IEEE TRANSACTIONS ON IMAGE PROCESSING

Multitask Non-Autoregressive Model
for Human Motion Prediction

Bin Li, Jian Tian, Zhongfei Zhang, Hailin Feng, and Xi Li*

Abstract—Human motion prediction, which aims at predict-
ing future human skeletons given the past ones, is a typical
sequence-to-sequence problem. Therefore, extensive efforts have
been devoted to exploring different RNN-based encoder-decoder
architectures. However, by generating target poses conditioned
on the previously generated ones, these models are prone to
bringing issues such as error accumulation problem. In this
paper, we argue that such issue is mainly caused by adopting
autoregressive manner. Hence, a novel Non-AuToregressive model
(NAT) is proposed with a complete non-autoregressive decoding
scheme, as well as a context encoder and a positional encoding
module. More specifically, the context encoder embeds the given
poses from temporal and spatial perspectives. The frame decoder
is responsible for predicting each future pose independently.
The positional encoding module injects positional signal into
the model to indicate the temporal order. Besides, a multitask
training paradigm is presented for both low-level human skeleton
prediction and high-level human action recognition, resulting
in the considerable improvement for the prediction task. Our
approach is evaluated on Human3.6M and CMU-Mocap bench-
marks and outperforms state-of-the-art autoregressive methods.

Index Terms—Human motion prediction, non-autoregressive
model, multitask learning.

I. INTRODUCTION

S an important and challenging problem in computer

vision, human motion prediction is typically formulated
as a sequence modeling problem, which aims to predict a set
of future human skeletons based on some existing real skeleton
sequence data. Therefore, a natural solution to such a problem
is to establish effective inertial motion models for capturing
the temporal dependency among consecutive human skeleton
frames [1]-[14].
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Fig. 1. Given a real human motion sequence (in green color), we indepen-
dently predict each frame of future data (in red color) in a complete non-
autoregressive scheme, in which the subsequent predicted frame would not
be affected by the accuracy of the preceding one.

In general, these inertial motion models are based on either
sequential autoregression or sequence-to-sequence encoder-
decoder learning, which generates a sequence of future human
skeletons in a recurrent frame-by-frame way, i.e., predicting
the next generated frame depending on the existing real frames
as well as the current generated frame. Usually, such inertial
motion models are likely to face the following two challenges:
1) Error accumulation: the prediction accuracy of the current
frame relies heavily on that of previous frames, resulting in the
recurrent prediction error propagation over time [15]. 2) Mean
pose problem: these models often converge to an undesired
mean pose in the long-term predictions, i.e., the predictor gives
rise to static predictions similar to the mean of the ground truth
of future sequences [5]. In this paper, we mainly focus on the
error accumulation problem.

Previous works on error accumulation problem could be
categorized as two groups. 1) Architecture. The conventional
chain-structured RNN models rely on recursive dependency,
which makes the length of the information propagation path
very long, typically resulting in an error accumulation prob-
lem. In contrast, the hierarchical structure of either CNNs
[S] or GCNs [9], [14] contains skip connections, and en-
courages dense connections among data units, which ensures
the diversity of the information flow patterns with different
lengths. 2) Function Approximation. Through periodic func-
tions with different frequencies (e.g., the DCT consine function
basis [9]), the conventional methods are able to construct a
holistic representation of skeleton sequence from the top-down
view within a single run.

In this paper, to solve the error accumulation problem, we
argue that the autoregressive decoding pipeline for human
motion prediction over the subsequent frames often suffers
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Fig. 2. Overview of Multitask Non-AuToregressive Model (mNAT). A real human skeleton sequence is first sent to the context encoder, which is composed
of multiple GCN-TCN blocks with residual connection, to obtain the 256-d context feature (in green color). This feature, together with the seed pose and
positional encoding vectors, is further sent to the frame decoder to generate each future frame independently. The frame decoder owns the same structure
with the context encoder except that the kernel size is 1 in frame decoder while 9 in context encoder. Both the features of the given real skeletons and the
features of the predicted skeletons are sent to the same action recognition classifier (ARC) to predict the action category. Note that the two context encoders

(in purple color) are the same one and so are the two classifiers (in red color).

from the misguidance from the preceding prediction results
and the evaluation criteria. Besides, the continuity and di-
versity of generated frames, are not guaranteed as well. A
natural question is whether we have a more feasible decoding
pipeline, e.g., breaking the temporal dependency, that allows
the subsequent frames to bypass the preceding ones directly
during decoding.

To this end, we propose a novel Non-AuToregressive
framework (NAT), which largely eases the aforementioned
issue. Specifically, NAT is composed of a context encoder
(embedding the given poses), a frame decoder (predicting
each future skeleton independently), and a positional encoding
module (indicating temporal order). Context encoder is mod-
eled from both temporal and spatial perspectives by a TCN-
based (Temporal Convolutional Network) [16] temporal en-
coder and a GCN-based (Graph Convolutional Network) [17]
spatial encoder through a skeleton kinematic tree, respectively.
In principle, it encodes the existing real skeleton sequence
data into a context feature space. In addition, frame decoder
sets up a prediction model to forecast each generated frame
based on its corresponding direct connections to the existing
real frames, as shown in Fig. 1. Since temporal dependency
is broken under our non-autoregressive setting, inspired by
recent success from natural language processing [18], we
also propose a positional encoding module which outputs a
combination of sinusoidal waves with different frequencies
as the representation of position. This representation can be
viewed as a trajectory with physical constraints in the code
space, and the frame decoder generates frames with the fusion
of the representation and the context feature. The physical
constraints, i.e., sinusoidal waves with different frequencies,
guarantee the continuity and diversity. Therefore, the quality
of the generated frames improves according to the evaluation
criteria. Meanwhile, such a non-autoregressive setting enables
parallel processing of multiple frames during decoding instead
of sequential frame decoding used by conventional recurrent
approaches.

In addition, despite the above success, previous works rarely
investigated the relation between the low-level human skele-

tons and the high-level human action category. The motivation
behind this is that unlike deep models, human beings always
generate intention first and then implement it. If the model
knows which action is to be generated, the forecasting would
be much easier. For example, “smoking” and “phoning” may
have very similar beginning. It is unlikely to forecast the
following frames without knowing the exact action category.
To this end, inspired by recent success on skeleton-based
action recognition [19]-[23], we propose a simple yet ef-
fective multitask training paradigm, namely Multitask Non-
AuToregressive model (mNAT), which is further empowered
by the merit of action recognition. Specifically, as shown
in Fig. 2, we build a shared action recognition classifier
(ARC) for both given real human skeletons and predicted
ones, ensuring that our model is capable of predicting both the
low-level and high-level future information. The experimental
results show that the human motion prediction task achieves
an obvious promotion for this multitasking scheme.

In summary, the main contributions of this work are sum-
marized as follows

1) We propose to solve the human motion prediction task
with a novel Non-AuToregressive model (NAT), which
largely alleviates the error accumulation problem.

2) We present a multitask training paradigm which is
empowered by the merit of action recognition to pre-
dict both the low-level human skeletons and high-level
human action category.

3) Extensive experiments on both Human3.6M [24] and
CMU-Mocap' benchmarks yield state-of-the-art results.

II. RELATED WORK
A. Human Motion Prediction

Recently, human-centric computer vision understanding has
attracted an enormous amount of attention. Aiming at human-
centric tasks, great efforts have been paid from the perspective
of learning mechanism. 1) Transfer learning. To capture multi-
level information of source and target domain data, Zhou et
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al. [25] presented a multi-mutual consistency learning strategy
to reduce the distribution difference between two domains.
2) Cascaded learning. Zhou et al. [26] proposed to mine the
intrinsic complexity of HOI by building up a cascade archi-
tecture for a multi-stage, coarse-to-fine HOI understanding. 3)
Graph reasoning. GPNN [27] recognized HOI sceen graph by
inferring and reasoning a parse graph iteratively. GRN [28§]
proposed to explore the topology structure of human body to
help generate more convincing pseudo labels for human pars-
ing. Although employing various learning approaches, these
works have a common goal of exploring better representation
of human structure.

