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Abstract
Recently, a novel Log-Euclidean Riemannian metric [28]

is proposed for statistics on symmetric positive definite
(SPD) matrices. Under this metric, distances and Rie-
mannian means take a much simpler form than the widely
used affine-invariant Riemannian metric. Based on the
Log-Euclidean Riemannian metric, we develop a tracking
framework in this paper. In the framework, the covari-
ance matrices of image features in the five modes are used
to represent object appearance. Since a nonsingular co-
variance matrix is a SPD matrix lying on a connected Rie-
mannian manifold, the Log-Euclidean Riemannian metric is
used for statistics on the covariance matrices of image fea-
tures. Further, we present an effective online Log-Euclidean
Riemannian subspace learning algorithm which models the
appearance changes of an object by incrementally learn-
ing a low-order Log-Euclidean eigenspace representation
through adaptively updating the sample mean and eigen-
basis. Tracking is then led by the Bayesian state inference
framework in which a particle filter is used for propagat-
ing sample distributions over the time. Theoretic analysis
and experimental evaluations demonstrate the promise and
effectiveness of the proposed framework.

1. Introduction
For visual tracking, handling appearance variations of

an object is a fundamental and challenging task. In gen-
eral, there are two types of appearance variations: intrinsic
and extrinsic. Pose variation and/or shape deformation of
an object are considered as the intrinsic appearance varia-
tions while the extrinsic variations are due to the changes re-
sulting from different illumination, camera motion, camera
viewpoint, and occlusion. Consequently, effectively model-
ing such appearance variations plays a critical role in visual
tracking.

Hager and Belhumeur [1] propose a tracking algorithm
which uses an extended gradient-based optical flow method
to handle object tracking under varying illumination con-
ditions. In [3], curves or splines are exploited to represent
the appearance of an object to develop the Condensation
algorithm for contour tracking. Due to the simplistic rep-
resentation scheme, the algorithm is unable to handle the

pose or illumination change, resulting in tracking failures
under a varying lighting condition. Zhao et al.[22] present
a fast differential EMD tracking method which is robust to
illumination changes. Silveira and Malis [17] present a new
algorithm for handling generic lighting changes.

Black et al.[4] employ a mixture model to represent and
recover the appearance changes in consecutive frames. Jep-
son et al.[5] develop a more elaborate mixture model with
an online EM algorithm to explicitly model appearance
changes during tracking. Zhou et al.[6] embed appearance-
adaptive models into a particle filter to achieve a robust vi-
sual tracking. Wang et al.[23] present an adaptive appear-
ance model based on the Gaussian mixture model (GMM)
in a joint spatial-color space (referred to as SMOG). SMOG
captures rich spatial layout and color information. Yilmaz
[16] proposes an object tracking algorithm based on the
asymmetric kernel mean shift with adaptively varying the
scale and orientation of the kernel. Nguyen et al.[19] pro-
pose a kernel-based tracking approach based on maximum
likelihood estimation.

Yu et al.[7] propose a spatial-appearance model which
captures non-rigid appearance variations and recovers all
motion parameters efficiently. Li et al.[8] use a generalized
geometric transform to handle the deformation, articula-
tion, and occlusion of appearance. Ilic and Fua [20] present
a non-linear beam model for tracking large deformations.
Tran and Davis [21] propose robust regional affine invari-
ant image features for visual tracking. Grabner et al.[18]
develop a keypoint matching-based tracking method by on-
line learning classifier-based keypoint descriptions.

Lee and Kriegman [9] present an online learning algo-
rithm to incrementally learn a generic appearance model
for video-based recognition and tracking. Lim et al.[10]
present a human tracking framework using robust system
dynamics identification and nonlinear dimension reduction
techniques. Black et al.[2] present a subspace learning
based tracking algorithm with the subspace constancy as-
sumption. A pre-trained, view-based eigenbasis representa-
tion is used for modeling appearance variations. However,
the algorithm does not work well in the scene clutter with
a large lighting change due to the subspace constancy as-
sumption. Ho et al.[11] present a visual tracking algorithm

1



based on linear subspace learning. Li et al.[12] propose an
incremental PCA algorithm for subspace learning. In [13], a
weighted incremental PCA algorithm for subspace learning
is presented. Limy et al.[14] propose a generalized tracking
framework based on the incremental image-as-vector sub-
space learning methods with a sample mean update. In [15],
li et al. present a visual tracking framework based on online
tensor decomposition.

