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Abstract

Clustering on multi-type relational data has at-
tracted more and more attention in recent years
due to its high impact on various important ap-
plications, such as Web mining, e-commerce and
bioinformatics. However, the research on gen-
eral multi-type relational data clustering is still
limited and preliminary. The contribution of the
paper is three-fold. First, we propose a general
model, the collective factorization on related ma-
trices, for multi-type relational data clustering.
The model is applicable to relational data with
various structures. Second, under this model, we
derive a novel algorithm, the spectral relational
clustering, to cluster multi-type interrelated data
objects simultaneously. The algorithm iteratively
embeds each type of data objects into low dimen-
sional spaces and benefits from the interactions
among the hidden structures of different types of
data objects. Extensive experiments demonstrate
the promise and effectiveness of the proposed al-
gorithm. Third, we show that the existing spec-
tral clustering algorithms can be considered as
the special cases of the proposed model and al-
gorithm. This demonstrates the good theoretic
generality of the proposed model and algorithm.

many real-world data sets are much richer in structure, in-
volving objects of multiple types that are related to each
other, such as Web pages, search queries and Web users in
a Web search system, and papers, key words, authors and
conferences in a scientific publication domain. In such sce-
narios, using traditional methods to cluster each type of ob-
jects independently may not work well due to the following
reasons.

First, to make use of relation information under the tradi-
tional clustering framework, the relation information needs
to be transformed into features. In general, this transforma-
tion causes information loss and/or very high dimensional
and sparse data. For example, if we represent the relations
between Web pages and Web users as well as search queries
as the features for the Web pages, this leads to a huge num-
ber of features with sparse values for each Web page. Sec-
ond, traditional clustering approaches are unable to tackle
with the interactions among the hidden structures of differ-
ent types of objects, since they cluster data of single type
based on static features. Note that the interactions could
pass along the relations, i.e., there exists influence propaga-
tion in multi-type relational data. Third, in some machine
learning applications, users are not only interested in the
hidden structure for each type of objects, but also the global
structure involving multi-types of objects. For example,
in document clustering, except for document clusters and
word clusters, the relationship between document clusters
and word clusters is also useful information. It is difficult

to discover such global structures by clustering each type

1. Introduction of objects individually.

. ) . Therefore, multi-type relational data has presented a great
Most clustering approaches in the literature focus on "flat’challenge for traditional clustering approaches. In this
data in which each data Object is represented as a fixe%‘[udy, ﬁrst, we propose a genera' modeL the collective
length feature vector (R.O.Duda et al., 2000). Howevergactorization on related matrices, to discover the hidden

Wrocee dings of thes™® International Conference structures of multi-types of objects based on both feature

on Machine LearningPittsburgh, PA, 2006. Copyright 2006 by infor_mation and Irelatio.n information. By clustering the
the author(s)/owner(s). multi-types of objects simultaneously, the model performs
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adaptive dimensionality reduction for each type of datameans and the Laplacian-based spectral clustering. Several
Through the related factorizations which share factors, therevious efforts related to co-clustering are model based.
hidden structures of different types of objects could inter-PLSA (Hofmann, 1999) is a method based on a mixture
act under the model. In addition to the cluster structureslecomposition derived from a latent class model. A two-
for each type of data, the model also provides informatiorsided clustering model is proposed for collaborative filter-
about the relation between clusters of different types of obing by Hofmann and Puzicha (1999). Information-theory
jects. based co-clustering has also attracted attention in the lit-
erature. El-Yaniv and Souroujon (2001) extend the infor-

Second, under this model, we derive a novel algorithm, th?nation bottleneck (IB) framework (Tishby et al., 1999) to

f’fﬁggtr;;tflgginc?é Csltjnitﬁg]ngéotgsﬁ:lusrger ?eurgt-ie/eﬁe g‘é?g;ed'_repeatedly cluster documents and then words. Dhillon et al.
J y. BY y 2003) propose a co-clustering algorithm to maximize the

ding each type of dgta objects into low Q|men5|onal SPACeSy, \tual information between the clustered random variables
the algorithm benefits from the interactions among the hid-

den structures of different tvpes of data obiects. The al O§ubject to the constraints on the number of row and column
yp | : 9% |usters. A more generalized co-clustering framework is

e e Sl o e L1 SR 02 e resentec by Banerie o al. (2004)whrei any Begran
PP ivergence can be used in the objective function.

various structures. Theoretic analysis and experimental re-
sults demonstrate the promise and effectiveness of the aComparing with co-clustering, clustering on general rela-
gorithm. tional data, which may consist of more than two types of
data objects, has not been well studied in the literature.

