lisa (failure)

n 1984: Apple Macintosh--standard for GUIs

n 1985: Microsoft releases Windows 1.0
u Difficult to program
u Prone to crashing

u Needed hardware not yet available

n 1987: Windows 2.0 (still real mode only)

n 1988: Windows/386 (Virtual 86 mode on
386==>multiple DOS sessions in windows)

Recent History (Microsoft)

n 1990: Windows 3.0
u 80x86 protected mode, up to 16 Meg memory,

cooperative multitasking

n 1992: Windows 3.1, Windows for
Workgroups 3.11
u TrueType fonts, multimedia, protected mode

only; Networking

n 1993: Windows NT
u 32-bit flat memory space, 16 MB, thread-based

pre-emptive multitasking, separate from DOS,
multi-platform, networking, secure)

4

Recent History (Microsoft)

n 1995: Windows 95
u Runs on 4 Meg, long file names, plug and play,

new controls, new desktop/window style

u Hybrid 16/32 bit OS, depends on DOS, lacks
security of NT, no portability to RISC

n 1998: Windows 98
u Integrated Web functionality

n 2000: Windows 2000
u Like 98, more stable, independent of DOS

Other GUI-Windowing Systems
n IBM OS/2: Presentation Manager

n Sun Microsystems: Java
u AWT
u Swing

u Platform independent

u JDK is free

n The X Window System
u Developed at MIT

u Networked graphics programming interface
u Independent of machine architecture/OS (but

most used under UNIX)

Course Content

n Microsoft Windows Visual C++
u Using Microsoft Developer Studio (Visual

Studio 97)

u Win32 API Programming

u MFC Programming
u Visual Basic

u X-Windows Programming

u Example programs and notes online at:
F http://www.cs.binghamton .edu/~reckert/

F “CS-360” link

Win32 API Programming

n Event-Driven Programming (Messages)

n Menus and other Resources

n Text and Graphics

n Mouse and Keyboard

n Bitmaps, Animation, Timers
n Child Window Controls

n Child and Popup Windows

n Dialog Boxes

n The Clipboard

MFC Programming
n The MFC Class Hierarchy

n The Application/Window Approach

n The Document/View Approach

n Using “AppWizard” & “ClassWizard”

n Drawing, Menus, & Dialog Boxes with MFC

n File Handling and Printing

n Dialog-Based MFC Applications & Common Dialog Boxes

n DLLs; Windows Multimedia

n Working with data bases (ODBC)

n Multitasking and Multithreading

n OLE, ActiveX Controls

n Network Programming (TCP/IP)

n HTML-based Applications with MFC

Introduction to Windows
Programming in Visual Basic

n A quick introduction

5

X-Windows Programming

n Client/Server Model
u X Display Servers

n XLIB Programming

n Toolkits and Widgets
u Xt Intrinsics

u OSF/Motif

Windowing Systems Features
nConsistent user interface

u Display within a window

u Menus to initiate program functions

u Make use of child window “controls”:
F predefined windows used with main program

window

F examples: buttons, scroll bars, edit controls,
list boxes, drop-down list boxes, combo
boxes

F Dialog box--popup window containing
several controls

n Programs have same look and feel

n Same built-in logic to:

u draw text/graphics

u display menus

u receive user input

ucontrols, dialog boxes, use of mouse

Consistent User Interface,
continued

Multitasking

n Every program acts like a RAM-resident
popup

n Programs run “simultaneously”

n Each program occupies its own window
u User interacts with program in its window

n User can switch between programs

Windows Multitasking Features

n Cooperative (Windows 3.xx)
u Programs give up control so others can run

u Programs coexist with other programs

n Preemptive (Windows NT, 95, 98)
u Thread-based: System timer allocates time

slices to running program threads

n Under both systems, code is moved or
swapped into and out of memory as needed

Windows Object Orientation

n A window is handled like a C++ object
u Has a user-defined type (Windows class)

u Instances of class created at run time
u Messages sent to windows affect their behavior