However, the above appearance-based tracking methods
share a problem that their appearance models are lack of
a competent object description criterion that captures both
statistical and spatial properties of object appearance. As
a result, they are usually sensitive to the variations in illu-
mination, view, and pose. In order to tackle this problem,
Tuzel et al. [29] and Porikli et al.[24] propose a covariance
matrix descriptor for characterizing the appearance of an
object. The covariance matrix descriptor, based on several
covariance matrices of image features, is capable of fully
capturing the information of the variances and the spatial
correlations of the extracted features inside an object region.
In particular, the covariance matrix descriptor is robust to
the variations in illumination, view, and pose. Since a non-
singular covariance matrix is a symmetric positive definite
(SPD) matrix lying on a connected Riemannian manifold,
statistics for covariance matrices of image features may be
computed through Riemannian geometry. Thus, we then
give a brief review of some related work on Riemannian
geometry as follows.

Tuzel et al.[25] present a new algorithm for human
detection through classification on Riemannian manifolds.
Fletcher and Joshi [26] make principal geodesic analysis on
symmetric spaces in which diffusion tensors lie. Lin and
Zha [27] present a Riemannian manifold learning frame-
work which simplifies the dimension reduction problem
into a classical problem in Riemannian geometry. Never-
theless, these existing algorithms for statistics on a Rieman-
nian manifold are based on the affine-invariant Riemannian
metric, under which the Riemannian mean has no closed
form. Generally, an iterative numerical procedure [30] is
applied to compute the Riemannian mean. Recently, Ar-
signy et al.[28] propose a novel Log-Euclidean Riemannian
metric for statistics on SPD matrices. Under this metric,
distances and Riemannian means take a much simpler form
than the affine-invariant Riemannian metric.

Based on the Log-Euclidean Riemannian metric [28], we
develop a tracking framework in this paper. The main con-
tributions of the developed framework are as follows. First,
the framework does not need to know any prior knowledge
of the object. A low dimensional Log-Euclidean Rieman-
nian eigenspace representation is learned online, and up-
dated incrementally over the time. The framework only as-
sumes that the initialization of the object region is provided.
Second, while the Condensation algorithm [3] is used for

propagating the sample distributions over the time, we de-
velop an effective probabilistic likelihood function based on
the learned Log-Euclidean Riemannian eigenspace model.
Last, while R-SVD [14, 32] is applied to update both the
sample mean and eigenbasis online as new data arrive, an
incremental Log-Euclidean Riemannian subspace learning
procedure is enabled to capture the appearance characteris-
tics of the object during the tracking.

Before starting the discussion on the proposed tracking
framework, we first give a brief review of the related back-
ground, including the covariance matrix descriptor in Sec.2
and Riemannian geometry for SPD matrices in Sec. 3.

2. Covariance matrix descriptor
Tuzel et al. [29] propose a novel covariance matrix de-

scriptor, whose details are described as follows. Denote I
as a W ×H one-dimensional intensity or three-dimensional
color image, and F as the W ×H × d dimensional feature
image extracted from I .

F (x, y) = ψ(I, x, y), (1)

where ψ is a function for extracting image features such as
intensity, color, gradients, and filter responses. For a given
rectangular region R ⊂ I , denote {fi}i=1,...,L as the d-
dimensional feature points obtained by ψ within R. Conse-
quently, the image region R can be represented as a d × d
covariance matrix:

CR =
1

L− 1

L∑

i=1

(fi − µ)(fi − µ)T (2)

where µ is the mean of {fi}i=1...L. For the tracking issue
in this paper, the mapping function ψ(I, x, y) is defined as
(x, y, (Ei)i=1...N ) where (x, y) is the pixel location; N is
the number of I’s color channels; and Ei is formulated as:(
Ii, |Ii

x|, |Ii
y|,

√
(Ii

x)2 +
(
Ii
y

)2
, |Ii

xx|, |Ii
yy|, arctan

|Ii
y|

|Ii
x|

)
(3)

where Ii
x, Ii

xx, Ii
y , and Ii

yy are intensity derivatives in the
ith color channel, Ii is the intensity value in the ith color
channel, | · | is a function returning the absolute value of
its argument, and the last term stands for the first-order
gradient orientation. If I is a grayscale image, F (x, y) is
an 9-dimensional feature image (i.e., N = 1 and d=9);
otherwise, F (x, y) is a 23-dimensional feature image (i.e.,
N = 3 and d=23). Consequently, the covariance matrix de-
scriptors of a grayscale and a color image regions are 9× 9
and 23× 23 symmetric matrices, respectively.