It?]l:gs VggnsEgviégﬁggfegxfst'?hgeSspe;;ir:: g;'“lss(;[sergﬁhﬂgor's_everal noticeable efforts are discussed as follows. Taskar
: 1€ Spec o Prdtal. (2001) extend the the probabilistic relational model to
posed model and algorithm. This provides an unified view

to understand the connections amona these algorithms he clustering scenario by introducing latent variables into
9 9 " the model. Gao et al. (2005) formulate star-structured rela-

tional data as a star-structuredpartite graph and develop

2. Related Work an algorithm based on semi-definite programming to par-

) tition the graph. Like bipartite graph partitioning, it has
Spectral clustering (Ng et al., 2001; Bach & Jordan, 2004)imjtations that the clusters from different types of objects
ing methods based on the graph partitioning theory focugne feature information.
on finding the best cuts of a graph that optimize certainpre- _ ) )
defined criterion functions. The optimization of the crite- An intuitive idea for clustering multi-type interrelated ob-
rion functions usually leads to the computation of singular/€cts is the mutual reinforcement clustering. The idea
vectors or eigenvectors of certain graph aff”'"ty matrices_\/\/orks aS-fOHOWS: start with initial cluster structures of the
Many criterion functions, such as the average cut (Charflata; derive the new reduced features from the clusters of
et al., 1993), the average association (Shi & Malik, 2000)the related objects for each type of objects; based on the
the normalized cut (Shi & Malik, 2000), and the min-max New features, cluster each type of objects with a traditional

cut (Ding et al., 2001), have been proposed. clustering algorithm; go back to the second step until the
algorithm converges. Base on this idea, Zeng et al. (2002)

Spectral graph partitioning has also been applied to §ropose a framework for clustering heterogeneous Web ob-
special case of multi-type relational data, bi-type rela-jectS and Wang et al. (2003) present an approach to im-
tional data such as the word-document data (Dhillon, 20015 ove the cluster quality of interrelated data objects through
H.Zha & H.Simon, 2001). These algorithms formulate thegp, jterative reinforcement clustering process. However,
data matrix as a bipartite graph and seek to find the optimahere is no sounded objective function and theoretical proof

normalized cut for the graph. Due to the nature of a bi-gn the effectiveness and correctness (convergence) of the
partite graph, these algorithms have the restriction that the,ytyal reinforcement clustering.

clusters from different types of objects must have one-to- ] ] ]
one associations. To summarize, the research on multi-type relational data

] ) ] ) _clustering has attracted substantial attention, especially in
Clustering on bi-type relational data is called co-clusteringthe the special cases of relational data. However, there is
or bi-clustering. ~Recently, co-clustering has been adxtj|| imited and preliminary work on the general relational
dressed based on matrix factorization. Both Long et algata. This paper attempts to derive a theoretically sounded

(2005) and Li (2005) model the co-clustering as an opti-mogdel and algorithm for general multi-type relational data
mization problem involving a triple matrix factorization. ¢jystering.

Long et al. (2005) propose an EM-like algorithm based on
multiplicative updating rules and Li (2005) proposes a hard )
clustering algorithm for binary data. Ding et al. (2005) 3. Model Formulation
extend the non-negative matrix factorization to symmet-

ric matrices and show that it is equvilent to the Kernel K- In this section, we propose a general model for clustering

multi-type relational data based on factorizing multiple re-
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object in X; is associated with theth cluster. Similarly
CU) € {0,1}%ki, A7) ¢ RF:¥Fi js the cluster associ-
ation matrixsuch thatA;’,{I denotes the association between
clusterp of &; and clustey of X;. Second, ift; has a fea-
ture matrixF (9 ¢ R™*fi, the cluster structure is reflected
in the factorization ofF(") such thatF() ~ C®BG),
whereC) € {0, 1}"**: is a cluster indicator matrix, and

_ _ _ BU) ¢ RFixJi js the feature basis matrix which consists of
Figure 1.Examples of the structures of multi-type relational data. k; basis (cluster center) vectors in the feature space.

(a)

Based on the above discussions, formally we formulate the
task of collective clustering on MTRD as the following op-
timization problem. Considering the most general case, we
assume that in MTRD, every pair & andX; is related to

lated matrices.