Among these, Human motion prediction is a classical and
challenging problem which has long been studied over years.
Holden et al. [1] first showed that human motion can be
formulated as manifold via auto-encoders. Due to the temporal
nature of human motion prediction problem, much of current
state-of-the-art work is based on RNN-based encoder-decoder
structure. Fragkiadaki e al. [2] proposed Encoder-Recurrent-
Decoder (ERD), which, for the first time, maps the pose into
hidden state and propagates through an LSTM layer. Also,
Structural-RNN [3] was presented to formulate human motion
sequence as spatio-temporal graphs. Martinez et al. [4] de-
signed a residual-based GRU (Res-GRU) model by predicting
the relative residual between two consecutive frames instead
of absolute skeleton. This residual modeling works so well
that it becomes the de facto standard for the subsequent work.

Since then, human motion prediction has been roughly
categorized into two groups. one group of approaches tend
to seek better representations of human skeleton. This group
of models explore either the spatial dependency or the dif-
ferent representation of each joint, e.g., exponential map,
Euler angle. Li et al. [5] introduced a convolutional neural
networks to model spatial and temporal dependency via a
rectangle receptive field. Guo et al. [6] designed SkelNet
which divides a human skeleton into five non-overlapping
parts. To evaluate the effectiveness of different joint repre-
sentation, QuaterNet [10], [11] was introduced to replace the
commonly used exponential map representation by quater-
nion, which avoids common rotational problems such as non-
uniqueness, discontinuity, and gimbal locks [29]. Recently,
Discrete Cosine Transform (DCT) [9] was proposed to encode
temporal information via a series of DCT coefficients and
achieved the state-of-the-art result so far. The second group
of methods explore better measurements between ground truth
and predicted skeletons. Gui et al. [12] presented Adversarial
Geometry-Aware encoder-decoder (AGED), which replaced
commonly used L1 distance by a geodesic loss to better model
the motion. Also, Hernandez et al. [13] presented Spatio-
Temporal Motion Inpainting (STMI-GAN) which formulates
human motion forecasting as an image inpainting problem and
further solved it with an improved GAN structure.

B. Non-autoregressive Models

RNN-based models, such as LSTM [30] or GRU [31],
achieved great success in sequence modeling, especially in
Neural Machine Translation (NMT) [32]-[34]. In general,
these methods generated tokens in a sequential manner, i.e.,

Fig. 3. (a) Ilustration of human skeleton of Human3.6M dataset. The blue
circles indicate the detailed joint indexes. (b) Illustration of human motion
sequence.

the new output word was dependent on the previously gen-
erated output. Such left-to-right decoding manner suffered
from problems like low efficiency and error accumulation [35],
[36]. To remedy these issues, several efforts were devoted to
avoiding recurrence in sequence modeling. Gehring et al. [37]
proposed a sequence model based entirely on convolutional
neural networks. Vaswani et al. [18] proposed the Transformer
network, which stacks multiple self-attention layers to model
the dependency on each token pairs. Recently, Gu et al. [38]
proposed non-autoregressive transformer that makes use of
fertilities which represents how many times each source tokens
are copied.

As a sequence modeling task, human motion prediction
shares similar nature with NMT and meanwhile possesses
unique characteristics. 1) Human motion prediction is usually
formulated as a continuous prediction task rather than a
discrete one. Hence, several useful tricks like Beam Search
[34], [39] in NLP could not be directly adopted. 2) Human
motion sequence contains rich skeletal structure information,
which natural language token rarely owns. Therefore, in this
paper, we propose a GCN equipped context encoder to learn
the rich skeletal structure as well as a frame decoder to
implement non-autoregressive decoding.

C. Graph Neural Networks

Graph Neural Networks (GNNs) is proposed for data whose
structure is defined by a graph with either spectral [40], [41]
method or spatial method [17]. The previous success of GNNs
could be categorized from the perspective of granularity of
graph structure. 1) Intra-frame. Li ef al. [28] utilized the topol-
ogy structure of human body, i.e., human parts, to refine the
human parsing results. Also, GPNN [27] iteratively inferred a
Human-Object Interaction graph with a message passing in-
ference framework. 2) Inter-frame. By treating each individual
frame as a node, AGNN [42] built a fully connected graph to
efficiently capture and mined much richer relations between
frames for zero-shot video object segmentation. PMPNet [43]
adaptively encoded point cloud information by graph-based
message passing mechanism with a relatively huge receptive
field. To summarize, the GNNs are suitable for modeling a
wide variety of spatio-temporal topology structures.
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Illustration of NAT pipeline. Given the prefix human motion sequence x1 ~ X, context encoder stacks GCN module and TCN module multiple

—Q

times to encode it as context feature. The context feature is further added by a series of sinusoidal positional-related signal generated by positional encoding
module. The features are then sent to frame decoder to generate final predicted human motion sequence 31 ~ ¥y s in a non-autoregressive scheme. “N x”
means that N' “GCN-TCN” modules are stacked in the context encoder and the frame decoder, respectively. Note that the illustration of context encoder
denotes feature flow, i.e., multiple features of different time steps are passed into the TCN module.

III. PROBLEM FORMULATION

As shown in Fig. 3 (a), the human motion skeleton is
usually represented as a skeletal kinematic tree. A kinematic
tree is composed of one root joint and several other joints as
child nodes. Each child node possesses only one parent joint,
forming a tree structure. Hence, the human motion sequence
is constructed by stacking multiple human skeletons through
time horizon, as shown in Fig. 3 (b).

Specifically, we consider to be given a length-/N observed
sequence X = (x1,Xa,...,Xy) € RVX/*XE where each of
the frames x, {xJ,}/_, represents the single skeleton,
containing J joints data. x/ € RX is a minimal per-joint
representation at the n-th frame and the j-th joint, of which
K is the feature dimension which represents human joint data.
In this paper, we adopt K = 4 for quaternion as this format is
free of discontinuity and singularity [10]. Our goal is to predict
consecutive length-M target sequence Y = (y1,¥2, .., YM)-
Note that decoding always starts from the last frame of the
given sequence X. For simplicity, we name it as “seed pose”:
Xseed — XN = Yo-

In the following, we first explain the reason why autore-
gressive model leads to error accumulation problem. We then
discuss each part of our NAT model in detail. In particular,
we introduce context encoder, positional encoding, and frame
decoder in Sec IV-A, IV-B, IV-C, respectively. In Sec V, we
introduce the multitask training pipeline for our NAT model.

Usually, the human motion is typically viewed as an inertial
model, where only small changes happen in two consecutive
frames. Therefore, RNNs are adopted to model this temporal
continuity in an autoregressive paradigm. In this paper, we
argue that this inertance still exists in short term (less than
one second). Hence, instead of predicting the target skeleton

in a frame-by-frame manner, we directly regress the residual
item between each target pose and seed pose.

In detail, assume that the conventional RNN-based encoder-
decoder framework acts as

e =9e-1 +D({3:},_ | E(X)), (1)

where E(-) denotes the encoder function, D(-) is the decoder
function, y, is the predicted pose at time ¢, and {yl}fj
denotes a set of skeletons ranging from 1 to ¢t — 1.

Note that the above equation defines the recursive formula
between two consecutive frames. We then expand this equation
by

5t =1+ D({3:} 1 EX))
t—2 t—1

=iz + D({Fi};;, EX)) +D({¥i},,, E(X))

-1 _ @
=yo+ > D{¥i}_, E(X)),
j=0

where y( is the seed pose, which is the last frame of the
given motion sequence as we discuss above. For consistence
of equation form, we assume {yi}‘j: = yo when we calculate
¥1 =yo + D(yo, E(X)).

We argue that the aforementioned error accumulation prob-
lem could be derived from Eq. 2. First of all, Eq. 2 constructs
the relation between the target pose y; and seed pose yg.
The residual item between y; and y( is a sum of multiple
predictions. Suppose an initial error item ¢; happens between
y1 and y1. Then we have 3 = y1 + 01 +D(y1 + 61, E(X)),
which means the initial error term ¢§; propagates to ds.
Therefore, the initial error term §; would spread to each time
item up to J; repeatedly. Hence, the error accumulation takes

1
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places when the sum item increases rapidly with the evolution
of the time ¢. This per-frame prediction error grows so fast that
the long-term prediction soon becomes implausible to use.

Inspired by this observation, we model the residual term
between y; and yq directly, rather than modeling it in an
autoregressive way. Specifically, y; no longer depends on
the accuracy of previous generated poses in our design. We
directly obtain each target pose based on the last available
ground truth skeleton yy only, which largely alleviates the
error accumulation problem.