6

Windows Memory Management
n Older versions: 16-bit, segmented memory

u Dictated by processor architecture

u Hard to program

n Newer versions: 32-bit, flat memory model
u Easier to program

n As old programs terminate, new ones start
u Code swapped into and out of memory

n Fragmentation can occur

n Windows must consolidate memory space

n Moves blocks of code/data continually

Memory Management, continued

n Programs can share code located in other
files (Dynamic linking)

Static vs. Dynamic Linking

n Static Linking
F code incorporated into executable at link time

n Dynamic Linking
u Code is put into separate modules

F These are loaded at run time

u Linker generates relocation information
F Only that is put into executable

F Smaller programs

u DLL loaded when needed
u Relocation info used to get DLL function code

as needed

Pros/Cons of Dynamic Linking

n Smaller programs (code is not in program)

n DLL can be used by many programs with
no memory penalty
u Only loaded once!

n Updates to DLLs don’t require
recompilation of programs using them

n Disadvantage--DLL must be present at run
time ==> no standalone programs

7

Device Independent Graphics
Interface
n Windows programs don’t access hardware devices

directly

n Make calls to generic functions within the
Windows ‘Graphics Device Interface’ (GDI)

n The GDI translates these into HW commands

Program GDI Hardware

n May use device drivers (HW control
programs)

n Thus graphics I/O done in a “standard” way

n Programs will run unaltered on other HW
platforms

Program GDI Driver Hardware

Device Independent Graphics Interface

Windows API

n The interface between an application and
Windows

n A library of functions Windows programs
can call

n Several versions
u Win16 (16 bit apps for Windows 3.xx)
u Win32 (32 bit apps for Windows NT/95)

u Win32s (patches Win16 to create 32 bit apps
that run under Windows 3.xx)

Classical Win32 API Windows
programming

n Use C to access raw API functions directly

n No C++ class library wrappers to hide API

n Hard way to go, but most basic

n Faster executables

n Provides understanding of how Windows
and application program interact

n Establishes a firm foundation for MFC
programming

n We will try to do both

Class-based MFC Windows
Programming

n Microsoft’s MFC Library

n Borland’s OWL Library

n Characteristics:
u Encapsulate the API functions into classes

u Provide a logical framework for building
Windows applications

MFC Library

n Microsoft’s C++ Interface to Windows API

n O-O Approach to Windows Programming

n Some 200 classes

n API functions encapsulated in the MFC

n Classes derived from MFC do grunt work

n Just add data/functions to customize app

n Provides a uniform application framework

8

Microsoft Visual C++
n Developer Studio IDE

n 2 Windows application development systems
u C programs using Win32 API

u C++ programs using MFC

n Some Developer Studio IDE Components
u Text/Resource Editors

u C/C++, Resource Compilers

u Linker

u Debugger

u Wizards
u On-line Help

Some MFC Characteristics

n Reusable code

n Smaller executables

n Faster program development
u But a steep learning curve is required

u And there is less flexibility

n Programs must be written in C++

n Require the use of classes==>
u Programmer must know OOP

Sequential Programming
(Console Apps)
n Standard programming--program solicits

input (polling loop)

n Approach follows a structured sequence of
events

n Example--averaging grades:
u Input name
u Input first grade

u Input second grade

u Input third grade, etc.

u Calculate average

u Output average

Event-Driven Programming

n Designed to avoid limitations of sequential,
procedure-driven methodologies

n Process user actions (events) as they
happen: non-sequential

n Program doesn’t solicit input

n OS detects an event has happened (e.g..,
there’s input) and sends a message to the
program

n Program then acts on the message

n Messages can occur in any order

9

Sequential vs. Event-Driven Programming

n Standard Sequential programming:
u Program does something & user responds
u Program controls user (the tail wags the dog)

n Event-Driven Programming:
u Used by Windows

u User does something and program responds

u User can act at any time

u User controls program (the dog wags the tail)
u OS really is in control (coordinates message

flow to different applications)
u Good for apps with lots of user intervention

