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Abstract—Human motion prediction, which aims at predict-
ing future human skeletons given the past ones, is a typical
sequence-to-sequence problem. Therefore, extensive efforts have
been devoted to exploring different RNN-based encoder-decoder
architectures. However, by generating target poses conditioned
on the previously generated ones, these models are prone to
bringing issues such as error accumulation problem. In this
paper, we argue that such issue is mainly caused by adopting
autoregressive manner. Hence, a novel Non-AuToregressive model
(NAT) is proposed with a complete non-autoregressive decoding
scheme, as well as a context encoder and a positional encoding
module. More specifically, the context encoder embeds the given
poses from temporal and spatial perspectives. The frame decoder
is responsible for predicting each future pose independently.
The positional encoding module injects positional signal into
the model to indicate the temporal order. Besides, a multitask
training paradigm is presented for both low-level human skeleton
prediction and high-level human action recognition, resulting
in the considerable improvement for the prediction task. Our
approach is evaluated on Human3.6M and CMU-Mocap bench-
marks and outperforms state-of-the-art autoregressive methods.

Index Terms—Human motion prediction, non-autoregressive
model, multitask learning.

I. INTRODUCTION

AS an important and challenging problem in computer
vision, human motion prediction is typically formulated

as a sequence modeling problem, which aims to predict a set
of future human skeletons based on some existing real skeleton
sequence data. Therefore, a natural solution to such a problem
is to establish effective inertial motion models for capturing
the temporal dependency among consecutive human skeleton
frames [1]–[14].
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Fig. 1. Given a real human motion sequence (in green color), we indepen-
dently predict each frame of future data (in red color) in a complete non-
autoregressive scheme, in which the subsequent predicted frame would not
be affected by the accuracy of the preceding one.

In general, these inertial motion models are based on either
sequential autoregression or sequence-to-sequence encoder-
decoder learning, which generates a sequence of future human
skeletons in a recurrent frame-by-frame way, i.e., predicting
the next generated frame depending on the existing real frames
as well as the current generated frame. Usually, such inertial
motion models are likely to face the following two challenges:
1) Error accumulation: the prediction accuracy of the current
frame relies heavily on that of previous frames, resulting in the
recurrent prediction error propagation over time [15]. 2) Mean
pose problem: these models often converge to an undesired
mean pose in the long-term predictions, i.e., the predictor gives
rise to static predictions similar to the mean of the ground truth
of future sequences [5]. In this paper, we mainly focus on the
error accumulation problem.

Previous works on error accumulation problem could be
categorized as two groups. 1) Architecture. The conventional
chain-structured RNN models rely on recursive dependency,
which makes the length of the information propagation path
very long, typically resulting in an error accumulation prob-
lem. In contrast, the hierarchical structure of either CNNs
[5] or GCNs [9], [14] contains skip connections, and en-
courages dense connections among data units, which ensures
the diversity of the information flow patterns with different
lengths. 2) Function Approximation. Through periodic func-
tions with different frequencies (e.g., the DCT consine function
basis [9]), the conventional methods are able to construct a
holistic representation of skeleton sequence from the top-down
view within a single run.

In this paper, to solve the error accumulation problem, we
argue that the autoregressive decoding pipeline for human
motion prediction over the subsequent frames often suffers
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Fig. 2. Overview of Multitask Non-AuToregressive Model (mNAT). A real human skeleton sequence is first sent to the context encoder, which is composed
of multiple GCN-TCN blocks with residual connection, to obtain the 256-d context feature (in green color). This feature, together with the seed pose and
positional encoding vectors, is further sent to the frame decoder to generate each future frame independently. The frame decoder owns the same structure
with the context encoder except that the kernel size is 1 in frame decoder while 9 in context encoder. Both the features of the given real skeletons and the
features of the predicted skeletons are sent to the same action recognition classifier (ARC) to predict the action category. Note that the two context encoders
(in purple color) are the same one and so are the two classifiers (in red color).

from the misguidance from the preceding prediction results
and the evaluation criteria. Besides, the continuity and di-
versity of generated frames, are not guaranteed as well. A
natural question is whether we have a more feasible decoding
pipeline, e.g., breaking the temporal dependency, that allows
the subsequent frames to bypass the preceding ones directly
during decoding.

To this end, we propose a novel Non-AuToregressive
framework (NAT), which largely eases the aforementioned
issue. Specifically, NAT is composed of a context encoder
(embedding the given poses), a frame decoder (predicting
each future skeleton independently), and a positional encoding
module (indicating temporal order). Context encoder is mod-
eled from both temporal and spatial perspectives by a TCN-
based (Temporal Convolutional Network) [16] temporal en-
coder and a GCN-based (Graph Convolutional Network) [17]
spatial encoder through a skeleton kinematic tree, respectively.
In principle, it encodes the existing real skeleton sequence
data into a context feature space. In addition, frame decoder
sets up a prediction model to forecast each generated frame
based on its corresponding direct connections to the existing
real frames, as shown in Fig. 1. Since temporal dependency
is broken under our non-autoregressive setting, inspired by
recent success from natural language processing [18], we
also propose a positional encoding module which outputs a
combination of sinusoidal waves with different frequencies
as the representation of position. This representation can be
viewed as a trajectory with physical constraints in the code
space, and the frame decoder generates frames with the fusion
of the representation and the context feature. The physical
constraints, i.e., sinusoidal waves with different frequencies,
guarantee the continuity and diversity. Therefore, the quality
of the generated frames improves according to the evaluation
criteria. Meanwhile, such a non-autoregressive setting enables
parallel processing of multiple frames during decoding instead
of sequential frame decoding used by conventional recurrent
approaches.

In addition, despite the above success, previous works rarely
investigated the relation between the low-level human skele-

tons and the high-level human action category. The motivation
behind this is that unlike deep models, human beings always
generate intention first and then implement it. If the model
knows which action is to be generated, the forecasting would
be much easier. For example, “smoking” and “phoning” may
have very similar beginning. It is unlikely to forecast the
following frames without knowing the exact action category.
To this end, inspired by recent success on skeleton-based
action recognition [19]–[23], we propose a simple yet ef-
fective multitask training paradigm, namely Multitask Non-
AuToregressive model (mNAT), which is further empowered
by the merit of action recognition. Specifically, as shown
in Fig. 2, we build a shared action recognition classifier
(ARC) for both given real human skeletons and predicted
ones, ensuring that our model is capable of predicting both the
low-level and high-level future information. The experimental
results show that the human motion prediction task achieves
an obvious promotion for this multitasking scheme.

In summary, the main contributions of this work are sum-
marized as follows

1) We propose to solve the human motion prediction task
with a novel Non-AuToregressive model (NAT), which
largely alleviates the error accumulation problem.

2) We present a multitask training paradigm which is
empowered by the merit of action recognition to pre-
dict both the low-level human skeletons and high-level
human action category.

3) Extensive experiments on both Human3.6M [24] and
CMU-Mocap1 benchmarks yield state-of-the-art results.

II. RELATED WORK

A. Human Motion Prediction

Recently, human-centric computer vision understanding has
attracted an enormous amount of attention. Aiming at human-
centric tasks, great efforts have been paid from the perspective
of learning mechanism. 1) Transfer learning. To capture multi-
level information of source and target domain data, Zhou et

1http://mocap.cs.cmu.edu

http://mocap.cs.cmu.edu
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al. [25] presented a multi-mutual consistency learning strategy
to reduce the distribution difference between two domains.
2) Cascaded learning. Zhou et al. [26] proposed to mine the
intrinsic complexity of HOI by building up a cascade archi-
tecture for a multi-stage, coarse-to-fine HOI understanding. 3)
Graph reasoning. GPNN [27] recognized HOI sceen graph by
inferring and reasoning a parse graph iteratively. GRN [28]
proposed to explore the topology structure of human body to
help generate more convincing pseudo labels for human pars-
ing. Although employing various learning approaches, these
works have a common goal of exploring better representation
of human structure.