3. Riemannian geometry for SPD matrices
Hereinafter, denote Sym(n) as the space of real n × n

symmetric matrices, and Sym+(n) as the space of real n×
n SPD matrices.

In Sym(n), there are two fundamental operations—
matrix exponential and logarithm, which can be computed
easily as follows. Given a symmetric matrix A ∈ Sym(n),
the singular value decomposition (SVD) of A is denoted as



UΣUT , where U is an an orthonormal matrix, and Σ =
Diag(λ1, . . . , λn) is the diagonal matrix of the eigenvalues.
Hence, the matrix exponential exp(A) is formulated as:

exp(A)=
∑∞

k=0
Ak

k!

= U·Diag (exp(λ1), . . . , exp(λn))·UT .
(4)

Similarly, the matrix logarithm log(A) has the following
form:

log(A)=
∑∞

k=1
(−1)k+1

k (A− In)k

= U·Diag (log(λ1), . . . , log(λn))·UT ,
(5)

where In is an n-by-n identity matrix. In particular, the ma-
trix exponential always exists, whereas the matrix logarithm
is only available for SPD matrices.

In Sym+(n), SPD matrices lie on a connected Rieman-
nian manifold. Consequently, Riemannian metrics should
be used for statistics on SPD matrices. Typically, there ex-
ist two invariant Riemannian metrics in Sym+(n). One is
the widely used affine-invariant Riemannian metric, and the
other is the recently introduced Log-Euclidean Riemannian
metric.

Under the affine-invariant Riemannian metric, there is
no closed form for the Riemannian mean of several SPD
matrices. Generally, an iterative numerical procedure [30]
is applied to compute the Riemannian mean. Furthermore,
the distance between two points X and Y in Sym+(n) un-
der the affine-invariant Riemannian metric is computed by
‖log(X−1/2·Y ·X−1/2)‖.

Under the Log-Euclidean Riemannian metric, SPD ma-
trices lie in a Lie group G. The tangent space at the identity
element in G forms a Lie algebraH which is a vector space.
Consequently, the Riemannian mean µ of several elements
in H is simply an arithmetic mean of matrix logarithms.
Correspondingly, the Riemannian mean µ∗ of several ele-
ments in G is computed by mapping back the Riemannian
mean µ with the matrix exponential exp(·). For example,
given N SPD matrices {Xi}N

i=1, the mean µ correspond-
ing to the Lie algebra H is explicitly computed by µ =
1
N

∑N
i=1 log(Xi), and the mean corresponding to the Lie

group G is obtained from µ∗ = exp
(

1
N

∑N
i=1 log(Xi)

)
.

For more details of Lie groups and Lie algebras, refer to
[31]. Moreover, the distance between two points X and Y
in Sym+(n) under the Log-Euclidean Riemannian metric
is easily calculated by ‖log(Y)− log(X)‖.

Clearly, distances and Riemannian means under the Log-
Euclidean metric take a much simpler form than those under
the affine-invariance metric. See more details of these two
metrics in [28]. In this paper, statistics on SPD matrices are
made in the Lie algebra H.