Given m sets of data objects, X

{xflla cee 7%1_%1}7 R " é_x'mlv .- | , men,m}: WEIChh
refer tomn different types of objects relating to each other, I
we are interested in simultaneously clusteritiginto &; eac.h .o.ther and gvepyi has g.feature matrik’ ).

disjoint clusters, ..., and,, into k,, disjoint clusters. Definition 3.1. Givenm positive numbergF; }; <i<,, and
We call this task asollective clustering on multi-type MTRD {Xi,..., X}, which is described by a set of re-
relational data lation matrices{ R € R"*"i}i o, i, a set of fea-

i (%) ni X fi )
To derive a general model for collective clustering, we first™!® matn::ie)s{F(i) €R }1_99”’ as well as a sc_at of
7w, € Ry for different types of relations

formulate Multi-Type Relational Data (MTRD) as a set of Weightswa _ ;
related matrices, in which two matrices are related in theand features, the task of the collective clustering on the
sense that their row indices or column indices refer to thd'TRD is to minimize

same set of objects. First, if there exist relations between (@) || R(9) _ () 403) ()T |2

&; and &; (denoted ast; ~ X;), we represent them as a Z wa” ( il

y L 1<i<j<m
relation matrixR() € R™>";, where an elemenk?’ D106 () )2
denotes the relation between, andz;,. Second, a set of + > w!IFY - cWBY| @)
1<i<m

objectsX; may have its own features, which could be de-
noted by a feature matrikV) € R™*/i, where anelement y () ¢ (0, 1ymexke, AGI) ¢ Rkaxks and BO) ¢

F;E? denotes theth feature values for the objeet, andf;  prixfi subject to the constraint§§;1 ngfz) — 1, where

is the number of features fa¥;. 1l <p<nyl<i<j<m,and|-| denotes the
Figure 1 shows three examples of the structures of MTRDFrobenius norm for a matrix.

Example (a) refers to a basic bi-type of relational data de- . _

noted by a relation matrix¢(12), such as word-document Ve call the model proposed in Definition 3.1 as the Collec-
data. Example (b) represents a tri-type of star-structure§Ve Factorization on Related Matrices (CFRM).

data, such as Web pages, Web users and search queriestile CFRM model clusters multi-type interrelated data ob-
Web search systems, which are denoted by two relation mgects simultaneously based on both relation and feature in-
trices R'?) and R(**), Example (c) represents the data formation. The model exploits the interactions between the
consisting of shops, customers, suppliers, shareholders amitdden structures of different types of objects through the
advertisement media, in which customers (type 5) have fearelated factorizations which share matrix factors, i.e., clus-

tures. The data are denoted by four relation matrR€8),
R(13) R4 andR(15), and one feature matrik(®).

It has been shown that the hidden structure of a data matri
can be explored by its factorization (D.D.Lee & H.S.Seung,

1999; Long et al., 2005). Motivated by this observation, we
propose a general model for collective clustering, which
is based on factorizing the multiple related matrices. In

ploited in multiple related factorizations. First Af ~ X;,
then the cluster structures of baif) and X; are reflected
in the triple factorization of their relation matriR(*/) such
that R ~ ¢ A (CUNT (Long et al., 2005), where
C® ¢ {0,1}™>*: is acluster indicator matrixor X; such
that Z’;;l Ci(fq) = 1 and CZ()Z) 1 denotes that theth

ter indicator matrices. Hence, the interactions between hid-
den structures work in two ways. First, 4 ~ X, the in-
teractions are reflected as the duality of row clustering and
€olumn clustering ilk(%/), Second, if two types of objects
are indirectly related, the interactions pass along the rela-
tion "chains” by a chain of related factorizations, i.e., the
model is capable of dealing with influence propagation. In
addition to local cluster structure for each type of objects,
the model also provides the global structure information by

%he cluster association matrices, which represent the rela-

tions among the clusters of different types of objects.

4. Algorithm Derivation

In this section, we derive a spectral clustering algorithm
for MTRD under the CFRM model. First, without loss of
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generality, we re-define the cluster indicator mafii¢) as  Theorem 4.2. The minimization problem in Eq.(2) is
the following vigorous cluster indicator matrix, equivalent to the following maximization problem:

1 P (1) (7) GNT 172(3) ( p(DN\T ~(3)
oo - { o if 2, € 7y {(0{3?7}“(0(“1;; w tr((COTFO(FOYT o)y
0 otherwise =i, hicicm o0
. (i5) (NT R () (CUNT ( REINT (4
where\m(zz)|denotesthe number of objects in #té clus- 1<Z_<zj:<mw“ r((C)T REVCEHCT) (R TCT) - (6)

ter of Y(). Clearly C'¥ still captures the disjoint cluster
memberships andC)TC® = I,. wherel;, denotes

; X : ' AR Proof. From Lemma 4.1, we have Eq. (3) and (4). Plug-
k; X k; identity matrix. Hence our task is the minimization