Among these, Human motion prediction is a classical and
challenging problem which has long been studied over years.
Holden et al. [1] first showed that human motion can be
formulated as manifold via auto-encoders. Due to the temporal
nature of human motion prediction problem, much of current
state-of-the-art work is based on RNN-based encoder-decoder
structure. Fragkiadaki et al. [2] proposed Encoder-Recurrent-
Decoder (ERD), which, for the first time, maps the pose into
hidden state and propagates through an LSTM layer. Also,
Structural-RNN [3] was presented to formulate human motion
sequence as spatio-temporal graphs. Martinez et al. [4] de-
signed a residual-based GRU (Res-GRU) model by predicting
the relative residual between two consecutive frames instead
of absolute skeleton. This residual modeling works so well
that it becomes the de facto standard for the subsequent work.

Since then, human motion prediction has been roughly
categorized into two groups. one group of approaches tend
to seek better representations of human skeleton. This group
of models explore either the spatial dependency or the dif-
ferent representation of each joint, e.g., exponential map,
Euler angle. Li et al. [5] introduced a convolutional neural
networks to model spatial and temporal dependency via a
rectangle receptive field. Guo et al. [6] designed SkelNet
which divides a human skeleton into five non-overlapping
parts. To evaluate the effectiveness of different joint repre-
sentation, QuaterNet [10], [11] was introduced to replace the
commonly used exponential map representation by quater-
nion, which avoids common rotational problems such as non-
uniqueness, discontinuity, and gimbal locks [29]. Recently,
Discrete Cosine Transform (DCT) [9] was proposed to encode
temporal information via a series of DCT coefficients and
achieved the state-of-the-art result so far. The second group
of methods explore better measurements between ground truth
and predicted skeletons. Gui et al. [12] presented Adversarial
Geometry-Aware encoder-decoder (AGED), which replaced
commonly used L1 distance by a geodesic loss to better model
the motion. Also, Hernandez et al. [13] presented Spatio-
Temporal Motion Inpainting (STMI-GAN) which formulates
human motion forecasting as an image inpainting problem and
further solved it with an improved GAN structure.

B. Non-autoregressive Models

RNN-based models, such as LSTM [30] or GRU [31],
achieved great success in sequence modeling, especially in
Neural Machine Translation (NMT) [32]–[34]. In general,
these methods generated tokens in a sequential manner, i.e.,
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Fig. 3. (a) Illustration of human skeleton of Human3.6M dataset. The blue
circles indicate the detailed joint indexes. (b) Illustration of human motion
sequence.

the new output word was dependent on the previously gen-
erated output. Such left-to-right decoding manner suffered
from problems like low efficiency and error accumulation [35],
[36]. To remedy these issues, several efforts were devoted to
avoiding recurrence in sequence modeling. Gehring et al. [37]
proposed a sequence model based entirely on convolutional
neural networks. Vaswani et al. [18] proposed the Transformer
network, which stacks multiple self-attention layers to model
the dependency on each token pairs. Recently, Gu et al. [38]
proposed non-autoregressive transformer that makes use of
fertilities which represents how many times each source tokens
are copied.

As a sequence modeling task, human motion prediction
shares similar nature with NMT and meanwhile possesses
unique characteristics. 1) Human motion prediction is usually
formulated as a continuous prediction task rather than a
discrete one. Hence, several useful tricks like Beam Search
[34], [39] in NLP could not be directly adopted. 2) Human
motion sequence contains rich skeletal structure information,
which natural language token rarely owns. Therefore, in this
paper, we propose a GCN equipped context encoder to learn
the rich skeletal structure as well as a frame decoder to
implement non-autoregressive decoding.

C. Graph Neural Networks

Graph Neural Networks (GNNs) is proposed for data whose
structure is defined by a graph with either spectral [40], [41]
method or spatial method [17]. The previous success of GNNs
could be categorized from the perspective of granularity of
graph structure. 1) Intra-frame. Li et al. [28] utilized the topol-
ogy structure of human body, i.e., human parts, to refine the
human parsing results. Also, GPNN [27] iteratively inferred a
Human-Object Interaction graph with a message passing in-
ference framework. 2) Inter-frame. By treating each individual
frame as a node, AGNN [42] built a fully connected graph to
efficiently capture and mined much richer relations between
frames for zero-shot video object segmentation. PMPNet [43]
adaptively encoded point cloud information by graph-based
message passing mechanism with a relatively huge receptive
field. To summarize, the GNNs are suitable for modeling a
wide variety of spatio-temporal topology structures.
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Fig. 4. Illustration of NAT pipeline. Given the prefix human motion sequence x1 ∼ xN , context encoder stacks GCN module and TCN module multiple
times to encode it as context feature. The context feature is further added by a series of sinusoidal positional-related signal generated by positional encoding
module. The features are then sent to frame decoder to generate final predicted human motion sequence ŷ1 ∼ ŷM in a non-autoregressive scheme. “N×”
means that N “GCN-TCN” modules are stacked in the context encoder and the frame decoder, respectively. Note that the illustration of context encoder
denotes feature flow, i.e., multiple features of different time steps are passed into the TCN module.

III. PROBLEM FORMULATION

As shown in Fig. 3 (a), the human motion skeleton is
usually represented as a skeletal kinematic tree. A kinematic
tree is composed of one root joint and several other joints as
child nodes. Each child node possesses only one parent joint,
forming a tree structure. Hence, the human motion sequence
is constructed by stacking multiple human skeletons through
time horizon, as shown in Fig. 3 (b).

Specifically, we consider to be given a length-N observed
sequence X = (x1,x2, ...,xN ) ∈ RN×J×K , where each of
the frames xn = {xj

n}Jj=1 represents the single skeleton,
containing J joints data. xj

n ∈ RK is a minimal per-joint
representation at the n-th frame and the j-th joint, of which
K is the feature dimension which represents human joint data.
In this paper, we adopt K = 4 for quaternion as this format is
free of discontinuity and singularity [10]. Our goal is to predict
consecutive length-M target sequence Y = (y1,y2, ...,yM ).
Note that decoding always starts from the last frame of the
given sequence X. For simplicity, we name it as “seed pose”:
xseed = xN = y0.

In the following, we first explain the reason why autore-
gressive model leads to error accumulation problem. We then
discuss each part of our NAT model in detail. In particular,
we introduce context encoder, positional encoding, and frame
decoder in Sec IV-A, IV-B, IV-C, respectively. In Sec V, we
introduce the multitask training pipeline for our NAT model.

Usually, the human motion is typically viewed as an inertial
model, where only small changes happen in two consecutive
frames. Therefore, RNNs are adopted to model this temporal
continuity in an autoregressive paradigm. In this paper, we
argue that this inertance still exists in short term (less than
one second). Hence, instead of predicting the target skeleton

in a frame-by-frame manner, we directly regress the residual
item between each target pose and seed pose.

In detail, assume that the conventional RNN-based encoder-
decoder framework acts as

ŷt = ŷt−1 + D
({

ŷi

}t−1
i=1

,E(X)
)
, (1)

where E(·) denotes the encoder function, D(·) is the decoder
function, ŷt is the predicted pose at time t, and

{
ŷi

}t−1
i=1

denotes a set of skeletons ranging from 1 to t− 1.
Note that the above equation defines the recursive formula

between two consecutive frames. We then expand this equation
by

ŷt = ŷt−1 + D
({

ŷi

}t−1
i=1

,E(X)
)

= ŷt−2 + D
({

ŷi

}t−2
i=1

,E(X)
)
+ D

({
ŷi

}t−1
i=1

,E(X)
)

= y0 +

t−1∑
j=0

D
({

ŷi

}j
i=1

,E(X)
)
,

(2)

where y0 is the seed pose, which is the last frame of the
given motion sequence as we discuss above. For consistence
of equation form, we assume

{
ŷi

}0
i=1

= y0 when we calculate
ŷ1 = y0 + D

(
y0,E(X)

)
.