4. The framework for visual tracking
In Sec.4.1, we first give an overview of the pro-

posed tracking framework. Then, our object representa-
tion method is introduced in Sec. 4.2. Subsequently, our
proposed incremental Log-Euclidean Riemannian subspace

Figure 1. The architecture of the tracking framework.

learning algorithm (IRSL) is detailedly described in Sec.
4.3. Finally, we discuss how to make Bayesian state in-
ference for visual tracking in Sec. 4.4.
4.1. Overview of the framework

The tracking framework includes two stages: (a) Log-
Euclidean Riemannian subspac learning; and (b) Bayesian
inference for visual tracking. In the first stage, a low di-
mensional Log-Euclidean Riemannian eigenspace model is
learned online. The model uses the proposed incremen-
tal Log-Euclidean Riemannian subspace learning algorithm
(called IRSL) to find the dominant projection subspaces of
the Log-Euclidean unfolding matrices in the five modes. In
the second stage, the object locations in consecutive frames
are obtained by maximum a posterior (MAP) estimation
within the Bayesian state inference framework in which a
particle filter is applied to propagate sample distributions
over the time. After MAP estimation, we just use the Log-
Euclidean covariance matrices of image features inside the
affinely warped image region associated with the highest
weighted hypothesis to update the Log-Euclidean Rieman-
nian eigensapace model. These two stages are executed
repeatedly as time progresses. Moreover, the framework
has a strong adaptability in the sense that when new im-
age data arrive, the Log-Euclidean Riemannian eigenspace
model follows the updating online. The architecture of the
framework is shown in Figure 1.

4.2. Object representation
In our tracking framework, an object is represented by

five covariance matrices (from Eq. (2)) of the image fea-
tures inside the object region. These five covariance ma-
trices correspond to the five modes of the object appear-
ance, respectively. We call the covariance matrix of the i-
th mode as the mode-i covariance matrix for 1 ≤ i ≤ 5,
as exemplified in the upper parts of Figure 2(b)-(f). As
time progresses, the mode-i covariance matrices {Ct

(i) ∈
Sym(d)}t=1,2,...,N constitute a mode-i covariance tensor
A(i) ∈ Rd×d×N , as exemplified in the lower parts of Fig-
ure 2(b)-(f). Denote ε as a very small positive constant(ε =
1e − 8 in the paper), and Id as a d × d identity matrix. By
the Log-Euclidean mapping (5), we transform the mode-i
covariance tensor A(i) into a new one:

LA(i) = {log(Ct
(i) + εId)}t=1,2,...,N (6)

which is called the Log-Euclidean covariance tensor. Due
to the vector space structure of log(Ct

(i)) under the Log-



Figure 2. Object representation using covariance matrices and
tensors in the five modes. A face image F t at time t is
shown in the upper part of (a) while a 3-order face tensor
F = {F t}t=1,2,... (i.e., face image ensemble) is displayed in
the lower one of (a). The upper parts of (b)-(f) correspond to
the covariance matrices (i.e., Ct

(i) for 1 ≤ i ≤ 5) of image fea-
tures in the five modes while the lower ones are associated with
the corresponding covariance tensors (i.e.,A(i) for 1 ≤ i ≤ 5).

Euclidean Riemannian metric, log(Ct
(i)) is unfolded into a

d2-dimensional vector vect
(i) which is formulated as:

vect
(i) = UT(log(Ct

(i))) = (ct(i)
1 , c

t(i)
2 , . . . , c

t(i)
d2 )T (7)

where UT(·) is an operator unfolding a matrix into a col-
umn vector. The unfolding process can be illustrated by
Figure 3(a), where the left part displays the mode-i covari-
ance tensor A(i) ∈ Rd×d×N for 1 ≤ i ≤ 5, the middle part
corresponds to the mode-i Log-Euclidean covariance tensor
LA(i) (1 ≤ i ≤ 5), and the right part is associated with the
mode-i Log-Euclidean unfolding matrix LA(i) (1 ≤ i ≤ 5)
with the t-th column being vect

(i) for 1 ≤ t ≤ N . As a
result, LA(i) is formulated as:

LA(i) =
(

vec1
(i) vec2

(i) · · · vect
(i) · · · vecN

(i)

)
. (8)

In the next section, we discuss the proposed incremen-
tal Log-Euclidean Riemannian subspace learning algorithm
(IRSL) for the mode-i unfolding matrix LA(i) (1 ≤ i ≤
5). IRSL applies the online learning technique (R-SVD
[14, 32]) to find the dominant projection subspaces of
LA(i).