- ging them into Eq. (5), we obtain

L= Y w(tr(FOF)T)-

o min L 2) 1<i<m
{(C)"CY =Ix, }1<i<m i i ; ;
(A erinh ) 2 ()T FO(FO)TCD)) +
{BWerFi i}y cicm Z w9 (tr(R) (RU)TY —
whereL is the same as in Eq. (1). lsi<gsm
. D . NT p3) G) (cGNT ( RENT (1(2)
Then, we prove the following lemma, which is useful in tr((C)" R CVHCY)(R)7C)). (7)
proving ourmain theqrem. - Since in Eq. (7), tF® (F®)T) and t( R (R))T) are
Lemma 4.1. If {CD}i<icm, {A®}1<cj<m, and  constants, the minimization df in Eq. (2) is equivalent to
{B(i)}lgigm are the optimal solution to Eq2), then the maximization in Eq. (6). This completes the proof of
the theorem. O
AW = (TR W) ©)
B — (C(i))TF(i) (4) We propose an iterative algorithm to determine the optimal
(local) solution to the maximization problem in Theorem
forl1 <i<m. 4.2, i.e., at each iterative step we maximize the objective

function in Eq. (6) w.r.t. only one matrig'?) and fix other
Proof. The objective function in Eq. (2) can be expandedC'?) for j # pwherel < p, j < m. Based on Eq. (6), after
as follows. a little algebraic manipulation, the task at each iterative step
is equivalent to the following maximization,
L= Y ulu((RO - oA o)) a g
1<ici<m max  tr((CP)T P C®) 8)
. . . ) (C(p))TC(p):Ik
(R(w) _ C’(UA(U)(C(J))T)T) + v

: , L 4 N where
Z wl(f)tr((F(l) — cOBWY(F® — ) pinT)
1<i<m M@ = wlgp)(F(P)(F(P))T)+
= > wP (R (RVNHT) + S W) (RPDCO ()T (RED)) +
1<i<j<m p<j<m
tr(AGD (AT —otr(C® AC) (C)T (REI)TY) S WP ((ROP)T W (W) (RGP))). (9)
+ 3w EOED)) +w(BOBO)) <<
1<i<m
—otr(CW B (FNTY) (5) Clearly M () is a symmetric matrix. Sinc€®) is a vig-

orous cluster indicator matrix, the maximization problem
where tr denotes the trace of a matrix; the termsin Eg. (8) is still NP-hard. However, as in the spectral
tr( A (AE))T) and t{ B® (B™)T) result from the com-  graph partitioning, if we apply real relaxation€d?) to let
municative property of the trace ari@(?)7 (C)) = 1,,.  C®) be an arbitrary orthonormal matrix, it turns out that
Based on Eq. (5), solving?%- = 0 and 2L = 0 leads the maximization in Eq. (8) has a closed-form solution.

gac 9B — )
to Eq. (3) and Eqg. (4). This completes the proof of theTheorem 4.3. (Ky-Fan thorem) LetM be a symmetric

lemma. O matrix with eigenvalues\; > Xy > ... > X4, and

the corresponding eigenvectots = [ug,...,ux]. Then
Lemma 4.1 implies that the objective function in Eq. (1) Zle i = maxyrx—p, tr(XTMX). Moreover, the opti-
can be simplified to the function of onty(*). This leadsto mal X is given by[uy, ..., u:]Q whereQ is an arbitrary
the following theorem, which is the basis of our algorithm. orthogonal matrix.
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Algorithm 1 Spectral Relational Clustering and hence equivalently decrease the objective function in
Input: Relation matrice§ R(7) € R™*"i}y i, , fea- Eq.(2). Since the objective function in Eq. (2) has the lower
ture matrice§ P € R"*%},,-,., numbers of clusters bound0, the convergence of SRC is guaranteed.

{ki}lgigmy Weights{w((fj), U)l(;l) S R+}1§i<j§m-
Output: Cluster indicator matrice§C ")} <, <.

5. Special Cases and Discussions

Method: In this section we discuss special cases of the CFRM model
1: Initialize {C(p)}lgpgn, with othonormal matrices. and the SRC algorithm to show that they provide a unified
2: repeat view for the existing spectral clustering algorithms.