We argue that the aforementioned error accumulation prob-
lem could be derived from Eq. 2. First of all, Eq. 2 constructs
the relation between the target pose ŷt and seed pose y0.
The residual item between ŷt and y0 is a sum of multiple
predictions. Suppose an initial error item δ1 happens between
ŷ1 and y1. Then we have ŷ2 = y1 + δ1 +D

(
y1 + δ1,E(X)

)
,

which means the initial error term δ1 propagates to δ2.
Therefore, the initial error term δ1 would spread to each time
item up to δt repeatedly. Hence, the error accumulation takes
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places when the sum item increases rapidly with the evolution
of the time t. This per-frame prediction error grows so fast that
the long-term prediction soon becomes implausible to use.

Inspired by this observation, we model the residual term
between ŷt and y0 directly, rather than modeling it in an
autoregressive way. Specifically, ŷt no longer depends on
the accuracy of previous generated poses in our design. We
directly obtain each target pose based on the last available
ground truth skeleton y0 only, which largely alleviates the
error accumulation problem.

IV. NON-AUTOREGRESSIVE MODEL

In this section, we describe the details of our NAT structure.
Unlike complicatedly designed models in natural language
processing, we find out that non-autoregressive architecture
could be simply implemented by three components: a context
encoder E(·), a frame decoder D(·), and a positional encoding
module, as shown in Fig. 4. We introduce each part in detail
below.

A. Context Encoder

Usually, a human motion sequence is represented as a
spatio-temporal graph. Therefore, the encoder needs to si-
multaneously model both the joint-wise dependency in the
spatial domain and frame-wise dependency in the temporal
domain. To this end, we propose to stack multiple GCN-
TCN blocks to form the context encoder which is capable of
generating context feature being representative of the whole
given sequence.

To encode the spatial dependency of human skeletons, we
make use of GCNs [17]. GCNs are a class of models which
are specially designed for non-Euclidean data. To make our
paper self contained, we briefly introduce how GCNs work
here. As mentioned, each frame of human skeleton sequence
contains J joints. The bone connection is thus formulated as
an adjacency matrix A ∈ RJ×J , where Aij = 1 if and only if
joint i connects with joint j (each joint connects with itself).
Assume that in layer l, we have input feature as h(l) ∈ RJ×K ,
where K denotes input dimension. Following Kipf et al. [17],
we adopt first order approximation and output h(l+1) as

h(l+1) = σ
(
BN
(
Ã · h(l) ·W(l)

))
, (3)

where Ã = D−
1
2AD−

1
2 is the normalized adjacency matrix

and Dii =
∑

j Aij is the corresponding degree matrix,
W(l) ∈ RK×K is a trainable weight matrix, BN(·) denotes
Batch Normalization [44], and σ(·) is the Leaky ReLU [45].

To encode the temporal dependency, we make use of TCN
[16] where RNNs are replaced by 1D CNNs. To capture the
long-term dependency, multiple CNN layers are stacked to
increase the receptive field. In the TCN model, the receptive
field drastically grows in a linear speed.

In practice, we find a large kernel size is necessary to
ensure that the final feature covers the whole input sequence.
However, once reaching an appropriate receptive field, no
benefit is found by using a larger kernel size. We conduct
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Fig. 5. Illustration of the Positional Embedding. This embedding is generated
by sine and cosine functions of different frequencies. We also explore the
influence of hyper-parameter α and β.

experiments in Sec VI to verify the effects of different kernel
sizes of TCN.

We also add skip-connection [46] between each two blocks
as it makes easier to propagate the gradients and accelerates
training. The number of channels is 64, 64, 128, 128, 256,
256 in total 6 blocks, respectively, which map the input 4-
d quaternion to a 256-d feature. In the end, we perform
global average pooling in both temporal dimension and spatial
dimension to obtain a single context feature c = E(X) ∈ R256.

B. Positional Encoding Module

Compared with the autoregressive models, which implicitly
encode temporal order in a frame-by-frame way, the non-
autoregressive model faces a problem on representing time.
To this end, we propose to inject the explicit temporal signal
into decoder directly. We further rewrite Eq. 1 as follows

ŷt = y0 + D
(
p(t),E(X)

)
, (4)

where t represents the time index and p(·) is a function that
maps input scalar index into a vector form embedding. In our
case, we call this mapping function p(·) as positional encoding
module.

Following the former success of Transformer [18], we
adopt the sinusoidal functions of different frequencies as our
positional encoding. In particular, we aim to map relative time
index into a vector form feature. For time index t = 1, ...,M ,
the positional encoding function is expressed as

p2i(t) = sin
(
α · t/β2i/dmodel

)
p2i+1(t) = cos

(
α · t/β2i/dmodel

)
,

(5)

where p2i(t), p2i+1(t) represent the even and odd dimension
of p(t), dmodel denotes the positional embedding dimension,
α is a scale factor which controls the difference across time
indexes, β controls the wavelength for each dimension, and i
is the dimension index ranging from 1 to bdmodel/2c.

The benefit of sinusoidal positional encoding module is
two-fold. Firstly, compared with trivial one-hot encoding, this
encoding outputs a continuous form vector, carrying more
information. Secondly, the sinusoidal positional embedding is
highly correlated, i.e., the closer two time indexes t1, t2 are,
the more similar p(t1), p(t2) are. Consequently, the positional
embedding could be seen as a disturbance item added to
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the encoded feature, ensuring the smoothness of generated
sequence.

Note that in the original paper, the α and β are set to
fixed values (α = 1, β = 10000). We argue that due to the
domain difference, i.e., the predicted length is usually 10 or 25
in human motion prediction while hundreds of tokens might
be involved in neural machine translation, the default setting
could be sub-optimal in this task. As shown in Fig. 5, with the
growth of α, the difference between each embedding increases
(see (a), (b)). With the decrease of β, more dimensions are
involved to distinguish different embeddings. We conduct
extensive experiments on exploring the influence of α and β.

C. Frame Decoder

As mentioned above, the frame decoder is responsible for
generating each frame independently. To generate M future
frames, we first obtain a series of positional embeddings P =
{p(1), ...,p(M)}, each of which is also a 256-d vector. These
embeddings are further added to the context feature c to form
the input of the frame decoder F = {ft}Mt=1, where each ft =
c+ p(t).

As shown in Fig. 6, in each GCN-TCN block, GCN module
and TCN module are adopted sequentially. Besides, Batch
Normalization [44], Leaky ReLU activation [45], and skip-
connection [46] are also introduced. The GCN-TCN blocks
have a kernel size of 9 in the context encoder and a kernel size
of 1 in the frame decoder. Under this setting, we rewrite Eq. 4
as: ŷt = y0 + D(ft), where each frame generation process is
strictly limited to the single frame, avoiding to be affected by
subsequent predicted frames, also shown in Fig. 4. Similar to
context encoder, the number of channels is 256, 128, 128, 64,
64, 4 with total 6 blocks, respectively, which map the input
256-d feature back to 4-d quaternion.