4.3. Incremental Log-Euclidean Riemannian sub-
space learning

4.3.1 Introduction to R-SVD
The classic R-SVD algorithm [32] efficiently computes the
singular value decomposition (SVD) of a dynamic matrix
with newly added columns or rows, based on the existing
SVD. However, the R-SVD algorithm [32] is based on the
zero mean assumption, leading to the failure of tracking
subspace variabilities. Based on [32], Limy et al. [14]
extends the R-SVD algorithm to computing the eigenba-
sis of a scatter matrix with the mean update. The follow-
ing is an introduction to the operator CVD(·) used here-
inafter. Given a matrix H = {K1, K2, . . . , Kg} and its col-
umn mean K, we let CVD(H) denote the SVD of the matrix
{K1 − K, K2 − K, . . . , Kg − K}.

Figure 3. Illustration of mode-i Log-Euclidean unfolding and
the proposed IRSL. (a) shows the generative process of the
mode-i Log-Euclidean unfolding matrix; (b) displays the in-
cremental learning process of the proposed IRSL.

4.3.2 Incremental Log-Euclidean Riemannian sub-
space learning)

Based on R-SVD [14], IRSL presented below efficiently
identifies the dominant projection subspaces of the mode-i
Log-Euclidean unfolding matrix for 1 ≤ i ≤ 5, and is ca-
pable of incrementally updating these subspaces when new
data arrive. Given the CVD(LA(i)) = U(i)D(i)VT

(i) of the
mode-i Log-Euclidean unfolding matrix LA(i)(1 ≤ i ≤ 5)
for a Log-Euclidean covariance tensor LA(i) ∈ Rd×d×N ,
IRSL is able to efficiently compute the CVD(LA∗(i)) =
U∗(i)D

∗
(i)V

∗T
(i) of the mode-i Log-Euclidean unfolding matrix

LA∗(i) for LA∗(i) =
(LA(i) | LF (i)

) ∈ Rd×d×N∗
where

LF (i) ∈ Rd×d×N
′

is a newly-added Log-Euclidean covari-
ance subtensor and N∗ = N +N

′
. To facilitate the descrip-

tion, Figure 3(b) is used for illustration. In the left part of
Figure 3(b), the mode-i covariance tensor is shown. The
white regions represent the original covariance subtensor
A(i) while the dark regions denote the newly added covari-
ance subtensor F(i). In the middle part of Figure 3(b), the
Log-Euclidean covariance tensor is displayed. The mode-
i unfolding matrix is displayed in the right part of Figure
3(b), where the dark regions represent the mode-i unfold-
ing matrix LF(i) of the newly added Log-Euclidean covari-
ance subtensor LF (i). With the emergence of the new data
subtensors, the column space of LA∗(i) is extended. Conse-
quently, IRSL needs to track the change of the column space
of LA∗(i), and needs to identify the dominant projection sub-
space for a compact representation of LA∗(i). Based on the
CVD of the LA(i), the CVD of LA∗(i) is efficiently obtained
by performing R-SVD on the matrix

(
LA(i) | LF(i)

)
. The

specific procedure of IRSL is listed in Table 1.
In real tracking applications, it is necessary for a sub-

space analysis-based algorithm to evaluate the likelihood
between the test sample and the learned subspace. In IRSL,
the criterion for the likelihood evaluation is given as fol-
lows. Given the mode-i covariance matrix TC(i) ∈ Rd×d

(1 ≤ i ≤ 5) of features inside a test image T , and
the learned Log-Euclidean Riemannian eigenspace (i.e.,
LA(i)’s column mean L̄(i) and CVD(LA(i)) = U(i)D(i)VT

(i)

for 1 ≤ i ≤ 5), the likelihood can be determined by the sum



Input:
CVD of the unfolding matrix LA(i), i.e., U(i)D(i)VT

(i)

of a mode-i Log-Euclidean covariance tensor LA(i) ∈
Rd×d×N , newly-added covariance tensor F(i) ∈
Rd×d×N

′
, column mean L(i) of LA(i), the maintained

dimension Ri of the mode-i eigenspace, and 1 ≤ i ≤ 5.
Output:
Column mean L̄∗(i) of LA∗(i), and CVD of the un-
folding matrix LA∗(i), i.e., U∗(i)D

∗
(i)V

∗T
(i) of LA∗(i) =(LAi | LF (i)

) ∈ Rd×d×N∗
where N∗ = N + N

′
and

LF (i) represents the corresponding Log-Euclidean co-
variance tensor of F(i).
Algorithm:
1. Obtain LF (i) by transforming F(i) through (6);

2. Unfold LF (i) into LF(i) by (8);

3. [CVD(LA∗(i), L̄
∗
(i)]=R-SVD(CVD(LA(i)), LF(i)L(i), Ri).