3: forp=1tomdo
4 Compute the matrid/(®) as in Eq. (9). 5.1. K-means and Spectral Clustering
5 Update C®) by the leadingk, eigenvectors of

Traditional "flat” data can be viewed as a special MTRD

M), with only one feature matrix. In this situation, the objective
& e_nd for function in Definition 3.1 is reduced tb = ||F — CB||?,
7: until convergence which is the matrix representation for the objective function
8: for p = 1tom do of the k-means algorithm (Zha et al., 2002). Therefore, by
9:  transformC(®) into a cluster indicator matrix by the Theorem 4.2, k-means is equivalent to the maximization:
k-means.
10: end for max tr(CTFFTC). (10)

cTC=I,
If we treat FFT as a graph affinity matrix, the above ob-
) ) ) jective function is equivalent to the objective function of
Based on Theorem 4.3 (Bhatia, 1997), at each iterative stegraph partitioning based on average association cut (Shi &
we updateC'(”) as the leading;, eigenvectors of the matix Malik, 2000). If we normalizeF to be D~/2F where
M (). After the iteration procedure converges, since the rep = diag FF”e), e = [1,1,...,1]7, the objective func-
sulting eigen-matrices are not indicator matrices, we nee@on in Eq. (10) is equivalent to the objective function of
to transform them into cluster indicator matrices by post-graph partitioning based on normalized cut (Shi & Malik,
processing (Bach & Jordan, 2004; Zha et al., 2002; Ding &2000). Other versions of graph partitioning can also be for-
He, 2004). In this paper, we simply adopt the k-means foimulated to be equivalent to Eq. (10). For the objective
the postprocessing. function in Eg. (10), SRC iterates only once to compute
the leading: eigenvectors of F'7" and postprocesses them
to extract the cluster structure. This is exactly the proce-
dure described by Ng et al. (2001). Hence spectral clus-
etgring algorithms based on graph partitioning are naturally
accommodated in the SRC algorithm.

The algorithm, called Spectral Relational Clustering
(SRC), is summarized in Algorithm 1. By iteratively up-
datingC?) as the leading;, eigenvectors ofi/ (), SRC
makes use of the interactions among the hidden structur
of different type of objects. After the iteration procedure
converges, the hidden structure for each type of objects i we considerFF'” in Eq.(10) as a general similarity ma-
embedded in an eigen-matrix. Finally, we postprocess eactix which denotes similarities or relations within the same
eigen-matrix to extract the cluster structure. type of objects, SRC is naturally extended to a more gen-

To illustrate the SRC algorithm, we describe the specificeral case. In some applications, besides features and re-

update rules for the tri-type relational data as shown in Fig/ations to other types of objects, a type of objeats”

ure 1(b): update”® as the leading:; eigenvectors of " MTRD may have intra-type relations (here we assume
(12) p(12) (1(2) C@)T(RU2YT: updateC'® as the lead- u_ndlrect_ed relations), which can bg denoted by a symmet-

wa R ( (12) ) (1 P ric matrix S € Rm»*"». By treatingS(® the same as

|n92?{42 eigenvectors ofu, K(R(u))TC(l)(Cj(l))TR(m +  F@(FE)T tis easy to extend SRC to this situation by

wl REDCE (CON)T(RE)T; updateC'®) as the lead- simply adding an extra term "’ S® to M®) in Eq.(9),

ing k5 eigenvectors of>® (R(23)TC(2) (C(2)T R(23), wherew”) € R denotes the weight fo§®). Due to space

the computational complexity of SRC can be shown tolimitation, theoretic analysis for this extension is omitted.
be O(tmn?k) wheret denotes the number of iterations,
n = O(n;) andk = O(k;). For sparse data, it could be 5.2. Bipartite Spectral Graph Partitioning

;Z?g(:e?gr:]g(tiWLZk) where z denotes the number of non- Bipartite Spectral Graph Partitioning (BSGP) (Dhillon,

' 2001; H.Zha & H.Simon, 2001) was proposed to co-cluster
The convergence of SRC algorithm can be proved. Webi-type relational data, which can be denoted as one re-
describe the main idea as follows. Theorem 4.2 and Edation matrix R € R"™**"2 such as word-document co-
(8) imply that the updates of the matrices in Lifeof  occurrence matrix. The BSGP formulates the data as a
Algorithm 1 increase the objective function in Eq. (6), bipartite graph, whose adjacency matrix can be written as
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ROT ’(f } . After the deduction, spectral partitioning on s @ . ®
the bipartite graph is converted to a singular value decom- o4 L New -NGlO
position (SVD) (Dhillon, 2001; H.Zha & H.Simon, 2001). . _ |* o
Under the CFRM model, clustering on bi-type relational s %
data is equivalent to ' B,
- 2%\ Lmn— . Al
}l -0.5 0 0.5 1 0 0 0.2 0.4
min IR —CWAC)T)2 (12) “z u
(CO)TcW =g, © , @