V. MULTITASK TRAINING

A. Action Recognition Classifier

As another classic task in skeleton-based activity under-
standing, skeleton-based action recognition also attracts lots of
attention recently. However, few work has explored the relation
of these two tasks. Martinez et al. [4] proposed Res-GRU MA
(Multi-Action) by simply concatenating one-hot vectors with
15 action classes of Human3.6M dataset. The result shows
limited performance gain. Therefore, most of the subsequent

Algorithm 1 NAT Multitask Training

Input: Training set D = {(Xi,Yi,yi
cls)}

#sample
i=1 with C

classes; Training iterations τ .
Output: The parameters θ of NAT and ARC

1: for iteration = 1, ..., τ do
2: Randomly sample (Xi,Yi,yi

cls) from D
3: Compute context feature c with context encoder
4: Obtain the predicted sequence Ŷi using Eq. 4
5: Compute o1 from c with ARC module
6: Compute c′ by feeding Ŷi back into context encoder
7: Compute o2 from c′ wit ARC module
8: Calculate Lrecst, Lpnlty, Lcls1, and Lcls2 using Eq. 6 ∼

9
9: Update the parameters θ using Eq. 10 by ADAM [47]

10: end for
11: return The parameters θ of NAT and ARC

TABLE I
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE ON AVERAGE OF

ALL 15 ACTIONS OF HUMAN3.6M DATASET

Average Conferencemillseconds 80 160 320 400
Zero-velocity [4] 0.42 0.74 1.12 1.20 CVPR2017
Res-GRU [4] 0.39 0.72 1.08 1.22 CVPR2017
ConvSeq2Seq [5] 0.38 0.68 1.01 1.13 CVPR2018
QuaterNet [10] 0.35 0.64 1.07 1.23 BMVC2018
AGED w/ adv [12] 0.33 0.58 0.94 1.01 ECCV2018
SkelNet [6] 0.36 0.64 0.99 1.02 AAAI2019
TD-DCT [9] 0.27 0.51 0.83 0.95 ICCV2019
NAT (Ours) 0.27 0.50 0.79 0.91 -
mNAT (Ours) 0.27 0.48 0.74 0.85 -

works report the SA (Single-Action) result without the action
category information.

In this paper, we argue that, as human beings, the high-level
human action category guides the low-level human skeletons
and the existing literatures rarely investigate these two related
tasks. To this end, we propose an action recognition classifier
(ARC) on the top of the context feature c, as shown in Fig.
2. The ARC module is implemented with a three-layer MLP,
where FC, Dropout, and LeakyReLU are included. Let the
ground truth label be ycls = {0, 1}C , where C denotes the
number of actions in total, and the corresponding classification
result be o1 = Softmax(ARC(c)). The classification loss is
formulated as

Lcls1 = −y>cls log(o1). (6)

Inspired by self-supervised learning [48], [49], we also add
a cycle consistency classification loss. We expect that the
predicted human motion sequence Ŷ = {ŷt}Mt=1 not only is
close to the ground truth sequence, but also represents the
high-level action category. Therefore, Ŷ is sent to the same
context encoder and ARC to obtain the classification result o2.
The cycle consistency classification loss is

Lcls2 = −y>cls log(o2). (7)
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TABLE II
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS

ON ALL 15 ACTIONS OF HUMAN3.6M DATASET

Walking Eating Smoking Discussion Direction
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04 0.39 0.59 0.79 0.89
Res-GRU [4] 0.27 0.47 0.70 0.78 0.25 0.43 0.71 0.87 0.33 0.61 1.04 1.19 0.31 0.69 1.03 1.12 0.26 0.47 0.72 0.84
ConvSeq2Seq [5] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01 0.39 0.60 0.80 0.91
AGED w/ adv [12] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83 0.23 0.39 0.63 0.69
SkelNet [6] 0.31 0.50 0.69 0.76 0.20 0.31 0.53 0.69 0.25 0.50 0.93 0.89 0.30 0.64 0.89 0.98 0.36 0.58 0.77 0.86
TD-DCT [9] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85 0.26 0.45 0.71 0.79
NAT (Ours) 0.19 0.28 0.45 0.51 0.16 0.25 0.44 0.58 0.23 0.42 0.82 0.84 0.22 0.54 0.79 0.89 0.26 0.42 0.62 0.72
mNAT (Ours) 0.17 0.29 0.45 0.53 0.17 0.31 0.48 0.54 0.22 0.40 0.81 0.78 0.23 0.54 0.72 0.80 0.27 0.43 0.58 0.67

Greeting Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 0.54 0.89 1.30 1.49 0.64 1.21 1.65 1.83 0.28 0.57 1.13 1.37 0.62 0.88 1.19 1.27 0.40 1.63 1.02 1.18
Res-GRU [4] 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63
ConvSeq2Seq [5] 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18
AGED w/ adv [12] 0.56 0.81 1.30 1.46 0.19 0.34 0.50 0.68 0.31 0.58 1.12 1.34 0.46 0.78 1.01 1.07 0.41 0.76 1.05 1.19
SkelNet [6] 0.50 0.84 1.28 1.45 0.58 1.12 1.52 1.64 0.29 0.62 1.19 1.44 0.58 0.84 1.17 1.24 0.40 0.61 1.01 1.15
TD-DCT [9] 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97
NAT (Ours) 0.36 0.59 0.93 1.08 0.55 0.96 1.28 1.42 0.18 0.43 0.93 1.16 0.46 0.67 0.96 1.03 0.29 0.46 0.80 0.98
mNAT (Ours) 0.33 0.51 0.79 0.94 0.53 0.92 1.15 1.28 0.18 0.38 0.81 1.00 0.40 0.55 0.85 0.89 0.29 0.46 0.84 1.04

Sitting Down Taking Photo Waiting Walking Dog Walking Together
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 0.39 0.74 1.07 1.19 0.25 0.51 0.79 0.92 0.34 0.67 1.22 1.47 0.60 0.98 1.36 1.50 0.33 0.66 0.94 0.99
Res-GRU [4] 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91
ConvSeq2Seq [5] 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74
AGED w/ adv [12] 0.33 0.62 0.98 1.10 0.23 0.48 0.81 0.95 0.24 0.50 1.02 1.13 0.50 0.81 1.15 1.27 0.23 0.41 0.56 0.62
SkelNet [6] 0.37 0.72 1.05 1.17 0.24 0.47 0.78 0.93 0.30 0.63 1.17 1.40 0.54 0.88 1.20 1.35 0.27 0.53 0.68 0.74
TD-DCT [9] 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57
NAT (Ours) 0.31 0.63 0.92 1.05 0.17 0.37 0.59 0.71 0.23 0.48 0.87 1.07 0.40 0.69 1.00 1.14 0.15 0.31 0.45 0.51
mNAT (Ours) 0.34 0.66 0.94 1.06 0.14 0.32 0.54 0.68 0.22 0.48 0.79 0.97 0.43 0.70 0.86 1.03 0.16 0.28 0.51 0.62

B. Training
We now summarize the whole training process. Given the

predicted human motion sequence Ŷ = {ŷt}Mt=1 and ground
truth, we apply the average L1 distance as the reconstruction
loss

Lrecst =
1

J ×M

J∑
j=1

M∑
t=1

‖ŷj
t − yj

t‖1, (8)

where ŷj
t denotes the predicted skeleton of the j-th joint in

the t-th frame, and yj
t is the corresponding ground truth.

Since that we use quaternion as the joint representation,
we must ensure the output ŷt has unit length as only unit
quaternion represents a valid 3D rotation [50], [51]. To this
end, we also add a penalty loss for each of the prediction to
ensure this property

Lpnlty =
1

J ×M

J∑
j=1

M∑
t=1

(
‖ŷj

t‖22 − 1
)2
. (9)

To summarize, our overall objective is

L = Lrecst + λpnltyLpnlty + λcls(Lcls1 + Lcls2), (10)

where λpnlty and λcls control the relative importance of each
loss item. The pseudo code of NAT Multitask Training is
shown in Algorithm 1.