IV. NON-AUTOREGRESSIVE MODEL

In this section, we describe the details of our NAT structure.
Unlike complicatedly designed models in natural language
processing, we find out that non-autoregressive architecture
could be simply implemented by three components: a context
encoder E(+), a frame decoder D(-), and a positional encoding
module, as shown in Fig. 4. We introduce each part in detail
below.

A. Context Encoder

Usually, a human motion sequence is represented as a
spatio-temporal graph. Therefore, the encoder needs to si-
multaneously model both the joint-wise dependency in the
spatial domain and frame-wise dependency in the temporal
domain. To this end, we propose to stack multiple GCN-
TCN blocks to form the context encoder which is capable of
generating context feature being representative of the whole
given sequence.

To encode the spatial dependency of human skeletons, we
make use of GCNs [17]. GCNs are a class of models which
are specially designed for non-Euclidean data. To make our
paper self contained, we briefly introduce how GCNs work
here. As mentioned, each frame of human skeleton sequence
contains J joints. The bone connection is thus formulated as
an adjacency matrix A € R7*7, where A;; = 1 if and only if
joint ¢ connects with joint j (each joint connects with itself).
Assume that in layer I, we have input feature as h() € R7*K
where K denotes input dimension. Following Kipf ef al. [17],
we adopt first order approximation and output h(t1) as

h(+D) = a(BN(A SHON WU))), 3)

where A = D=2 AD™ % is the normalized adjacency matrix
and D;; = Zj A;; is the corresponding degree matrix,
WO ¢ REXK 5 a trainable weight matrix, BN(-) denotes
Batch Normalization [44], and o(+) is the Leaky ReLU [45].

To encode the temporal dependency, we make use of TCN
[16] where RNNs are replaced by 1D CNNs. To capture the
long-term dependency, multiple CNN layers are stacked to
increase the receptive field. In the TCN model, the receptive
field drastically grows in a linear speed.

In practice, we find a large kernel size is necessary to
ensure that the final feature covers the whole input sequence.
However, once reaching an appropriate receptive field, no
benefit is found by using a larger kernel size. We conduct

(a) a=1, B=10000
0
~ 1o AN M aipi
0 50 100 150 200 250

(b) a=2, B=10000

0 50 100 150 200 250

(c) a=1, B=100
0
2o I
0 50 100 150 200 250

feature dimension

Fig. 5. Illustration of the Positional Embedding. This embedding is generated
by sine and cosine functions of different frequencies. We also explore the
influence of hyper-parameter o and 3.

experiments in Sec VI to verify the effects of different kernel
sizes of TCN.

We also add skip-connection [46] between each two blocks
as it makes easier to propagate the gradients and accelerates
training. The number of channels is 64, 64, 128, 128, 256,
256 in total 6 blocks, respectively, which map the input 4-
d quaternion to a 256-d feature. In the end, we perform
global average pooling in both temporal dimension and spatial
dimension to obtain a single context feature ¢ = E(X) € R2?°6,

B. Positional Encoding Module

Compared with the autoregressive models, which implicitly
encode temporal order in a frame-by-frame way, the non-
autoregressive model faces a problem on representing time.
To this end, we propose to inject the explicit temporal signal
into decoder directly. We further rewrite Eq. 1 as follows

¥i =yo +D(p(t),E(X)), 4)

where ¢ represents the time index and p(-) is a function that
maps input scalar index into a vector form embedding. In our
case, we call this mapping function p(-) as positional encoding
module.

Following the former success of Transformer [18], we
adopt the sinusoidal functions of different frequencies as our
positional encoding. In particular, we aim to map relative time
index into a vector form feature. For time index t =1, ..., M,
the positional encoding function is expressed as

p2;(t) = sin (a . t/ﬁ%/dmodel)
P2ip1(t) = cos (a . t/@’?i/dmodel),

where pa;(t), p2i+1(t) represent the even and odd dimension
of p(t), dmodel denotes the positional embedding dimension,
« is a scale factor which controls the difference across time
indexes, [ controls the wavelength for each dimension, and 4
is the dimension index ranging from 1 to |dmodel/2]-

The benefit of sinusoidal positional encoding module is
two-fold. Firstly, compared with trivial one-hot encoding, this
encoding outputs a continuous form vector, carrying more
information. Secondly, the sinusoidal positional embedding is
highly correlated, i.e., the closer two time indexes ¢1, to are,
the more similar p(t1), p(t2) are. Consequently, the positional
embedding could be seen as a disturbance item added to

&)
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Fig. 6. Detailed structure of the GCN-TCN Block. Both GCN and TCN
operation are followed by a BN and Leaky ReLU. Note that the below ConvlD
only appears when input channel is not equal to output channel.

the encoded feature, ensuring the smoothness of generated
sequence.

Note that in the original paper, the o and (§ are set to
fixed values (o = 1, 8 = 10000). We argue that due to the
domain difference, i.e., the predicted length is usually 10 or 25
in human motion prediction while hundreds of tokens might
be involved in neural machine translation, the default setting
could be sub-optimal in this task. As shown in Fig. 5, with the
growth of «, the difference between each embedding increases
(see (a), (b)). With the decrease of /3, more dimensions are
involved to distinguish different embeddings. We conduct
extensive experiments on exploring the influence of o and f.

C. Frame Decoder

As mentioned above, the frame decoder is responsible for
generating each frame independently. To generate M future
frames, we first obtain a series of positional embeddings P =
{p(1),...,p(M)}, each of which is also a 256-d vector. These
embeddings are further added to the context feature c to form
the input of the frame decoder F = {f;}},, where each f; =
c+p(t).

As shown in Fig. 6, in each GCN-TCN block, GCN module
and TCN module are adopted sequentially. Besides, Batch
Normalization [44], Leaky ReLU activation [45], and skip-
connection [46] are also introduced. The GCN-TCN blocks
have a kernel size of 9 in the context encoder and a kernel size
of 1 in the frame decoder. Under this setting, we rewrite Eq. 4
as: y+ = yo + D(f;), where each frame generation process is
strictly limited to the single frame, avoiding to be affected by
subsequent predicted frames, also shown in Fig. 4. Similar to
context encoder, the number of channels is 256, 128, 128, 64,
64, 4 with total 6 blocks, respectively, which map the input
256-d feature back to 4-d quaternion.

V. MULTITASK TRAINING
A. Action Recognition Classifier

As another classic task in skeleton-based activity under-
standing, skeleton-based action recognition also attracts lots of
attention recently. However, few work has explored the relation
of these two tasks. Martinez et al. [4] proposed Res-GRU MA
(Multi-Action) by simply concatenating one-hot vectors with
15 action classes of Human3.6M dataset. The result shows
limited performance gain. Therefore, most of the subsequent

Algorithm 1 NAT Multitask Training

Input: Training set D = {(X{, Y yi )}l with ¢
classes; Training iterations 7.

Output: The parameters § of NAT and ARC

1: for iteration = 1,...,7 do

2. Randomly sample (X%, Y%, y¢ ) from D
Compute context feature ¢ with context encoder
Obtain the predicted sequence Y using Eq. 4
Compute 0; from ¢ with ARC module
Compute ¢’ by feeding Y back into context encoder
Compute 02 from ¢’ wit ARC module
Calculate Liecsts Lpnltys Leis1, and Leiso using Eq. 6 ~
9

9:  Update the parameters 6 using Eq. 10 by ADAM [47]
10: end for
11: return The parameters § of NAT and ARC

S A

TABLE I
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE ON AVERAGE OF
ALL 15 ACTIONS OF HUMAN3.6M DATASET

Average Conference
millseconds 80 160 320 400
Zero-velocity [4] 042 074 1.12 120 | CVPR2017
Res-GRU [4] 039 072 1.08 122 | CVPR2017
ConvSeq2Seq [5] 038 0.68 1.01 1.13 | CVPR20I8
QuaterNet [10] 035 0.64 1.07 123 | BMVC2018
AGED w/ adv [12] | 033 058 094 1.01 | ECCV2018
SkelNet [6] 036 0.64 099 1.02 | AAAI2019
TD-DCT [9] 027 051 0.83 095 ICCV2019
NAT (Ours) 027 050 0.79 091 -
mNAT (Ours) 027 048 0.74 0.85 -

works report the SA (Single-Action) result without the action
category information.