(C(2>)Tc(2):1k2

4
BSGP has the restriction that clusters of different types = -05(4
of objects must have one-to-one associations. Under the Kﬂmﬁ
CFRM model, this is equivalent to adding an extra con- - i
straint on cluster association mattikto let A be ak x k T Number of feratons
diagonal matrix. It immediately follows from the standard
result of linear algebra (G.Golub & Loan, 1989) that the
minimization in Eq.(11) with the diagonal constraint dn )
is equivalent to partial SVD. Hence, the CFRM model pro-data set produced by NC, BSGP and SRC, respectivalyatd
vides a simple way to understand BSGP. Moreover, since iff2 de_note first and second eigenvectors, respectively). (d) is an
SRC there are no constraints dn it provides a novel co- 't€ration curve for SRC.
clustering algorithm which does not require that differentBefore postprocessing, the eigenvectors from NC and SRC
types of objects have equal number of clusters and one-tare normalized to the unit norm vector and the eigenvectors
one cluster associations. from BSGP are normalized as described by Dhillon (2001).
Since all the algorithms have random components resulting
: from k-means or itself, at each test we conduct three trials
6. Experimental Results with random initializations for each algorithm and the op-

In this section, we evaluate the effectiveness of the SR@imal one provides the performance score for that test run.
algorithm on two types of MTRD, bi-type relational data To evaluate the quality of document clusters, we elect to
and tri-type star-structured data as shown in Figure 1(a) andse the Normalized Mutual Information (NMI) (Strehl &
Figure 1(b), which represent two basic structures of MTRDGhosh, 2002), which is a standard way to measure the clus-
and arise frequently in real applications. ter quality.

The data sets used in the experiments are mainly based @ each test run, five data sets, multi2 (NG 10, 11),
the 20-Newsgroup data (Lang, 1995) which contains aboutMulti3(NG 1,10,20), multi5 (NG 3, 6, 9, 12, 15), multi8
20,000 articles from20 newsgroup. We pre-process the (NG 3, 6, 7, 9, 12, 15, 18, 20) and multi10 (NG 2, 4, 6, 8,
data by removing stop words and file headers and selecf0, 12,14 ,16,18,20), are generated by randomly sampling
ing top 2000 words by the mutual information. The word- 100 documents from each newsgroup. Here N@eans

document matrixR is based onf.idf and each document the :th newsgroup in the original order. For the numbers
vector is normalized to the unit norm vector. In the experi-of document clusters, we use the numbers of the true doc-

ments the classis k-means is used for initialization and th&ment classes. For the numbers of word clusters, there are
final performance score for each algorithm is the averag®0 options for BSGP, since they are restricted to equal to
of the 20 test runs unless stated otherwise. the numbers of document clusters. For SRC, it is flexible
to use any number of word clusters. Since how to choose
the optimal number of word clusters is beyond the scope of
this paper, we simply choose one more word clusters than
In this section we conduct experiments on a bi-type relathe corresponding document clusters, i.e., 3,4, 6, 9, and 11.
tional data, word-document data, to demonstrate the effecthis may not be the best choice but it is good enough to
tiveness of SRC as a novel co-clustering algorithm. A rep-demonstrate the flexibility and effectiveness of SRC.

resentative spectral clustering algorithm, Normalized-CutIn Figure 2, (a), (b) and (c) show three document embed-

(NC) spectral clustering (Ng et al., 2001; Shi & Malik, di f 1t | hich i led f i |
2000), and BSGP (Dhillon, 2001), are used as compar- INgs of a mutlic Sample, which IS sampled from two close
isons. ngwsgroupsrec.sports.basebaﬁndrec_:.sports.hockeyln

this example, when NC and BSGP fail to separate the docu-
The graph affinity matrix for NC isR” R, i.e., the cosine ment classes, SRC still provides a satisfied separation. The
similarity matrix. In NC and SRC, the leadirigeigenvec- possible explanation is that the adaptive interactions among
tors are used to extract the cluster structure, whésethe  the hidden structures of word clusters and document clus-
number of document clusters. For BSGP, the second to thiers remove the noise to lead to better embeddings. (d)
([log, k] + 1)th leading singular vectors are used (Dhillon, shows a typical run of the SRC algorithm. The objective
2001). K-means is adopted to postprocess the eigenvectorglue is the trace value in Theorem 4.2.

Objective Value
-
[

o
w”