VI. EXPERIMENTS

In this section, we first introduce two popular motion cap-
ture benchmarks: Human3.6M [24] and CMU Motion Capture
dataset [52] (CMU-Mocap) as well as the implementation
details and evaluation metrics. We then demonstrate our re-
sults compared with the current state-of-the-arts and ablation
studies.

A. Datasets
Human3.6M [24] is the largest publicly available dataset

for human motion research so far, which contains 3.6 million
3D poses recorded by Vicon motion capture system. It contains
15 activity scenarios including walking, eating, smoking, and
discussion. Seven subjects are involved in the dataset, each of
which performs two sequences for each action. In total, each
sequence contains about 3000 to 5000 frames. Each frame
consists of 34 rows of data, including a global translation, a
global rotation and 32 joint rotations with respect to its parent
joint. Each joint is represented as an exponential map (axis-
angle) form. Following the standard protocol [4], [5], [10], all
sequences are downsampled to a frame rate of 25fps; global
translation and global rotation are discarded. The Subject 5
(S5) is used in testing while the others are used in training.

CMU Motion Capture [52] is a large dataset including
actions such as walking, running, dancing. Different from
Human3.6M, the CMU-Mocap dataset has 38 joints in total.
Therefore, it has a different skeleton configuration. Li et al. [5]
first conduct experiments on CMU-Mocap with selected eight
actions. We follow their experiment setting with 86293 frames
in total. Five subjects are used for training while one subject is
used for testing. Similar to Human3.6M, all sequences are also
downsampled to 25fps. Global translation and global rotation
are discarded.

B. Implementation Details
1) Network and Training Details: Our model is based on

QuaterNet [10] and quaternion is used as input representation
of joints. Similar to the previous works [4], [5], [10], our
model is also trained on all actions. Both context encoder
and frame decoder stack 6 GCN-TCN building blocks with
residual connections, which indicates N is set to 6 in the
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TABLE III
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS ON ALL 15 ACTIONS IN

LONG-TERM PREDICTION OF HUMAN3.6M DATASET.

Walking Eating Smoking Discussion Direction Greeting Phoning Posing
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
Zero-velocity [4] 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96 1.02 1.50 1.79 1.80 1.81 2.04 1.81 2.78
ERD [2] 2.00 2.38 2.36 2.41 3.68 3.82 3.47 2.92 - - - - - - - -
SRNN [3] 1.81 2.20 2.49 2.82 3.24 2.42 2.48 2.93 - - - - - - - -
Res-GRU [4] 0.93 1.03 0.95 1.08 1.25 1.50 1.43 1.69 0.96 1.42 1.68 1.76 1.56 1.77 1.78 2.29
ConvSeq2Seq [5] 0.86 0.92 0.89 1.24 0.97 1.62 1.44 1.86 0.93 1.42 1.57 1.79 1.66 1.83 1.75 2.78
AGED w adv [12] 0.78 0.91 0.86 0.93 1.06 1.21 1.25 1.30 - - - - - - - -
SkelNet [6] 0.79 0.83 0.84 1.06 0.98 1.21 1.39 1.75 - - - - - - - -
NAT (Ours) 0.56 0.58 0.71 0.96 0.78 1.39 1.13 1.35 0.73 1.18 1.23 1.30 1.14 1.44 1.35 1.92
mNAT (Ours) 0.54 0.50 0.64 0.87 0.73 1.26 1.18 1.22 0.70 1.15 1.17 1.24 1.15 1.40 1.29 1.88

Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
Zero-velocity [4] 1.64 2.45 1.26 1.63 1.36 1.80 1.03 1.27 1.89 2.63 1.74 1.96 1.10 1.52
ERD [2] - - - - - - - - - - - - - -
SRNN [3] - - - - - - - - - - - - - -
Res-GRU [4] 1.41 2.30 1.24 1.51 1.28 1.72 0.95 1.17 1.64 2.30 1.69 1.73 0.80 1.43
ConvSeq2Seq [5] 1.44 2.38 1.15 1.48 1.26 1.75 0.92 1.23 1.70 2.37 1.62 1.78 0.79 1.45
AGED w adv [12] - - - - - - - - - - - - - -
SkelNet [6] - - - - - - - - - - - - - -
NAT (Ours) 1.13 1.96 1.19 1.55 1.17 1.64 0.85 1.07 1.27 1.65 1.18 1.50 0.60 1.09
mNAT (Ours) 1.06 1.81 1.21 1.46 1.09 1.58 0.86 1.04 1.26 1.58 1.16 1.44 0.59 1.07

TABLE IV
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS ON 8 ACTIONS AS WELL AS

AVERAGE RESULT OF CMU-MOCAP DATASET.

Basketball Basketball Signal Directing Traffic Jumping Running
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 0.48 0.82 1.40 1.64 0.24 0.44 0.75 0.86 0.30 0.57 0.90 1.01 0.36 0.62 1.48 1.68 0.56 1.00 1.38 1.46
Res-GRU [4] 0.50 0.80 1.27 1.45 0.41 0.76 1.32 1.54 0.33 0.59 0.93 1.10 0.56 0.88 1.77 2.02 0.33 0.50 0.66 0.75
ConvSeq2Seq [5] 0.37 0.62 1.07 1.18 0.32 0.59 1.04 1.24 0.25 0.56 0.89 1.00 0.39 0.60 1.36 1.56 0.28 0.41 0.52 0.57
NAT (Ours) 0.34 0.52 0.88 1.03 0.19 0.28 0.49 0.61 0.22 0.44 0.67 0.79 0.38 0.56 1.27 1.47 0.26 0.49 0.52 0.56
mNAT (Ours) 0.34 0.49 0.86 1.01 0.15 0.24 0.48 0.61 0.20 0.41 0.65 0.77 0.38 0.56 1.29 1.45 0.24 0.43 0.53 0.56

Soccer Walking Wash Window Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 0.27 0.48 0.92 1.10 0.41 0.60 0.83 0.95 0.34 0.57 0.90 1.10 0.37 0.64 1.07 1.22
Res-GRU [4] 0.29 0.51 0.88 0.99 0.35 0.47 0.60 0.65 0.30 0.46 0.72 0.91 0.38 0.62 1.02 1.18
ConvSeq2Seq [5] 0.26 0.44 0.75 0.87 0.35 0.44 0.45 0.50 0.30 0.47 0.80 1.01 0.32 0.52 0.86 0.99
NAT (Ours) 0.23 0.34 0.61 0.73 0.33 0.39 0.42 0.48 0.27 0.40 0.72 0.93 0.28 0.43 0.70 0.83
mNAT (Ours) 0.20 0.33 0.59 0.72 0.31 0.37 0.40 0.46 0.23 0.36 0.66 0.86 0.26 0.40 0.68 0.80

Figure 4. When the dimension changes, an extra 1D Conv is
performed to transform dimension. The number of channels
in the context encoder is 64, 64, 128, 128, 256, 256 for each
building block, respectively. The number of channels in the
frame decoder is 256, 128, 128, 64, 64, 4, respectively. We
use a pre-defined graph with relation of joints for GCN based
on specific dataset. The kernel size ks is set to 9 for TCN in
context encoder while set to 1 in frame decoder. Each TCN
is performed with the same padding mode to ensure that the
temporal size stays unchanged. LeakyReLU is utilized as the
non-linear activation with a rate of 0.01. We apply α = 10
and β = 500 for positional encoding as this setting achieves
optimal performance in our observation. The dropout rate is
set to 0.5 for ARC module. The whole model is lightweight
with 2.28 MB.

For both datasets, ADAM [47] is selected as the optimizer
in our experiment. The initial learning rate is 0.001 with a
0.9995 decay in every epoch. The gradient clip norm is set to
0.1 and the mini-batch is composed of 60 samples. Following
the previous works [10], λpnlty is set to 0.01. Also, λcls is set
to 0.01 to balance two tasks. We conduct an ablation study on
the effects of λcls on final results. Our model is trained with
PyTorch [53] framework for 3000 epochs on a single NVIDIA
1080TI GPU.