In this paper, we argue that, as human beings, the high-level
human action category guides the low-level human skeletons
and the existing literatures rarely investigate these two related
tasks. To this end, we propose an action recognition classifier
(ARC) on the top of the context feature c, as shown in Fig.
2. The ARC module is implemented with a three-layer MLP,
where FC, Dropout, and LeakyReLU are included. Let the
ground truth label be y.s = {0,1}“, where C' denotes the
number of actions in total, and the corresponding classification
result be 07 = Softmax(ARC(c)). The classification loss is
formulated as

Leas1 = —y s log(o1). (6)

Inspired by self-supervised learning [48], [49], we also add
a cycle consistency classification loss. We expect that the
predicted human motion sequence Y = {y,}, not only is
close to the ground truth sequence, but also represents the
high-level action category. Therefore, Y is sent to the same
context encoder and ARC to obtain the classification result os.
The cycle consistency classification loss is

Les2 = 7y(—£s log(OQ)' (7
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ON ALL 15 ACTIONS OF HUMAN3.6M DATASET

TABLE II
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS

Walking Eating Smoking Discussion Direction
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 039 0.68 099 1.15 | 027 048 073 086 | 026 048 097 095 | 031 0.67 094 1.04 | 039 059 079 0.89
Res-GRU [4] 027 047 070 078 | 025 043 071 087 | 033 061 1.04 1.19 | 031 069 1.03 1.12 | 026 047 072 0.84
ConvSeq2Seq [5] 033 054 068 073 | 022 036 058 071 | 026 049 09 092 | 032 0.67 094 101 | 039 060 080 091
AGED w/ adv [12] | 022 036 055 0.67 | 0.17 028 051 064 | 027 043 082 084 | 027 056 076 0.83 | 023 039 063 0.69
SkelNet [6] 031 050 069 076 | 020 031 053 069 | 025 050 093 0.89 | 030 0.64 089 098 | 036 058 077 0.86
TD-DCT [9] 0.18 031 049 056 | 0.16 029 050 062 | 022 041 086 080 | 020 051 077 085 | 026 045 071 0.79
NAT (Ours) 0.9 028 045 051 | 016 025 044 058 | 023 042 082 0.84 | 022 054 079 089 | 026 042 062 0.72
mNAT (Ours) 017 029 045 053 | 0.17 031 048 054 | 022 040 0.81 0.78 | 023 054 072 080 | 027 043 0.58 0.67
Greeting Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 054 089 130 149 | 064 121 165 1.83 | 028 057 1.13 137 | 062 088 1.19 127 | 040 1.63 1.02 1.18
Res-GRU [4] 075 117 174 183 | 023 043 069 082 | 036 071 122 148 | 051 097 107 1.16 | 041 105 149 1.63
ConvSeq2Seq [5] 051 082 121 138 | 059 113 151 1.65| 029 060 1.12 137 | 063 091 119 129 | 039 061 1.02 1.18
AGED w/ adv [12] | 0.56 081 130 146 | 019 034 050 0.8 | 031 058 1.12 134 | 046 078 1.0l 1.07 | 041 076 1.05 1.19
SkelNet [6] 050 0.84 128 145 | 058 1.2 152 1.64 | 029 062 1.19 144 | 058 0.84 117 124 | 040 061 1.01 115
TD-DCT [9] 036 060 095 1.13 | 053 102 135 148 | 019 044 1.01 124 | 043 065 105 1.13 | 029 045 080 0.97
NAT (Ours) 036 059 093 1.08 | 055 096 128 142 | 018 043 093 1.16 | 046 0.67 096 1.03 ] 029 046 0.80 0.98
mNAT (Ours) 033 051 079 094 | 053 092 1.15 128 | 018 038 081 1.00 | 040 055 085 089 | 029 046 084 1.04
Sitting Down Taking Photo Waiting Walking Dog Walking Together
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] 039 074 107 1.19 | 025 051 079 092 | 034 0.67 122 147 | 060 098 136 150 | 033 0.66 094 0.99
Res-GRU [4] 0.39 0.81 140 162 | 024 051 090 1.05 | 028 053 1.02 1.14 | 056 091 126 140 | 031 058 087 091
ConvSeq2Seq [5] 041 078 116 131 | 023 049 088 1.06 | 030 0.62 1.09 130 | 059 1.00 132 144 | 027 052 071 0.74
AGED w/ adv [12] | 033 0.62 098 1.10 | 023 048 081 095 | 024 050 102 1.13 | 050 0.81 .15 127 | 023 041 056 0.62
SkelNet [6] 037 072 1.05 1.17 | 024 047 078 093 | 030 0.63 1.17 140 | 054 0.88 120 135 | 027 053 068 0.74
TD-DCT [9] 030 061 090 1.00 | 014 034 058 070 | 023 0.50 0091 1.14 | 046 0.79 1.12 129 | 0.15 034 052 057
NAT (Ours) 031 063 092 105|017 037 059 071 ] 023 048 087 107 | 040 0.69 100 1.14 | 0.15 031 045 0.51
mNAT (Ours) 034 066 094 106 | 014 032 054 0.68 | 022 048 079 097 | 043 070 086 1.03 | 0.16 028 051 0.62
B. Training A. Datasets

We now summarize the whole training process. Given the
predicted human motion sequence Y = {y;}*, and ground
truth, we apply the average L1 distance as the reconstruction
loss

J M

Lrecst = ﬁZZ”S’g - yiijh

j=1t=1

®)

where yg denotes the predicted skeleton of the j-th joint in
the ¢-th frame, and y7 is the corresponding ground truth.

Since that we use quaternion as the joint representation,
we must ensure the output y; has unit length as only unit
quaternion represents a valid 3D rotation [50], [51]. To this
end, we also add a penalty loss for each of the prediction to
ensure this property

1 M Aj 2 2
Lontey = 7577 . (Islz = 1) )
j=1t=1
To summarize, our overall objective is
L= Erecst + )\pnltyﬂpnlty + >\cls(£clsl + ECISQ)? (10)

where Apnity and Mg control the relative importance of each
loss item. The pseudo code of NAT Multitask Training is
shown in Algorithm 1.

VI. EXPERIMENTS

In this section, we first introduce two popular motion cap-
ture benchmarks: Human3.6M [24] and CMU Motion Capture
dataset [52] (CMU-Mocap) as well as the implementation
details and evaluation metrics. We then demonstrate our re-
sults compared with the current state-of-the-arts and ablation
studies.

Human3.6M [24] is the largest publicly available dataset
for human motion research so far, which contains 3.6 million
3D poses recorded by Vicon motion capture system. It contains
15 activity scenarios including walking, eating, smoking, and
discussion. Seven subjects are involved in the dataset, each of
which performs two sequences for each action. In total, each
sequence contains about 3000 to 5000 frames. Each frame
consists of 34 rows of data, including a global translation, a
global rotation and 32 joint rotations with respect to its parent
joint. Each joint is represented as an exponential map (axis-
angle) form. Following the standard protocol [4], [5], [10], all
sequences are downsampled to a frame rate of 25fps; global
translation and global rotation are discarded. The Subject 5
(S5) is used in testing while the others are used in training.

CMU Motion Capture [52] is a large dataset including
actions such as walking, running, dancing. Different from
Human3.6M, the CMU-Mocap dataset has 38 joints in total.
Therefore, it has a different skeleton configuration. Li et al. [5]
first conduct experiments on CMU-Mocap with selected eight
actions. We follow their experiment setting with 86293 frames
in total. Five subjects are used for training while one subject is
used for testing. Similar to Human3.6M, all sequences are also
downsampled to 25fps. Global translation and global rotation
are discarded.

B. Implementation Details

1) Network and Training Details: Our model is based on
QuaterNet [10] and quaternion is used as input representation
of joints. Similar to the previous works [4], [5], [10], our
model is also trained on all actions. Both context encoder
and frame decoder stack 6 GCN-TCN building blocks with
residual connections, which indicates A is set to 6 in the



IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE III
COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS ON ALL 15 ACTIONS IN
LONG-TERM PREDICTION OF HUMAN3.6M DATASET.