Table 1. The incremental Log-Euclidean Riemannian subspace
learning algorithm (IRSL). R-SVD(·, ·, ·, Ri) represents that
the first Ri dominant eigenvectors are used in R-SVD [14].

of the reconstruction error norms of the five modes:

RE =
5∑

i=1

ωi·‖(vec(i)−̄L(i))−U(j)·UT
(j)·(vec(i)−̄L(i))‖2 (9)

where ωi is the mode-i weight (
∑5

i=1 ωi = 1, and ωi = 0.2
in our experiments), and vec(i) = UT(log(TC(i))) obtained
from Eq. (7). The smaller the RE, the larger the likelihood.

4.4. Bayesian state inference for visual tracking
For visual tracking, a Markov model with a hidden state

variable is generally used for motion estimation. In this
model, the object motion between two consecutive frames
is usually assumed to be an affine motion. Let Xt denote
the state variable describing the affine motion parameters
(the location) of an object at time t. Given a set of observed
imagesOt = {O1, . . . , Ot}, the posterior probability is for-
mulated by Bayes’ theorem as:

p(Xt|Ot)∝p(Ot|Xt)
∫
p(Xt|Xt−1)p(Xt−1|Ot−1)dXt−1 (10)

where p(Ot|Xt) denotes the observation model, and p(Xt|
Xt−1) represents the dynamic model. p(Ot | Xt) and
p(Xt |Xt−1) decide the entire tracking process. A parti-
cle filter [3] is used for approximating the distribution over
the location of the object using a set of weighted samples.

In the tracking framework, we apply an affine image
warping to model the object motion of two consecutive
frames. The six parameters of the affine transform are
used to model p(Xt | Xt−1) of a tracked object. Let
Xt = (xt, yt, ηt, st, βt, φt) where xt, yt, ηt, st, βt, φt de-
note the x, y translations, the rotation angle, the scale, the
aspect ratio, and the skew direction at time t, respectively.

We employ a Gaussian distribution to model the state tran-
sition distribution p(Xt |Xt−1). Also the six parameters of
the affine transform are assumed to be independent. Conse-
quently, p(Xt|Xt−1) is formulated as:

p(Xt|Xt−1) = N (Xt;Xt−1,Σ) (11)
where Σ denotes a diagonal covariance matrix whose diag-
onal elements are σ2

x, σ2
y, σ2

η, σ2
s , σ2

β , σ2
φ, respectively. The

observation model p(Ot |Xt) reflects the probability that a
sample is generated from the subspace. In this paper, RE,
defined in (9), is used to measure the distance from the sam-
ple to the center of the subspace. Consequently, p(Ot |Xt)
is formulated as:

p(Ot|Xt) ∝ exp(−RE) (12)
After maximum a posterior (MAP) estimation, we just use
the Log-Euclidean covariance matrices of features inside
the affinely warped image region associated with the highest
weighted hypothesis to update the Log-Euclidean Rieman-
nian eigensapace model.

5. Experiments
In order to evaluate the performance of the proposed

tracking framework, six videos are used in the experiments.
Videos 1 and 3 are taken from stationary cameras in dif-
ferent scenes while Videos 2, 4, 5, and 6 are recorded
with moving cameras. The first four videos consist of 8-
bit gray scale images while the last two are composed of
24-bit color images. Video 1 consists of dark and motion-
blurring gray scale images, where many motion events take
place, including wearing and taking off the glasses, head
shaking, and hands occluding the face from time to time.
In Video 2, a girl changes her facial pose over the time
with varying lighting conditions. Besides, the girl’s face
is severely occluded by a man in the middle of the video
stream. In Video 3, a pedestrian as a small object moves
down a road in a dark and blurry scene. In Video 4, a
man changes his pose and facial expression over the time
with hands occluding the face from time to time. Moreover,
each frame in Video 4 contains seven benchmark points,
which characterize the location and the shape of his face.
In Video 5, a hand moves in an indoor scene with a red
notebook occluding the hand from time to time. In the
last video, a girl’s face is occluded partially by her hand
from time to time. For the Log-Euclidean Riemannian
eigenspace representation, the size of each object region is
normalized to 20 × 20 pixels. The settings of the ranks Ri