|
[i8

I
<}
o
ot
v
[
o

Figure 2. (a), (b) and (c) are document embeddings of multi2

6.1. Clustering on bi-type relational Data
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Table 1.NMI comparisons of SRC, NC and BSGP algorithms Table 2. Taxonomy structures for three data sets
DATASET  SRC NC BSGP DATA SET TAXONOMY STRUCTURE
T™M1 {NG10, NG1T, {NG17, NG18, NG19
MULTI2  0.4979 0.1036 0.1500 TM2 {NG2, NG3}, {NG8, NG9}, {NG12, NG13
MULTI3 0.5763 0.4314 0.4897 TM3 {NG4, NG5}, {NG8, NG9}, {NG14, NG13,
MULTIS 0.7242 0.6706 0.6118 {NG17,NG18
MULTI8 0.6958 0.6192 0.5096
MULTI1I0  0.7158 0.6292 0.5071 A @ 050 ©
Lol - © +
s 0 E)
Table 1 shows NMI scores on all the data sets. We observe e 0s o1 o2 4 on o os
that SRC performs better than NC and BSGP on all data u, uy
sets. This verifies the hypothesis that benefiting from the 1 © . @
interactions of the hidden structures of different types of ~ _. WW o5
objects, the SRC’s adaptive dimensionality reduction has I ok
advantages over the dimensionality reduction of the exist- L0806 04 02 0 05 1
ing spectral clustering algorithms. 1 @ 1 o
6.2. Clustering on Tri-type Relational Data 0 Sl
-1 -1
In this section, we conduct experiments on tri-type star- s 0 s s 008

2 2

structured relational data to evaluate the effectiveness of
SRC in comparison with other two algorithms for MTRD Figure 3.Three pairs of embeddings of documents and categories

cIusthing. Qne i_s based On-partitg .gra}ph partitioning, for the TM1 data set produced by SRC with different weights: (a)
Consistent Bipartite Graph Co-partitioning (CBGC) (Gaoand (b) withw? = 1,w = 1; (c) and (d) withw(® =

et al., 2005) (we thank the authors for providing the ex-.  (3) .. o (12) (23)
ecutable program of CBGC). The other is Mutual Rein- e =0 (&) and (B withws ™ = 0, wa™ = 1.
forcement K-means (MRK), which is implemented basedTm2 and TM3, are listed in Table 2. For example, TM1
on the i.dea of mutual reinforcement clustering as discussefdata set is sampled from five categories, in which NG10
in Section 2. and NG11 belong to the same high level categesysports
The first data set is synthetic data, in which two rela-2nd NG17, NG18 and NG19 belong to the same high level
tion matrices,R(12) with 80-by-100 dimension ang&(23) categorytalk.politics Therefore, for the TM1 data set, the

with 100-by-80 dimension, are binary matrices with 2-by- expected clustering result on categories should¥@10,

: NG11} and {NG17, NG18, NG19 and the documents
(12) ) '
2 block strg(;turoefR is generated based on the block should be clustered into two clusters according to their cat-

structure[ 08 09 } i.e., the objects in cluster 1 () egories. The documents in each data set are generated by

is related to the objects in cluster 1.&f2) with probabil- ~ S@mpling 100 documents from each category.

ity 0.9, and so on so forth.R(?*) is generated based on The number of clusters used for documents and categories
the block structurg 3¢ 27 |. Each type of objects has are 2, 3 and 4 for TM1, TM2 and TMS3, respectively. For

. ' . . ; .. the number of word clusters, we adopt the number of cate-
two equal size clusters. It is not a trivial task to identify

' _ L . 12 23)
the cluster structure of this data, since the block structuregories, i.e., 5, 6 and 8. For the Ygelghﬁé 22 andw'™, we
are subtle. We denote this data as Binary Relation Matricesimply use equal weight, i.eu;fl ) = wfl ) — 1. Figure

(TRM) data. 3 illustrates the effects of different weights on embeddings

. 2 23
Other three data sets are built based on the 20-newsgr0uﬁ§ documents and categories. Wh@bl )= w‘(‘ ) = L
data for hierarchical taxonomy mining and document clus--€-» SRC makes use of both word-document relations and
tering. In the field of text categorization, hierarchical tax- document-category relations, both documents and cate-
onomy classification is widely used to obtain a better trade9°T€S are separated into two clusters very well as in (a)

off between effectiveness and efficiency than flat taxonomyp"d (b) of Figure 3, respectively; when SRC makes use of

classification. To take advantage of hierarchical classifionly the word-document relations, the documents are sep-

cation, one must mine a hierarchical taxonomy from thedrated with partial overlapping as in (c) and the categories

data set. We can see that words, documents and cat@l€ randomly mapped to a couple of points as in (d); when
gories formulate a tri-type relational data, which consists o RC Makes use of only the document-category relations,
two relation matrices. a word-document mati%2 and a both documents and categories are incorrectly overlapped

document-category matrik(23) (Gao et al., 2005) as in (e) and (f), respectively, since the document-category
" ' matrix itself does not provide any useful information for

The true taxonomy structures for three data sets, TM1the taxonomy structure.
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Table 3.NMI comparisons of SRC, MRK and CBGC algorithms kS)B%g_rgitz).co-clustenng and matrix approximatidkiDD (pp-
Bhatia, R. (1997)Matrix analysis New York: Springeer-Cerlag.
Chan, P.K., Schlag, M. D. F., & Zien, J. Y. (1993). Spectral k-way
ratio-cut partitioning and clusterindpAC '93 (pp. 749-754).
D.D.Lee, & H.S.Seung (1999). Learning the parts of objects by

DATA SET SRC MRK  CBGC

BRM 0.6718 0.6470 0.4694 non-negative matrix factorizatiomature 401, 788—791.