Walking Eating Smoking Discussion Direction Greeting Phoning Posing
milliseconds 560 1000 | 560 1000 | 560 1000 560 1000 560 1000 | 560 1000 560 1000 560 1000
Zero-velocity [4] 135 132 | 1.04 138 | 1.02 1.69 1.41 1.96 .02 1.50 | 1.79 1.80 1.81 2.04 1.81 278
ERD [2] 2.00 238 | 236 241 | 3.68 3.82 3.47 2.92 - - - - - - - -
SRNN [3] 1.81 220 | 249 282 | 324 2.42 2.48 2.93 - - - - - - - -
Res-GRU [4] 093 1.03 | 095 1.08 | 1.25 1.50 1.43 1.69 096 142 | 1.68 1.76 1.56 1.77 1.78 229
ConvSeq2Seq [5] 086 092 | 0.89 124 | 097 1.62 1.44 1.86 093 142 | 1.57 1.79 1.66 1.83 1.75 278
AGED w adv [12] | 0.78 091 | 0.86 0.93 | 1.06 1.21 1.25 1.30 - - - - - - - -
SkelNet [6] 079 0.83 | 0.84 1.06 | 0.98 1.21 1.39 1.75 - - - - - - - -
NAT (Ours) 056 058 | 0.71 096 | 0.78 1.39 1.13 1.35 073 1.18 | 1.23 1.30 1.14 1.44 135 192
mNAT (Ours) 054 050 | 0.64 0.87 | 0.73 1.26 1.18 1.22 070 1.15 | 1.17 1.24 1.15 1.40 1.29 1.88

Purchases Sitting Sitting Down | Taking Photo Waiting Walking Dog | Walking Together
milliseconds 560 1000 | 560 1000 | 560 1000 560 1000 560 1000 | 560 1000 560 1000
Zero-velocity [4] 164 245 | 1.26 1.03 | 1.30 T.80 T.03 127 189 263 | I.74 T.96 T.10 152
ERD [2] - - - - - - - - - - - - - -
SRNN [3] - - - - - - - - - - - - - -
Res-GRU [4] 141 230 | 1.24 1.51 1.28 .72 0.95 1.17 .64 230 | 1.69 1.73 0.80 1.43
ConvSeq2Seq [5] 144  2.38 . 148 | 1.26 1.75 0.92 1.23 170 237 | 1.62 1.78 0.79 1.45
AGED w adv [12] - - - - - - - - - - - - - -
SkelNet [6] - - - - - - - - - - - - - -
NAT (Ours) .13 196 | 1.19 1.55 1.17 1.64 0.85 1.07 127  1.65 | 1.18 1.50 0.60 1.09
mNAT (Ours) 1.06 1.81 | 1.21 146 | 1.09 1.58 0.86 1.04 126 158 | 1.16 1.44 0.59 1.07

TABLE IV

COMPARISON OF MEAN JOINT ERROR OF ANGLE SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS ON 8 ACTIONS AS WELL AS
AVERAGE RESULT OF CMU-MOCAP DATASET.

Basketball Basketball Signal Directing Traffic Jumping Running
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] | 0.48 0.82 1.40 1.64 | 024 044 075 0.86 | 030 057 090 1.01 | 036 0.62 148 1.68 | 0.56 1.00 138 1.46
Res-GRU [4] 050 080 127 145 | 041 076 132 154|033 059 093 1.10 | 056 0.88 1.77 202 | 033 050 0.66 0.75
ConvSeq2Seq [5] | 037 062 107 118 | 032 059 104 124 | 025 056 089 100 | 039 060 136 156 | 028 041 052 0.57
NAT (Ours) 034 052 08 1.03 | 0.19 028 049 0.61 | 022 044 067 079 | 0.38 056 127 147 | 026 049 052 0.56
mNAT (Ours) 034 049 086 101 | 015 024 048 061 | 020 041 065 077 | 038 056 129 145 | 024 043 053 0.56
Soccer Walking Wash Window Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity [4] | 0.27 048 092 T.00 [ 04T 060 083 095 | 034 057 090 T1.00 | 037 064 T07 122
Res-GRU [4] 029 051 088 099 | 035 047 060 065 | 030 046 072 091 | 038 0.62 1.02 1.18
ConvSeq2Seq [5] | 026 044 0.75 0.87 | 035 044 045 050 | 030 047 080 101 | 032 052 086 0.99
NAT (Ours) 023 034 061 073033 039 042 048 [ 027 040 072 093 | 028 043 070 0.83
mNAT (Ours) 020 033 059 072 ] 031 037 040 046 | 023 036 0.66 086 | 0.26 0.40 0.68 0.80

Figure 4. When the dimension changes, an extra 1D Conv is
performed to transform dimension. The number of channels
in the context encoder is 64, 64, 128, 128, 256, 256 for each
building block, respectively. The number of channels in the
frame decoder is 256, 128, 128, 64, 64, 4, respectively. We
use a pre-defined graph with relation of joints for GCN based
on specific dataset. The kernel size ks is set to 9 for TCN in
context encoder while set to 1 in frame decoder. Each TCN
is performed with the same padding mode to ensure that the
temporal size stays unchanged. LeakyReLU is utilized as the
non-linear activation with a rate of 0.01. We apply o = 10
and 8 = 500 for positional encoding as this setting achieves
optimal performance in our observation. The dropout rate is
set to 0.5 for ARC module. The whole model is lightweight
with 2.28 MB.

For both datasets, ADAM [47] is selected as the optimizer
in our experiment. The initial learning rate is 0.001 with a
0.9995 decay in every epoch. The gradient clip norm is set to
0.1 and the mini-batch is composed of 60 samples. Following
the previous works [10], Apnity is set to 0.01. Also, Ags is set
to 0.01 to balance two tasks. We conduct an ablation study on
the effects of A\, on final results. Our model is trained with
PyTorch [53] framework for 3000 epochs on a single NVIDIA
1080TI GPU.

2) Evaluation Metrics and Baselines: For Human3.6M, we
report our results on both short-term (80 ~ 400 ms) and long-
term (80 ~ 1000 ms). For CMU-Mocap, due to the space
limit, we only report short-term results. For all datasets, 50
frames (2000 ms) are given.

Following the previous evaluation protocol [4], we report
the comparison results of the mean joint error of angle space,
i.e., Euler angle, between predicted joints and ground truth.
Besides, we also evaluate the mean joint error of 3D space
[9], [14] in millimeter. The mean 3D error could be measured
either by converting the predicted angles to 3D space, or
directly train on 3D coordinates of the skeleton sequence.

To evaluate the performance of our model, we compare it
with five state-of-the-art human motion prediction approaches,
namely, Res-GRU [4], ConvSeq2Seq [5], AGED (w/ adv) [12],
SkelNet [6], TD-DCT [9], as well as one baseline method
Zero-velocity [4]. Note that the results of SkelNet are based
on their open source project’ since they do not provide results
for all 15 actions. All the other results are referred from their
original papers.

Zhttps://github.com/CHELSEA234/SkelNet_motion_prediction


https://github.com/CHELSEA234/SkelNet_motion_prediction

IEEE TRANSACTIONS ON IMAGE PROCESSING

ON ALL 15 ACTIONS OF HUMAN3.6M DATASET.