2) Evaluation Metrics and Baselines: For Human3.6M, we
report our results on both short-term (80 ∼ 400 ms) and long-
term (80 ∼ 1000 ms). For CMU-Mocap, due to the space
limit, we only report short-term results. For all datasets, 50
frames (2000 ms) are given.

Following the previous evaluation protocol [4], we report
the comparison results of the mean joint error of angle space,
i.e., Euler angle, between predicted joints and ground truth.
Besides, we also evaluate the mean joint error of 3D space
[9], [14] in millimeter. The mean 3D error could be measured
either by converting the predicted angles to 3D space, or
directly train on 3D coordinates of the skeleton sequence.

To evaluate the performance of our model, we compare it
with five state-of-the-art human motion prediction approaches,
namely, Res-GRU [4], ConvSeq2Seq [5], AGED (w/ adv) [12],
SkelNet [6], TD-DCT [9], as well as one baseline method
Zero-velocity [4]. Note that the results of SkelNet are based
on their open source project2 since they do not provide results
for all 15 actions. All the other results are referred from their
original papers.

2https://github.com/CHELSEA234/SkelNet motion prediction

https://github.com/CHELSEA234/SkelNet_motion_prediction
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TABLE V
COMPARISON OF MEAN JOINT ERROR OF 3D SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS

ON ALL 15 ACTIONS OF HUMAN3.6M DATASET.

Walking Eating Smoking Discussion Direction
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ConvSeq2Seq [5] 21.8 37.5 55.9 63.0 13.3 24.5 48.6 60.0 15.4 25.5 39.3 44.5 23.6 43.6 68.4 74.9 26.7 43.3 59.0 72.4
ConvSeq2Seq 3D [5] 17.1 31.2 53.8 61.5 13.7 25.9 52.5 63.3 11.1 21.0 33.4 38.3 18.9 39.3 67.7 75.7 22.0 37.2 59.6 73.4
TD-DCT [9] 11.1 19.0 32.0 39.1 9.2 19.5 40.3 48.9 9.2 16.6 26.1 29.0 11.3 23.7 41.9 46.6 11.2 23.2 52.7 64.1
TD-DCT 3D [9] 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1 12.6 24.4 48.2 58.4
LDR-GCN [14] 9.7 17.7 28.3 32.2 10.2 17.4 38.7 49.3 8.9 14.1 25.9 26.7 7.6 23.4 36.6 39.9 10.4 24.1 44.7 51.3
LDR-GCN 3D [14] 8.9 14.9 25.4 29.9 7.6 15.9 37.2 41.7 8.1 13.4 24.8 24.9 9.4 20.3 35.2 41.2 13.1 23.7 44.5 50.9
Ours 9.4 13.7 23.6 28.0 8.2 17.1 35.0 44.5 7.6 15.5 27.4 32.1 10.2 19.7 38.5 43.3 12.1 20.9 39.2 49.4
Ours 3D 8.4 13.4 23.3 27.9 7.0 16.3 33.8 42.2 7.6 14.5 23.8 27.2 9.7 22.2 41.5 50.2 11.5 20.9 30.7 36.7

Greeting Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ConvSeq2Seq [5] 30.4 58.6 110.0 122.8 22.4 38.4 65.0 75.4 22.4 42.1 87.3 106.1 28.4 53.8 82.1 93.1 24.7 50.0 88.6 100.4
ConvSeq2Seq 3D [5] 24.5 46.2 90.0 103.1 17.2 29.7 53.4 61.3 16.1 35.6 86.2 105.6 29.4 54.9 82.2 93.0 19.8 42.4 77.0 88.4
TD-DCT [9] 14.2 27.7 67.1 82.9 13.5 22.5 45.2 52.4 11.1 27.1 69.4 86.2 20.4 42.8 69.1 78.3 11.7 27.0 55.9 66.9
TD-DCT 3D [9] 14.5 30.5 74.2 89.0 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0
LDR-GCN [14] 13.4 31.2 69.3 86.1 11.7 18.3 32.8 44.1 8.6 19.2 59.4 84.2 18.2 39.1 63.2 75.2 9.8 25.2 48.9 59.4
LDR-GCN 3D [14] 9.6 27.9 66.3 78.8 10.4 14.3 33.1 39.7 8.7 21.1 58.3 81.9 16.2 36.1 62.8 76.2 9.2 23.1 47.2 57.7
Ours 12.9 24.6 62.1 76.5 12.0 21.6 38.8 46.3 13.6 26.5 65.4 81.8 16.8 36.1 63.6 71.3 9.8 25.9 55.1 67.3
Ours 3D 13.5 25.7 46.0 57.1 12.7 20.4 35.5 42.1 7.2 18.4 50.7 64.0 18.6 35.5 50.1 58.0 9.3 22.2 44.0 52.2

Sitting Down Taking Photo Waiting Walking Dog Walking Together
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ConvSeq2Seq [5] 23.9 39.9 74.6 89.8 18.4 32.1 60.3 72.5 24.9 50.2 101.6 120.0 56.4 94.9 136.1 156.3 21.1 38.5 61.0 70.4
ConvSeq2Seq 3D [5] 17.1 34.9 66.3 77.7 14.0 27.2 53.8 66.2 17.9 36.5 74.9 90.7 40.6 74.7 116.6 138.7 15.0 29.9 54.3 65.8
TD-DCT [9] 11.5 25.4 53.9 65.6 8.3 15.8 38.5 49.1 12.1 27.5 67.3 85.6 35.8 63.6 106.7 126.8 11.7 23.5 46.0 53.5
TD-DCT 3D [9] 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3
LDR-GCN [14] 10.8 24.2 49.7 61.4 6.5 14.3 32.3 46.7 9.1 21.5 50.9 68.7 26.5 54.3 94.7 119.2 10.3 20.6 34.9 45.3
LDR-GCN 3D [14] 9.3 21.4 46.3 59.3 7.1 13.8 29.6 44.2 9.2 17.6 47.2 71.6 25.3 56.6 87.9 99.4 8.2 18.1 31.2 39.4
Ours 15.3 24.9 53.6 63.0 7.4 14.4 34.8 43.5 12.8 25.2 53.9 63.8 24.9 50.5 89.6 107.6 7.7 17.9 33.8 43.7
Ours 3D 13.5 23.0 34.8 40.3 7.7 13.6 35.0 45.9 10.6 23.7 50.5 61.3 21.1 34.5 55.3 72.5 8.3 15.8 28.0 33.3

C. Comparison with State-of-the-Art

We evaluate our model on two popular datasets, Hu-
man3.6M and CMU-Mocap. We post results for NAT and
the NAT variant which is equipped with multitask training
paradigm (mNAT). Table I reports for the average of the mean
joint error of angle space of Human3.6M dataset for all 15
human actions. With the help of our non-autoregressive setting,
both our NAT and mNAT outperform all the state-of-the-art
approaches in average of 15 actions. Although our results
keep the same level with the latest state-of-the-art (TD-DCT
[9]) in 80 and 160 ms, our methods surpass a large margin
(0.09 and 0.10) in 320ms and 400ms, respectively. Note that
with the help of multitask learning, the average performance
gains 0.02, 0.05, 0.06 for 160, 320, and 400ms compared with
NAT. The interesting part lies in that the ARC module helps
improve performance in the long run. This is because, in the
short term, the class information is not important since the
inertance is the key factor. However, in the long term, it is
not easy to predict since much more factors are taken into
consideration. Therefore, to predict target pose and the action
label simultaneously helps a lot by introducing the guidance
from activity, leading to the convincing performance gain.