™1 1 0.5243 - Dhillon, I. S. (2001). Co-clustering documents and words using
T™M2 0.7179 0.6277 - bipartite spectral graph partitioningDD (pp. 269—274).

™3 0.6505 0.5719 - Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-

theoretic co-clustering<DD’03 (pp. 89-98).
Ding, C., He, X., & Simon, H. (2005). On the equivalence of non-
The performance comparison is based on the cluster quality nNegative matrix factorization and spectral clusteri&8®M'05
of documents, since the better it is, the more accurate w 'r\‘/?é gbeiir§|'b%2ﬁﬁjé(6804)' Linearized cluster assignment
can |dent|fy the taxonomy structures. Table 3 shows NMIDing, C.H. Q. He. X.. Zha, H., Gu, M., & Simon, H. D. (2001).
comparisons of the three glgorl'ghms on the four data sets.” A" in-max cut algorithm for graph partitioning and data clus-
The NMI score of CBGC is available o_nly for BRM data tering. Proceedings of ICDM 200(pp. 107-114).
set because the CBGC program provided by the authorsi-vaniv, R., & Souroujon, O. (2001). Iterative double clustering
only works for the case of two clusters and small size ma- for unsupervised and semi-supervised learnifgCML (pp.
trices. We observe that SRC performs better than MRK and  121-132).
CBGC on all data sets. The comparison shows that amonga0. B., Liu, T.-Y., Zheng, X., Cheng, Q.-S., & Ma, W.-Y. (2005).
the limited efforts in the literature attempting to cluster ~Consistent bipartite graph co-partitioning for star-structured
multi-type interrelated objects simultaneously, SRC is an Z?hégrder heterogeneous data co-clusterir¢bD "05 (pp.
. Aot -50).
effective one to identify the cluster structures of MTRD. G.Golub, & Loan, C. (1989)Matrix computations Johns Hop-
kins University Press.

; Hofmann, T. (1999). Probabilistic latent semantic analyBisc.
7. Conclusions and Future Work of Uncertainty in Artificial Intelligence, UAI'99Stockholm.
In this paper, we propose a general model CFRM for C|us_Hofmann,_ T, & P_uzicha, J’. (1999). Latent class models for col-
tering MTRD. The model is applicable to relational data , |2eorative filtering.|JCAI'99. Stockholm.

i . - . H.Zha, C.Ding, M. X., & H.Simon (2001). Bi-partite graph parti-
with various structures. Under this model, we derive a tioning and data clusterinhCM CIKM'01

noyel algprithm SRC to cluste( mult_i—type interrelated data,_ang’ K. (1995). News weeder: Learning to filter netnel@vL.
objects simultaneously. SRC iteratively embeds each typgj, T. (2005). A general model for clustering binary data.
of data objects into low dimensional spaces. Benefiting KDD'05.
from the interactions among the hidden structures of differLong, B., Zhang, Z. M., & Yu, P. S. (2005). Co-clustering by
ent types of data objects, the iterative procedure amounts to block value decompositiorKDD'05. _
adaptive dimensionality reduction and noise removal leadNd. A-, Jordan, M., & Weiss, Y. (2001). On spectral clustering:
ing to better embeddings. Extensive experiments demon- énalysm_ and an algorithmAdvances in Neural Information

. . rocessing Systems.14
strate the promise and effectiveness Of. SRC. WQ also ShpW.O.Duda, P.E.Hart, & D.G.Stork. (2000pattern classification
that the CFRM model and SRC algorithm provide a uni-  New York: John Wiley & Sons.
fied view to the existing spectral clustering algorithms inshj, J., & Malik, J. (2000). Normalized cuts and image segmen-
the literature. There are a number of interesting potential tation. IEEE Transactions on Pattern Analysis and Machine
directions for future research in the CFRM model and SRC Intelligence 22, 888-905.
algorithm, such as extending CFRM to more general caseStrehl, A., & Ghosh, J. (2002). Cluster ensembles — a knowledge
with soft clustering or other distance functions and explor- reuse framework for combining partitioning8AAI 2002(pp.

. o 93-98). AAAI/MIT Press.
ing more applications for SRC. Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classifica-

tion and clustering in relational datBroceeding of IJCAI-01
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