TABLE V
COMPARISON OF MEAN JOINT ERROR OF 3D SPACE BETWEEN OUR MODEL AND THE STATE-OF-THE-ART METHODS

Walking Eating Smoking Discussion Direction
milliseconds 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
ConvSeq2Seq [3] 218 375 559 630 | 133 245 486 600 | 154 255 3903 445 | 236 436 684 740 | 267 433 390 124
ConvSeq2Seq 3D [5] | 17.1 312 538 615 | 137 259 525 633 | 11 210 334 383 | 189 393 677 757 | 220 372 596 734
TD-DCT [9] ILI 190 320 390 | 92 195 403 489 | 92 166 261 290 | 113 237 419 466 | 112 232 527 64l
TD-DCT 3D [9] 89 157 292 334 | 88 189 394 472 | 78 149 253 287 | 98 221 306 441 | 126 244 482 584
LDR-GCN [14] 97 177 283 322 | 102 174 387 493 | 89 141 259 267 | 7.6 234 366 399 | 104 241 447 513
LDR-GCN3D [14] | 89 149 254 209 | 76 159 372 417 | 81 134 248 249 | 94 203 352 412 | 131 237 445 509
Ours 94 137 236 280 | 82 171 350 445 | 76 155 274 321 | 102 197 385 433 | 121 209 392 494
Ours 3D 84 134 233 279 | 70 163 338 422 | 76 145 238 272 | 97 222 415 502 | 115 209 307 367
Greeting Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
Comvseq2Seq 131 304 586 1100 1228 | 224 384 650 754 | 224 421 873 1061 | 284 538 821 931 | 247 500 836 1004
ConvSeq2Seq 3D [5] | 24.5 462 900 1031 | 172 297 534 613 | 161 356 862 1056 | 294 549 822 930 | 198 424 770 834
TD-DCT [9] 142 277 671 829 | 135 225 452 524 | 11 2701 694 862 | 204 428 691 783 | 117 270 559 669
TD-DCT 3D [9] 145 305 742 890 | 115 202 379 432 | 94 239 662 829 | 196 385 644 722 | 107 246 506 620
LDR-GCN [14] 134 312 693 861 | 117 183 328 441 | 86 192 594 842 | 182 39.1 632 752 | 98 252 489 594
LDR-GCN3D[14] | 9.6 279 663 788 | 104 143 331 307 | 87 211 583 819 | 162 361 628 762 | 92 231 472 577
Ours 120 246 621 765 | 120 216 388 463 | 136 265 654 818 | 168 361 636 713 | 98 259 551 6/3
Ours 3D 135 257 460 571 | 127 204 355 421 | 72 184 507 640 | 186 355 501 580 | 93 222 440 522
Sitting Down Taking Photo Waiting Walking Dog ‘Walking Together
milliseconds 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
ConvSeq2Seq [3] 739 399 746 898 | 184 321 603 725 | 249 502 1016 1200 | 564 949 1361 1563 | 21.1 385 610 704
ConvSeq2Seq 3D [5] | 17.1 349 663 777 | 140 272 538 662 | 179 365 749 907 | 406 747 1166 1387 | 150 299 543 658
TD-DCT [9] IL5 254 539 656 | 83 158 385 490 | 121 275 673 856 | 358 636 1067 1268 | 11.7 235 460 535
TD-DCT 3D [9] 114 276 564 676 | 68 152 382 496 | 95 220 575 739 | 322 580 1022 1227 | 89 184 353 443
LDR-GCN [14] 108 242 497 614 | 65 143 323 467 | 91 215 509 687 | 265 543 947 1192 | 103 206 349 453
LDR-GCN3D [14] | 93 214 463 593 | 7.1 138 296 442 | 92 176 472 716 | 253 566 879 994 | 82 181 312 394
Ours 153 249 536 630 | 74 144 348 435 | 128 252 539 638 | 249 305 896 1076 | 7.7 179 338 437
Ours 3D 135 230 348 403 | 77 136 350 459 | 106 237 505 613 | 211 345 553 725 | 83 158 280 333
C. Comparison with State-of-the-Art > o 1o
= 320ms
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We evaluate our model on two popular datasets, Hu- g
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man3.6M and CMU-Mocap. We post results for NAT and =°° Gos
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joint error of angle space of Human3.6M dataset for all 15 04 Zos
human actions. With the help of our non-autoregressive setting, . . —
both our NAT and mNAT outperform all the state-of-the-art S TR P
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approaches in average of 15 actions. Although our results
keep the same level with the latest state-of-the-art (TD-DCT
[9]) in 80 and 160 ms, our methods surpass a large margin
(0.09 and 0.10) in 320ms and 400ms, respectively. Note that
with the help of multitask learning, the average performance
gains 0.02, 0.05, 0.06 for 160, 320, and 400ms compared with
NAT. The interesting part lies in that the ARC module helps
improve performance in the long run. This is because, in the
short term, the class information is not important since the
inertance is the key factor. However, in the long term, it is
not easy to predict since much more factors are taken into
consideration. Therefore, to predict target pose and the action
label simultaneously helps a lot by introducing the guidance
from activity, leading to the convincing performance gain.

Table II shows the results for all 15 human actions in
detail. NAT and mNAT also achieve the best performance on
most actions. Of all the action categories, we also notice the
abnormal performance in action “Phoning”. After examination,
we finally realize that the high error is due to the discontinuity
of the test data. We observe that the finger joint data are abnor-
mal, which largely affects the performance of the mean joint
error. Since this is an end-effector joint with little influence on
others, the performance in 3D space is not affected, which is
also discussed in [9]. As for the results of other state-of-the-art
approaches, we faithfully report their performances from their

(a) Effect of A5 for Mean Joint Error.
(the lower the better)

(b) Effect of A5 for Recognition Accuracy.
(the higher the better)

Fig. 7. Tlustration of effects of . for both mean joint error and recognition
accuracy of Human3.6M dataset.

original papers.

In Table III, we also report the performance of long-term
prediction for all 15 actions of Human3.6M dataset. For
baselines with open source code, we run their codes to get
the results, for baselines without public code, we just left it
blank. We observe an obvious improvement for actions such
as “Walking”, “Eating”. For example, the performance gain
reaches 0.25 and 0.33 for 560 and 1000 ms of “Walking”. This
proves that the inertance still exists in long term such that the
non-autoregressive model could be utilized. The results also
show the existence of error accumulation of the previous RNN-
based autoregressive methods, in which the mean joint error
grows fast with the evolution of time.

Table IV reports the results on the CMU-Mocap dataset
of the mean joint error. Our model also achieves the best
performance on all 8 actions and the lower average error than
the previous baselines, which verifies what we discuss above.

In Table V, we report the results of 3D joint error for short-
term on Human 3.6M. To be consistent with previous works
[9], [14], we conduct experiments in two ways: converting the
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Fig. 8. Qualitative results based on Human3.6M dataset. Starting from top left, we demonstrate for four actions: direction, phoning, walking, and discussion.
For each action, the top (in red color) and the bottom (in blue color) are the ground truth and our prediction respectively.

TABLE VI
THE AVERAGE MEAN JOINT ERROR BETWEEN PERFORMANCE WITH AND
WITHOUT CYCLE CONSISTENCY LOSS OF HUMAN3.6M DATASET.

Average (ms)
80 160 320 400 1000
mNAT w/o Lo | 028 048 0.75 088 1.38
mNAT w/ L5 027 048 074 0.85 1.30
TABLE VII
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT VALUES OF Appity OF

HUMAN3.6M DATASET.

Average (ms)

Apnlty 80 160 320 400
04 028 051 0.81 0.93
0.6 027 051 081 0.92
0.8 027 049 0.80 0.92
1.0 027 050 0.79 091
1.5 028 051 0.82 093
2.0 029 052 0.82 094

predicted Euler angles to 3D (ours), or directly training the
models on 3D space (ours 3D). We observe that our method
are on par with the current state-of-the-art method on 3D joint
error metric, which verifies the generalization of our method.
We also present the qualitative results for Human 3.6M
dataset in Fig. 8. From the visualization, our prediction is quite
close to the ground truth. Note that even for the “phoning”
action, our model still gives plausible and reliable results.

D. Ablation Study

1) Balance of losses: In this model, we present the ARC
module which makes use of multitask learning, leading to
convincing improvement. However, the performance gains for
prediction and classification are traded off by the hyper-
parameter \.s. We study the effects of \.s on two tasks.

We evaluate our model and present the mean joint error
and recognition accuracy for different A\.s. Fig. 7 illustrates
the performances for both tasks. From the result, we observe
that: 1) The recognition accuracy grows with the improvement
of Acis. 2) For human motion prediction task, the performance

TABLE VIII
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT TYPES OF EMBEDDING
OF HUMAN3.6M DATASET.

Average (ms)
Embedding type 80 160 320 400
Random embedding | 0.31 0.54 0.82 094
One-hot embedding | 0.32 053 0.83 0.96
Learned embedding | 0.28 0.52 0.83 0.94
Positional encoding | 0.27 0.50 0.79 0.91

is robust when A5 is low. However, an obvious performance
drop is observed when A5 gets larger. This is mainly because
motion prediction is more difficult than classification task.
When we pay too much attention to classification, the model
becomes unbalanced. Therefore, we choose A.js = 0.01 in our
paper.

2) Effects of cycle consistency loss: In the multi-task
setting, it encourages the predicted human motion sequence
not only is close to the ground truth sequence and also
represents the high-level action category. To investigate the
effects of the cycle consistency classification loss, we have
conducted experiments to evaluate cycle consistency loss, i.e.,
L2, and the results are shown in Table VI. It is observed
that the performance with the cycle consistency achieves
lower prediction error than that without it, particularly in
the long-term prediction (3.4% improvement on 400ms, 5.8%
improvement on 1000ms), which verifies the necessity of the
cycle consistency classification loss.