(1 ≤ i ≤ 5) in IRSL are obtained from the experiments. The
Log-Euclidean Riemannian subspace is updated every three
frames. For the particle filtering in the visual tracking, the
number of particles is set to be 200. The six diagonal ele-
ments (σ2

x, σ2
y, σ2

η, σ2
s , σ2

β , σ2
φ) of the covariance matrix Σ in

(11) are assigned as (52, 52, 0.032, 0.032, 0.0052, 0.0012),
respectively.

Five experiments are conducted to demonstrate the
claimed contributions of the proposed IRSL. In these five



Figure 4. The tracking results of IRSL (row 1) and CTMU (row 2) over representative frames under partial occlusions and scene
blurring.

Figure 5. Tracking results of IRSL (row 1) and CTMU (row 2) over representative frames in the scenario of a severe occlusion.
experiments, we compare tracking results of IRSL with
those of a state-of-the-art Riemannian metric based track-
ing algorithm [24], referred to here as CTMU, in different
scenarios including scene blurring, small object tracking,
object pose variation, and occlusion. CTMU is a represen-
tative Riemannian metric based tracking algorithm which
uses the covariance matrix of features for object represen-
tation. By using a model updating mechanism, CTMU
adapts to the undergoing object deformations and appear-
ance changes, resulting in a robust tracking result. In con-
trast to CTMU, IRSL relies on Log-Euclidean Riemannian
subspace learning to reflect the appearance changes of an
object. Consequently, it is interesting and desirable to
make a comparison between IRSL and CTMU. Furthermore,
CTMU does not need additional parameter settings since
CTMU computes the covariance matrix of image features
as the object model. More details of CTMU are given in
[24].

The first experiment is to compare the performances of
the two methods IRSL and CTMU in handling partial oc-
clusions and scene blurring using Video 1. In this experi-
ment, Ri (1 ≤ i ≤ 5) in IRSL is set as 5. Some samples
of the final tracking results are demonstrated in Figure 4,
where rows 1 and 2 are for IRSL and CTMU, respectively,
in which six representative frames (299, 360, 394, 462, 486,
and 518) of the video stream are shown. From Figure 4, we
see that IRSL is capable of tracking the object all the time
even though the object is occluded partially from time to
time in a poor lighting condition. In comparison, CTMU is
lost in tracking from time to time.

The second experiment is for a comparison between
IRSL and CTMU on tracking a girl’s face in the scenario
of severe occlusions using Video 2. In this experiment, Ri

(1 ≤ i ≤ 5) in IRSL is set as 6. Some samples of the
final tracking results are demonstrated in Figure 5, where
rows 1 and 2 correspond to IRSL and CTMU, respectively,
in which six representative frames (154, 162, 164, 181, 186,
and 197) of the video stream are shown. From Figure 5, it
is clear that IRSL is capable of tracking the object success-
fully in the case of severe occlusion while CTMU gets lost
in tracking the object after severe occlusions.

The third experiment aims to compare the tracking per-
formance of IRSL with that of CTMU in handling scene
blurring and small object scenarios using Video 3. Ri

(1 ≤ i ≤ 5) in IRSL is set as 4. We show some samples
of the final tracking results for IRSL and CTMU in Figure 6,
where the first and the second rows correspond to the per-
formances of IRSL and CTMU, respectively, in which six
representative frames (495, 498, 505, 522, 547, and 550)
of the video stream are shown. Clearly, IRSL succeeds in
tracking the object while CTMU fails.