Table II shows the results for all 15 human actions in
detail. NAT and mNAT also achieve the best performance on
most actions. Of all the action categories, we also notice the
abnormal performance in action “Phoning”. After examination,
we finally realize that the high error is due to the discontinuity
of the test data. We observe that the finger joint data are abnor-
mal, which largely affects the performance of the mean joint
error. Since this is an end-effector joint with little influence on
others, the performance in 3D space is not affected, which is
also discussed in [9]. As for the results of other state-of-the-art
approaches, we faithfully report their performances from their

(a) Effect of 𝜆cls for Mean Joint Error.    

(the lower the better)

(b) Effect of 𝜆cls for Recognition Accuracy.

(the higher the better)

Fig. 7. Illustration of effects of λcls for both mean joint error and recognition
accuracy of Human3.6M dataset.

original papers.
In Table III, we also report the performance of long-term

prediction for all 15 actions of Human3.6M dataset. For
baselines with open source code, we run their codes to get
the results, for baselines without public code, we just left it
blank. We observe an obvious improvement for actions such
as “Walking”, “Eating”. For example, the performance gain
reaches 0.25 and 0.33 for 560 and 1000 ms of “Walking”. This
proves that the inertance still exists in long term such that the
non-autoregressive model could be utilized. The results also
show the existence of error accumulation of the previous RNN-
based autoregressive methods, in which the mean joint error
grows fast with the evolution of time.

Table IV reports the results on the CMU-Mocap dataset
of the mean joint error. Our model also achieves the best
performance on all 8 actions and the lower average error than
the previous baselines, which verifies what we discuss above.

In Table V, we report the results of 3D joint error for short-
term on Human 3.6M. To be consistent with previous works
[9], [14], we conduct experiments in two ways: converting the
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Direction Phoning

Walking Discussion

Fig. 8. Qualitative results based on Human3.6M dataset. Starting from top left, we demonstrate for four actions: direction, phoning, walking, and discussion.
For each action, the top (in red color) and the bottom (in blue color) are the ground truth and our prediction respectively.

TABLE VI
THE AVERAGE MEAN JOINT ERROR BETWEEN PERFORMANCE WITH AND

WITHOUT CYCLE CONSISTENCY LOSS OF HUMAN3.6M DATASET.

Average (ms)
80 160 320 400 1000

mNAT w/o Lcls2 0.28 0.48 0.75 0.88 1.38
mNAT w/ Lcls2 0.27 0.48 0.74 0.85 1.30

TABLE VII
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT VALUES OF λpnlty OF

HUMAN3.6M DATASET.

Average (ms)
λpnlty 80 160 320 400

0.4 0.28 0.51 0.81 0.93
0.6 0.27 0.51 0.81 0.92
0.8 0.27 0.49 0.80 0.92
1.0 0.27 0.50 0.79 0.91
1.5 0.28 0.51 0.82 0.93
2.0 0.29 0.52 0.82 0.94

predicted Euler angles to 3D (ours), or directly training the
models on 3D space (ours 3D). We observe that our method
are on par with the current state-of-the-art method on 3D joint
error metric, which verifies the generalization of our method.

We also present the qualitative results for Human 3.6M
dataset in Fig. 8. From the visualization, our prediction is quite
close to the ground truth. Note that even for the “phoning”
action, our model still gives plausible and reliable results.

D. Ablation Study

1) Balance of losses: In this model, we present the ARC
module which makes use of multitask learning, leading to
convincing improvement. However, the performance gains for
prediction and classification are traded off by the hyper-
parameter λcls. We study the effects of λcls on two tasks.

We evaluate our model and present the mean joint error
and recognition accuracy for different λcls. Fig. 7 illustrates
the performances for both tasks. From the result, we observe
that: 1) The recognition accuracy grows with the improvement
of λcls. 2) For human motion prediction task, the performance

TABLE VIII
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT TYPES OF EMBEDDING

OF HUMAN3.6M DATASET.

Average (ms)
Embedding type 80 160 320 400

Random embedding 0.31 0.54 0.82 0.94
One-hot embedding 0.32 0.53 0.83 0.96
Learned embedding 0.28 0.52 0.83 0.94
Positional encoding 0.27 0.50 0.79 0.91

is robust when λcls is low. However, an obvious performance
drop is observed when λcls gets larger. This is mainly because
motion prediction is more difficult than classification task.
When we pay too much attention to classification, the model
becomes unbalanced. Therefore, we choose λcls = 0.01 in our
paper.

2) Effects of cycle consistency loss: In the multi-task
setting, it encourages the predicted human motion sequence
not only is close to the ground truth sequence and also
represents the high-level action category. To investigate the
effects of the cycle consistency classification loss, we have
conducted experiments to evaluate cycle consistency loss, i.e.,
Lcls2, and the results are shown in Table VI. It is observed
that the performance with the cycle consistency achieves
lower prediction error than that without it, particularly in
the long-term prediction (3.4% improvement on 400ms, 5.8%
improvement on 1000ms), which verifies the necessity of the
cycle consistency classification loss.

3) Effects of λpnlty: To investigate the effects of the balance
controlling factor λpnlty, we have conducted experiments on
different values of λpnlty. As shown in Table VII, λpnlty=1.0
achieves the best performance in most of the experimental
settings. Also, the performance is stable in a relatively wide
range from 0.4 to 2.0. In real scenario, we did not tune this
hyper-parameter directly and set it as default value 1.0 for all
cases.

4) Effects of positional embedding: We have conducted two
experiments to evaluate the merit of positional encoding. Our
methods are firstly compared with the one-hot embedding and
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TABLE IX
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT SETTINGS OF α, β OF

HUMAN3.6M DATASET.

Average (ms)
α β 80 160 320 400
1 10000 0.28 0.51 0.84 0.96

0.1 10000 0.28 0.52 0.84 0.94
10 10000 0.28 0.50 0.80 0.92
1 500 0.28 0.51 0.82 0.94
1 20000 0.29 0.54 0.85 0.99

10 500 0.27 0.50 0.79 0.91

the embedding which is randomly initialized. As shown in
Table VIII, an apparent performance improvement is observed
in random embedding (0.04 in 80ms and 0.03 in 400ms) and
one-hot embedding (0.05 in 80ms and 400ms). The advantage
of the positional encoding is to capture the positional-sensitive
information of skeletons sequences along the time dimension
and the periodic information of human motion. The positional
encoding utilizes the periodic functions with different frequen-
cies to capture the human movements of various positions and
amplitudes, which is naturally tailored for the human motion
prediction task.

Besides, we compare the positional encoding with the
learned embedding. The Table VIII suggests an improvement
in positional encoding (0.01 in 80ms and 0.03 in 400ms),
which indicates the positional encoding is designed for the
human motion sequences with positional and periodical in-
formation, while the learned embedding directly model the
weights and lack the prior constraints of periodicity and
interpretability.

5) Effects of α and β: In Sec IV, we discuss that the
original setting of positional encoding module might be sub-
optimal due to the domain gap between NMT and motion
prediction. In Table IX, we study the influence of different
settings of α and β. From the results, we observe that the
performance gains with the increase of α and the decrease
of β. We explain this observation with the function of two
parameters. On one hand, α controls the magnitude of time
index t. When α becomes larger, the positional embedding
vectors become more distinguishable, leading to a high-quality
prediction. On the other hand, β controls the frequency of each
dimension. As can be easily observed from Fig. 5, with the
high value of β, lots of dimensions are wasted due to the
limited number of poses to be predicted. In conclusion, our
ablation study shows that a large value of α and a small value
of β lead to an optimal performance.