3) Effects of Apuiry: To investigate the effects of the balance
controlling factor Apny, we have conducted experiments on
different values of Apniy. As shown in Table VII, Ap=1.0
achieves the best performance in most of the experimental
settings. Also, the performance is stable in a relatively wide
range from 0.4 to 2.0. In real scenario, we did not tune this
hyper-parameter directly and set it as default value 1.0 for all
cases.

4) Effects of positional embedding: We have conducted two
experiments to evaluate the merit of positional encoding. Our
methods are firstly compared with the one-hot embedding and



IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE IX
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT SETTINGS OF «, 3 OF
HUMAN3.6M DATASET.

Average (ms)

8 80 160 320 400

1 10000 | 0.28 0.51 0.84 0.96
0.1 10000 | 0.28 0.52 0.84 094
10 10000 | 0.28 0.50 0.80 0.92
1 500 028 051 082 094
1 20000 | 0.29 054 0.85 0.99
10 500 0.27 050 079 091

the embedding which is randomly initialized. As shown in
Table VIII, an apparent performance improvement is observed
in random embedding (0.04 in 80ms and 0.03 in 400ms) and
one-hot embedding (0.05 in 80ms and 400ms). The advantage
of the positional encoding is to capture the positional-sensitive
information of skeletons sequences along the time dimension
and the periodic information of human motion. The positional
encoding utilizes the periodic functions with different frequen-
cies to capture the human movements of various positions and
amplitudes, which is naturally tailored for the human motion
prediction task.

Besides, we compare the positional encoding with the
learned embedding. The Table VIII suggests an improvement
in positional encoding (0.01 in 80ms and 0.03 in 400ms),
which indicates the positional encoding is designed for the
human motion sequences with positional and periodical in-
formation, while the learned embedding directly model the
weights and lack the prior constraints of periodicity and
interpretability.

5) Effects of o and [: In Sec IV, we discuss that the
original setting of positional encoding module might be sub-
optimal due to the domain gap between NMT and motion
prediction. In Table IX, we study the influence of different
settings of o and (. From the results, we observe that the
performance gains with the increase of o and the decrease
of B. We explain this observation with the function of two
parameters. On one hand, « controls the magnitude of time
index t. When « becomes larger, the positional embedding
vectors become more distinguishable, leading to a high-quality
prediction. On the other hand, 3 controls the frequency of each
dimension. As can be easily observed from Fig. 5, with the
high value of 3, lots of dimensions are wasted due to the
limited number of poses to be predicted. In conclusion, our
ablation study shows that a large value of o and a small value
of 3 lead to an optimal performance.

6) Effects of kernel size for TCN: We study the effects of
kernel size for TCN in this section. In Table X, we evaluate
the mean joint error for different kernel sizes ranging from 3
to 11. From the results, we find an obvious boundary between
7 and 9. When the kernel size is less than 7, the performance
becomes poor. However, limited improvement is found when
we further enlarge the kernel size. Since multiple GCN-TCN
blocks are stacked in our model, the choice of kernel size
has a direct influence for the receptive field. Therefore, the
receptive field leads to the above observation. On one hand,
when the kernel size is less than 7, the overall receptive

TABLE X
THE AVERAGE MEAN JOINT ERROR OF DIFFERENT SETTINGS OF KERNEL
SIZE IN TCN OF HUMAN3.6M DATASET.

Average (ms)
kernel size 80 160 320 400
3 040 070 1.06 1.19
5 040 0.71 1.07 1.20
7 040 0.67 098 1.11
9 0.27 050 0.79 0091
11 0.28 0.50 0.81 0.90
TABLE XI

THE AVERAGE MEAN JOINT ERROR OF DIFFERENT SETTINGS OF GRAPH
TYPE IN GCN OF HUMAN3.6M DATASET.

Average (ms)
graph type 80 160 320 400
no graph 028 053 085 098
random graph | 0.29 052 0.82 0.96
forward 0.27 051 0.82 093
backward 028 052 0.83 095
bi-directional | 0.27 0.50 0.79 091

field cannot cover the whole skeleton sequence. Thus, the
performance drops due to the large information loss. On the
other hand, all the frames are average pooled in the last,
simply increasing the kernel size would not make an obvious
difference. In conclusion, we choose to use kernel size 9 due
to the computational efficiency.

7) Effects of graph type for GCN: We also study the
effects of multiple graphs on GCN. From Table XI, “no
graph” denotes that each joint is connected with itself only.
In practice, we replace the adjacency matrix with an identity
matrix /. Similarly, “random graph” means that the connection
of joints is random. From the results, both “no graph” and
“random graph” are slightly worse than GCN with people
skeleton graph.

Further, we also explore the effects of the graph direction.
On one hand, “forward” denotes that the connection of joints is
from the central joint to all its end-effectors. On the other hand,
“backward” denotes a converse direction. From the results,
GCN with bi-directional graph obtains a better performance,
which means that both parent joint and child joint are equally
important in human motion prediction task.

E. Discussion

In this section, we discuss some potential research points for
future work. First of all, to make the generated skeletons more
realistic, we would add constraints to ensure the continuity and
smoothness by TV-norm [54]. Secondly, due to the fact that
the deep GCNs lead to a relatively high computational cost,
we would accelerate the process of encoding and decoding by
methods such as knowledge distillation.

As for other applications, our method is related to a broad
area where the inertial human motion exists, including motion
generation [55], motion re-targetting [56], and motion recovery
[57]. We leave these for our future work.
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VII. CONCLUSION

In this paper, we analyze the error accumulation problem
in human motion prediction is mainly due to the recur-
rent decoding scheme. To remedy this issue, we present a
novel human motion prediction framework based on a non-
autoregressive method. The framework takes an encoder-
decoder model where a simple yet effective non-autoregressive
pipeline is adopted in decoding stage while multiple GCN-
TCN blocks are performed so as to fully explore the spatio-
temporal relation. In addition, we also find that by predicting
human action category, the prediction becomes more feasible
and reliable. In experiments, our approach surpasses all the
recent state-of-the-art autoregressive methods.

[1]

[2]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

REFERENCES

D. Holden, J. Saito, and T. Komura, “A deep learning framework for
character motion synthesis and editing,” ACM Transactions on Graphics
(TOG), vol. 35, no. 4, p. 138, 2016.

K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent network
models for human dynamics,” in Proc. ICCV, December 2015, pp. 4346—
4354,

A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep
learning on spatio-temporal graphs,” in Proc. CVPR, June 2016, pp.
5308-5317.

J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in Proc. CVPR, July 2017, pp. 4674—
4683.

C. Li, Z. Zhang, W. Sun Lee, and G. Hee Lee, “Convolutional sequence
to sequence model for human dynamics,” in Proc. CVPR, June 2018,
pp. 5226-5234.

X. Guo and J. Choi, “Human motion prediction via learning local
structure representations and temporal dependencies,” in Proc. AAAI,
February 2019, pp. 2580-2587.

E. Aksan, M. Kaufmann, and O. Hilliges, “Structured prediction helps
3d human motion modelling,” in Proc. ICCV, October 2019, pp. 7143—
7152.

Z. Liu, S. Wu, S. Jin, Q. Liu, S. Lu, R. Zimmermann, and L. Cheng,
“Towards natural and accurate future motion prediction of humans and
animals,” in Proc. CVPR, June 2019, pp. 9996-10 004.

W. Mao, M. Liu, M. Salzmann, and H. Li, “Learning trajectory depen-
dencies for human motion prediction,” in Proc. ICCV, October 2019,
pp. 9488-9496.

D. Pavllo, D. Grangier, and M. Auli, “Quaternet: A quaternion-based
recurrent model for human motion,” in Proc. BMVC, 2018.

D. Pavllo, C. Feichtenhofer, M. Auli, and D. Grangier, “Modeling human
motion with quaternion-based neural networks,” Int. J. Comput. Vis., pp.
1-18, 2019.

L.-Y. Gui, Y.-X. Wang, X. Liang, and J. M. F. Moura, “Adversarial
geometry-aware human motion prediction,” in Proc. ECCV, September
2018, pp. 823-842.

A. Hernandez, J. Gall, and F. Moreno-Noguer, “Human motion predic-
tion via spatio-temporal inpainting,” in Proc. ICCV, October 2019, pp.
7133-7142.