The fourth experiment is to make a quantitative compar-
ison between IRSL and CTMU in the scenarios of partial
occlusions and pose variations using Video 4. In this exper-
iment, Ri (1 ≤ i ≤ 5) in IRSL is set as 8. Some samples
of the final tracking results are shown in Figure 7, where
rows 1 and 2 correspond to IRSL and CTMU, respectively,
in which six representative frames (49, 108, 117, 185, 289,
and 292) of the video stream are shown. From Figure 7, it is
clear that IRSL is capable of tracking the object successfully
while CTMU is almost lost in tracking the object. During
the tracking, seven validation points, corresponding to the
seven benchmark points, are obtained according to the ob-
ject’s affine motion parameters at each frame. We use the
location deviation (also called tracking error) between the
validation points and the benchmark ones to quantitatively



Figure 6. The tracking results of IRSL (row 1) and CTMU (row 2) over representative frames in the scenarios of scene blurring and
small object.

Figure 7. The tracking results of IRSL (row 1) and CTMU (row 2) over representative frames in the scenarios of partial occlusions
and pose variations.
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Figure 8. The quantitative comparison results of IRSL and
CTMU using video 4.

evaluate the tracking performance. The quantitative com-
parison results are displayed in Figure 8, from which we
see that the tracking error of IRSL is always lower than that
of CTMU.

The last experiment is to compare the tracking perfor-
mance of IRSL with that of CTMU in the color scenario with
a partial occlusion using Videos 5 and 6. The RGB color
space is used in this experiment. Ri (1 ≤ i ≤ 5) for Videos
5 and 6 are set as 6 and 8, respectively. We show some
samples of the final tracking results for IRSL and CTMU in
Figure 9, where the first and the second rows correspond
to the performances of IRSL and CTMU over Video 5, re-
spectively, in which six representative frames (73, 79, 94,
125, 128, and 132) of the video stream are shown, while
the third and the last rows correspond to the performances
of IRSL and CTMU over Video 6, respectively, in which six
representative frames (389, 390, 393, 396, 399, and 400)
of the video stream are shown. Clearly, IRSL succeeds in
tracking for both Video 5 and Video 6 while CTMU fails.

In summary, we observe that IRSL outperforms CTMU
in the scenarios of blurring scenes, small objects, pose vari-
ations, and occlusions. IRSL makes a full use of the spa-
tial correlation information of object appearance in the five
modes. The dominant subspace information of the five
modes is incorporated into IRSL. Even if the subspace infor-
mation of some modes is partially lost or drastically varies,
IRSL is capable of recovering the information using the cues
of the subspace information from other modes. In compar-
ison, CTMU only captures the statistical properties of ob-
ject appearance in one mode, resulting in the loss of the lo-
cal spatial correlation information inside the object region.
In particular, IRSL constructs a robust Log-Euclidean Rie-
mannian eigenspace representation of an object appearance.
The representation fully explores the distribution informa-
tion of covariance matrices of image features under the Log-
Euclidean Riemannian metric, whereas CTMU relies heav-
ily on an intrinsic mean in the Lie group structure without
considering the distribution information of the covariance
matrices of image features. Consequently, IRSL is an ef-
fective online subspace learning algorithm which performs
well in modeling appearance changes of an object in many
complex scenarios.

6. Conclusion
In this paper, we have developed a visual tracking frame-

work based on the novel Log-Euclidean Riemannian met-
ric. In this framework, the Log-Euclidean covariance ma-
trices of image features in the five modes have been used to
represent object appearance. Further, a novel online Log-
Euclidean Riemannian subspace learning algorithm IRSL,
which enables subspace analysis under a Log-Euclidean
Riemannian metric, has been proposed to reflect the ap-
pearance changes of an object. Moreover, a novel criterion
for the likelihood evaluation, based on the Log-Euclidean
Riemannian subspace reconstruction error norms in the five



Figure 9. The tracking results of IRSL and CTMU over representative frames in the color scenarios of partial occlusions. Rows 1
and 2 show the tracking results of IRSL and CTMU for Video 5, respectively. Rows 3 and 4 display the tracking results of IRSL
and CTMU for Video 6, respectively.

modes, has been proposed to measure the similarity be-
tween the test image and the learned subspace model during
the tracking. Compared with the state-of-art Riemannian
metric-based tracking method CTMU, the proposed IRSL is
more robust to occlusion, scene blurring, small object, and
object pose variation. Experimental results have demon-
strated the robustness and promise of the proposed frame-
work.
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