6) Effects of kernel size for TCN: We study the effects of
kernel size for TCN in this section. In Table X, we evaluate
the mean joint error for different kernel sizes ranging from 3
to 11. From the results, we find an obvious boundary between
7 and 9. When the kernel size is less than 7, the performance
becomes poor. However, limited improvement is found when
we further enlarge the kernel size. Since multiple GCN-TCN
blocks are stacked in our model, the choice of kernel size
has a direct influence for the receptive field. Therefore, the
receptive field leads to the above observation. On one hand,
when the kernel size is less than 7, the overall receptive

TABLE X
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT SETTINGS OF KERNEL

SIZE IN TCN OF HUMAN3.6M DATASET.

Average (ms)
kernel size 80 160 320 400

3 0.40 0.70 1.06 1.19
5 0.40 0.71 1.07 1.20
7 0.40 0.67 0.98 1.11
9 0.27 0.50 0.79 0.91
11 0.28 0.50 0.81 0.90

TABLE XI
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT SETTINGS OF GRAPH

TYPE IN GCN OF HUMAN3.6M DATASET.

Average (ms)
graph type 80 160 320 400
no graph 0.28 0.53 0.85 0.98

random graph 0.29 0.52 0.82 0.96
forward 0.27 0.51 0.82 0.93

backward 0.28 0.52 0.83 0.95
bi-directional 0.27 0.50 0.79 0.91

field cannot cover the whole skeleton sequence. Thus, the
performance drops due to the large information loss. On the
other hand, all the frames are average pooled in the last,
simply increasing the kernel size would not make an obvious
difference. In conclusion, we choose to use kernel size 9 due
to the computational efficiency.

7) Effects of graph type for GCN: We also study the
effects of multiple graphs on GCN. From Table XI, “no
graph” denotes that each joint is connected with itself only.
In practice, we replace the adjacency matrix with an identity
matrix I . Similarly, “random graph” means that the connection
of joints is random. From the results, both “no graph” and
“random graph” are slightly worse than GCN with people
skeleton graph.

Further, we also explore the effects of the graph direction.
On one hand, “forward” denotes that the connection of joints is
from the central joint to all its end-effectors. On the other hand,
“backward” denotes a converse direction. From the results,
GCN with bi-directional graph obtains a better performance,
which means that both parent joint and child joint are equally
important in human motion prediction task.

E. Discussion

In this section, we discuss some potential research points for
future work. First of all, to make the generated skeletons more
realistic, we would add constraints to ensure the continuity and
smoothness by TV-norm [54]. Secondly, due to the fact that
the deep GCNs lead to a relatively high computational cost,
we would accelerate the process of encoding and decoding by
methods such as knowledge distillation.

As for other applications, our method is related to a broad
area where the inertial human motion exists, including motion
generation [55], motion re-targetting [56], and motion recovery
[57]. We leave these for our future work.
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VII. CONCLUSION

In this paper, we analyze the error accumulation problem
in human motion prediction is mainly due to the recur-
rent decoding scheme. To remedy this issue, we present a
novel human motion prediction framework based on a non-
autoregressive method. The framework takes an encoder-
decoder model where a simple yet effective non-autoregressive
pipeline is adopted in decoding stage while multiple GCN-
TCN blocks are performed so as to fully explore the spatio-
temporal relation. In addition, we also find that by predicting
human action category, the prediction becomes more feasible
and reliable. In experiments, our approach surpasses all the
recent state-of-the-art autoregressive methods.

REFERENCES

[1] D. Holden, J. Saito, and T. Komura, “A deep learning framework for
character motion synthesis and editing,” ACM Transactions on Graphics
(TOG), vol. 35, no. 4, p. 138, 2016.

[2] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent network
models for human dynamics,” in Proc. ICCV, December 2015, pp. 4346–
4354.

[3] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep
learning on spatio-temporal graphs,” in Proc. CVPR, June 2016, pp.
5308–5317.

[4] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in Proc. CVPR, July 2017, pp. 4674–
4683.

[5] C. Li, Z. Zhang, W. Sun Lee, and G. Hee Lee, “Convolutional sequence
to sequence model for human dynamics,” in Proc. CVPR, June 2018,
pp. 5226–5234.

[6] X. Guo and J. Choi, “Human motion prediction via learning local
structure representations and temporal dependencies,” in Proc. AAAI,
February 2019, pp. 2580–2587.

[7] E. Aksan, M. Kaufmann, and O. Hilliges, “Structured prediction helps
3d human motion modelling,” in Proc. ICCV, October 2019, pp. 7143–
7152.

[8] Z. Liu, S. Wu, S. Jin, Q. Liu, S. Lu, R. Zimmermann, and L. Cheng,
“Towards natural and accurate future motion prediction of humans and
animals,” in Proc. CVPR, June 2019, pp. 9996–10 004.

[9] W. Mao, M. Liu, M. Salzmann, and H. Li, “Learning trajectory depen-
dencies for human motion prediction,” in Proc. ICCV, October 2019,
pp. 9488–9496.

[10] D. Pavllo, D. Grangier, and M. Auli, “Quaternet: A quaternion-based
recurrent model for human motion,” in Proc. BMVC, 2018.

[11] D. Pavllo, C. Feichtenhofer, M. Auli, and D. Grangier, “Modeling human
motion with quaternion-based neural networks,” Int. J. Comput. Vis., pp.
1–18, 2019.

[12] L.-Y. Gui, Y.-X. Wang, X. Liang, and J. M. F. Moura, “Adversarial
geometry-aware human motion prediction,” in Proc. ECCV, September
2018, pp. 823–842.

[13] A. Hernandez, J. Gall, and F. Moreno-Noguer, “Human motion predic-
tion via spatio-temporal inpainting,” in Proc. ICCV, October 2019, pp.
7133–7142.

[14] Q. Cui, H. Sun, and F. Yang, “Learning dynamic relationships for 3d
human motion prediction,” in Proc. CVPR, June 2020, pp. 6518–6526.

[15] Y. Zhou, Z. Li, S. Xiao, C. He, Z. Huang, and H. Li, “Auto-conditioned
recurrent networks for extended complex human motion synthesis,” in
Proc. ICLR, 2018.

[16] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
NeurIPS, 2017, pp. 5998–6008.

[19] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. AAAI, February
2018, pp. 7444–7452.

[20] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action recogni-
tion with directed graph neural networks,” in Proc. CVPR, June 2019,
pp. 7904–7913.

[21] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention enhanced
graph convolutional lstm network for skeleton-based action recognition,”
in Proc. CVPR, June 2019, pp. 1227–1236.

[22] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,” in Proc.
CVPR, June 2019, pp. 12 018–12 027.

[23] B. Li, X. Li, Z. Zhang, and F. Wu, “Spatio-temporal graph routing for
skeleton-based action recognition,” in Proc. AAAI, February 2019, pp.
8561–8568.

[24] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing in
natural environments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 7, pp. 1325–1339, 2013.

[25] T. Zhou, H. Fu, C. Gong, J. Shen, L. Shao, and F. Porikli, “Multi-
mutual consistency induced transfer subspace learning for human motion
segmentation,” in Proc. CVPR, June 2020, pp. 10 274–10 283.

[26] T. Zhou, W. Wang, S. Qi, H. Ling, and J. Shen, “Cascaded human-object
interaction recognition,” in Proc. CVPR, June 2020, pp. 4262–4271.

[27] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-
object interactions by graph parsing neural networks,” in Proc. ECCV,
September 2018, pp. 407–423.

[28] T. Li, Z. Liang, S. Zhao, J. Gong, and J. Shen, “Self-learning with
rectification strategy for human parsing,” in Proc. CVPR, June 2020,
pp. 9260–9269.

[29] F. S. Grassia, “Practical parameterization of rotations using the expo-
nential map,” Journal of Graphics Tools, vol. 3, no. 3, pp. 29–48, 1998.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.
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