Q. Cui, H. Sun, and F. Yang, “Learning dynamic relationships for 3d
human motion prediction,” in Proc. CVPR, June 2020, pp. 6518-6526.
Y. Zhou, Z. Li, S. Xiao, C. He, Z. Huang, and H. Li, “Auto-conditioned
recurrent networks for extended complex human motion synthesis,” in
Proc. ICLR, 2018.

A. v.d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Proc.
NeurIPS, 2017, pp. 5998-6008.

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. AAAI, February
2018, pp. 7444-7452.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action recogni-
tion with directed graph neural networks,” in Proc. CVPR, June 2019,
pp. 7904-7913.

C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention enhanced
graph convolutional Istm network for skeleton-based action recognition,”
in Proc. CVPR, June 2019, pp. 1227-1236.

L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,” in Proc.
CVPR, June 2019, pp. 12018-12027.

B. Li, X. Li, Z. Zhang, and F. Wu, “Spatio-temporal graph routing for
skeleton-based action recognition,” in Proc. AAAI, February 2019, pp.
8561-8568.

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing in
natural environments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 7, pp. 1325-1339, 2013.

T. Zhou, H. Fu, C. Gong, J. Shen, L. Shao, and F. Porikli, “Multi-
mutual consistency induced transfer subspace learning for human motion
segmentation,” in Proc. CVPR, June 2020, pp. 10274-10283.

T. Zhou, W. Wang, S. Qi, H. Ling, and J. Shen, “Cascaded human-object
interaction recognition,” in Proc. CVPR, June 2020, pp. 4262-4271.

S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-
object interactions by graph parsing neural networks,” in Proc. ECCV,
September 2018, pp. 407-423.

T. Li, Z. Liang, S. Zhao, J. Gong, and J. Shen, “Self-learning with
rectification strategy for human parsing,” in Proc. CVPR, June 2020,
pp. 9260-9269.

F. S. Grassia, “Practical parameterization of rotations using the expo-
nential map,” Journal of Graphics Tools, vol. 3, no. 3, pp. 29-48, 1998.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 17351780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

K. Cho, B. van Merriénboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder—decoder approaches,”
in Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, Oct. 2014, pp. 103-111.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NeurIPS, 2014, pp. 3104-3112.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sam-
pling for sequence prediction with recurrent neural networks,” in Proc.
NeurIPS, 2015, pp. 1171-1179.

A.M. Lamb, A. G. A. P. Goyal, Y. Zhang, S. Zhang, A. C. Courville, and
Y. Bengio, “Professor forcing: A new algorithm for training recurrent
networks,” in Proc. NeurIPS, 2016, pp. 4601-4609.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in Proc. ICML. JMLR.
org, 2017, pp. 1243-1252.

J. Gu, J. Bradbury, C. Xiong,
“Non-autoregressive neural machine
arXiv:1711.02281, 2017.

A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv preprint arXiv:1211.3711, 2012.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc.
NeurIPS, 2016, pp. 3844-3852.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and
locally connected networks on graphs,” in Proc. ICLR, 2014.

W. Wang, X. Lu, J. Shen, D. J. Crandall, and L. Shao, “Zero-shot video
object segmentation via attentive graph neural networks,” in Proc. ICCV,
October 2019, pp. 9235-9244.

J. Yin, J. Shen, C. Guan, D. Zhou, and R. Yang, “Lidar-based on-
line 3d video object detection with graph-based message passing and
spatiotemporal transformer attention,” in Proc. CVPR, June 2020, pp.
11492-11501.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, no. 1,
2013, p. 3.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, June 2016, pp. 770-778.

V. O. Lj
translation,”

and R. Socher,
arXiv preprint



IEEE TRANSACTIONS ON IMAGE PROCESSING

(471

(48]
[49]
(501
(511

[52]
[53]

[54]
[55]
[56]

[571

1
A

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual represen-
tation learning by context prediction,” in Proc. ICCV, December 2015,
pp. 1422-1430.

L. Gomez, Y. Patel, M. Rusinol, D. Karatzas, and C. V. Jawahar, “Self-
supervised learning of visual features through embedding images into
text topic spaces,” in Proc. CVPR, July 2017, pp. 2017-2026.

E. Pervin and J. A. Webb, “Quaternions in computer vision and
robotics,” Carnegie-Mellon Univ Pittsburgh PA DEPT of Computer
Science, Tech. Rep. AD-A-125076/0, 1982.

K. Shoemake, “Animating rotation with quaternion curves,” in Pro-
ceedings of the 12th Annual Conference on Computer Graphics and
Interactive Techniques, 1985, pp. 245-254.

“CMU Graphics Lab motion capture database.” http://mocap.cs.cmu.edu.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Proc.
NeurlPS, 2019, pp. 8024-8035.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: nonlinear phenomena, vol. 60,
no. 1-4, pp. 259-268, 1992.

S. Yan, Z. Li, Y. Xiong, H. Yan, and D. Lin, “Convolutional sequence
generation for skeleton-based action synthesis,” in Proc. ICCV, October
2019, pp. 4393-4401.

R. Villegas, J. Yang, D. Ceylan, and H. Lee, “Neural kinematic networks
for unsupervised motion retargetting,” in Proc. CVPR, June 2018, pp.
8639-8648.

Q. Cui, H. Sun, Y. Li, and Y. Kong, “A deep bi-directional attention
network for human motion recovery,” in Proc. of IJCAI, 7 2019, pp.
701-707.

Bin Li received the bachelor’s degree in informa-
tion and communication engineering from Zhejiang
; University, China, in 2015. He is currently pursuing
the Ph.D. degree with the College of Information
= I Science and Electronic Engineering, Zhejiang Uni-
versity, Hangzhou, China, under the supervision of

7 Prof. Z. Zhang and Prof. X. Li. His current research
/ interests are primarily in computer vision and deep
learning.

Jian Tian received the bachelor’s degree in com-
puter science and technology from Zhejiang Uni-
versity, China, in 2018. He is currently pursuing
the master’s degree with the College of Software
Technology, Zhejiang University, Hangzhou, China,
under the supervision of Prof. X. Li. His current
research interests are primarily in computer vision

Pl oY 8 ] and deep learning.
% LT SRR

Zhongfei Zhang received B.S. (Hons.) in electronics
engineering and M.S. in information sciences both
from Zhejiang University, China, and Ph.D. in com-
puter science from the University of Massachusetts
at Amherst, USA. He is currently a Professor at
Computer Science Department, Binghamton Uni-
versity, State University of New York, USA. His
research interests include machine learning, knowl-
edge discovery, artificial intelligence, computer vi-
sion, and pattern recognition. He is an IEEE Fellow.

Hailing Feng Received his Ph.D. degree in com-
puter science from the University of Science and
Technology of China in June 2007. Since 2007,
he worked in the school of information engineer-
ing of Zhejiang A&F University. From 2013 to
2014, he was a visiting professor at Forest Products
Laboratory, USDA. He is currently a professor in
the school of information engineering. His main
interest areas include computer vision, intelligent
information processing, and Internet of Things.

Xi Li received the Ph.D. degree from the Na-
tional Laboratory of Pattern Recognition, Chinese
Academy of Sciences, Beijing, China, in 2009. From
2009 to 2010, he was a Post-Doctoral Researcher
with CNRS, Telecomd ParisTech, France. He is
currently a Full Professor with Zhejiang University,
China. Prior to that, he was a Senior Researcher with
the University of Adelaide, Australia. His research
interests include visual tracking, motion analysis,
face recognition, web data mining, and image and
video retrieval.


http://mocap.cs.cmu.edu

	Introduction
	Related Work
	Human Motion Prediction
	Non-autoregressive Models
	Graph Neural Networks

	Problem Formulation
	Non-autoregressive Model
	Context Encoder
	Positional Encoding Module
	Frame Decoder

	Multitask Training
	Action Recognition Classifier
	Training

	Experiments
	Datasets
	Implementation Details
	Network and Training Details
	Evaluation Metrics and Baselines

	Comparison with State-of-the-Art
	Ablation Study
	Balance of losses
	Effects of cycle consistency loss
	Effects of pnlty
	Effects of positional embedding
	Effects of  and 
	Effects of kernel size for TCN
	Effects of graph type for GCN

	Discussion

	Conclusion
	References
	Biographies
	Bin Li
	Jian Tian
	Zhongfei Zhang
	Hailing Feng
	Xi Li


