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Abstract

Learning communities from a graph is an important
problem in many domains. Different types of communities
can be generalized as link-pattern based communities. In
this paper, we propose a general model based on graph ap-
proximation to learn link-pattern based community struc-
tures from a graph. The model generalizes the traditional
graph partitioning approaches and is applicable to learn-
ing various community structures. Under this model, we
derive a family of algorithms which are flexible to learn
various community structures and easy to incorporate the
prior knowledge of the community structures. Experimental
evaluation and theoretical analysis show the effectiveness
and great potential of the proposed model and algorithms.

1 Introduction

Learning communities from a graph is an important
problem in many domains, such as web mining, so-
cial network analysis, bioinformatics, VLSI design, and
task scheduling. In many applications, users are inter-
ested in strongly intra-connected communities in which
the nodes are intra-community close and inter-community
loose. Learning this type of communities corresponds to
finding strongly connected subgraphs from a graph, which
has been studied for decades as graph partitioning problem.

In addition to the strongly intra-connected communities,
other types of communities also attract intensive attention in
many important applications. For example, in Web mining,
we are also interested in the communities of Web pages that
sparsely link to each other but all densely link to the same
Web pages [20], such as a community of music ”fans” Web
pages which share the same taste on music and are densely
linked to the same set of music Web pages but sparsely
linked to each other. Learning this type of communities cor-
responds to finding dense bipartite subgraphs from a graph,
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Figure 1. A graph with mixed community
structures (a) and its community prototype
graph (b).

which has been listed as one of the five algorithmic chal-
lenges in Web search engines [15].

The strongly intra-connected communities and weakly
intra-connected communities are two basic community
structures, and various types of communities can be gener-
ated based on them. For example, a web community could
take on different structures during its development, i.e., in
its early stage, it has the form of bipartite graph, since in
this stage the members of the community share the same in-
terests (linked to the same web pages) but have not known
(linked to) each other; in the later stage, with members of
the community start linking to each other, the community
becomes a hybrid of the aforementioned two basic commu-
nity structures; in the final stage it develops into a larger
strongly intra-connected community.

These various types of communities can be unified into
a general concept, link-pattern based community. A link-
pattern based community is a group of nodes which have
the similar link patterns, i.e., the nodes within a commu-
nity link to other nodes in similar ways. Let us have an
illustrative example. Figure 1(a) shows a graph of mixed
types of communities. There are four communities in Fig-
ure 1(a), C1 = {v1, v2, v3, v4}, C2 = {v5, v6, v7, v8}, C3 =
{v9, v10, v11, v12}, and C4 = {v13, v14, v15, v16}. Within
the strongly intra-connected community C1, the nodes have
the similar link patterns, i.e., they all strongly link to the
nodes in C1 (their own community) and C3, and weakly
link to the nodes in C2 and C4; Within the weakly intra-
connected community C3, the nodes also have the similar



link patterns, i.e., they all weakly link to the nodes in C3

(their own community), and C2, strongly link to the nodes
in C1 and C4; Similarly for the nodes in community C3 and
the nodes in community C4. Note that graph partitioning ap-
proaches cannot correctly identify the community structure
of the graph in Figure 1(a), since they seek only strongly
intra-connected communities by cutting a graph into dis-
joint subgraphs to minimize edge cuts.

In addition to unsupervised community learning appli-
cations, the concept of the link-pattern based community
also provides a simple approach for semi-supervised learn-
ing on graphs. In many applications, graphs are very
sparse and there may exist a large mount of isolated or
nearly-isolated nodes which do not have community pat-
terns. However, according to extra supervised informa-
tion (domain knowledge) these nodes may belong to certain
communities. To incorporate the supervised information, a
common approach is to manually label these nodes. How-
ever, for a large graph, manually labeling is labor-intensive
and expensive. Furthermore, to make use of these labels,
instead of supervised learning algorithms, different semi-
supervised algorithms need to be designed. The concept of
the link-pattern based community provides a simple way to
incorporate supervised information by adding virtual nodes
to graphs. The idea is that if the nodes which belong to the
same community according to the supervised information,
they are linked to the same virtual nodes. Then an algorithm
which is able to learn general link-pattern based communi-
ties can be directly applied to the graphs with virtual nodes
to make use of the supervised information to learn commu-
nity patterns.

For example, to find the hidden classes from a collection
of documents, a common approach is to represent the col-
lection as a graph in which each node denotes a document
and each edge weight denotes the similarity between two
documents [10, 35]. Usually the similarities are calculated
based on the term-frequency vectors of documents. How-
ever, there may exist documents which share no or very few
words with each other but still belong to the same commu-
nity according to extra domain information. Let us have
an illustrative example. In Figure 2, the dark color nodes
(documents) do not share same words and are not linked to
each other. However, they all belong to the ”vehicle” com-
munity. By adding virtual nodes (documents) (light color
nodes in Figure 2) which are concept documents consisting
of popular words for the ”vehicle” community, the origi-
nally isolated document nodes are linked to the virtual doc-
ument nodes and the supervised information is embedded
into link patterns.

Therefore, various applications involving unsupervised
as well as semi-supervised community learning have pre-
sented a great need to link-pattern based community learn-
ing algorithms. In this paper, we propose a general model
based on graph approximation to learn the link-pattern
based community structure from a graph. By unifying the
traditional edge cut objectives, the model provides a new
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Figure 2. A graph with virtual nodes.
view to understand graph partitioning approaches and at
the same time it is applicable to learning various commu-
nity structures. Under this model, we derive three novel
algorithms to learn the general community structures from
a graph, which cover three main versions of unsupervised
learning algorithms, hard, soft and balanced version, to pro-
vide a complete family of community learning algorithms.
This family of algorithms has the following advantages:
they are flexible to learn various types of communities;
when applied to learning strongly intra-connected commu-
nities, this family evolves to a new family of effective graph
partition algorithms; it is easy for the proposed algorithms
to incorporate the prior knowledge of the community struc-
ture into the algorithms. Experimental evaluation and the-
oretical analysis show the effectiveness and great potential
of the proposed model and algorithms.

2 Related Work

Graph partitioning divides the nodes of a graph into com-
munities by finding the best edge cuts of the graph. Several
edge cut objectives, such as the average cut [5], average as-
sociation [30], normalized cut [30], and min-max Cut [11],
have been proposed. Various spectral algorithms have been
developed for these objective functions [5, 30, 11]. These
algorithms use the eigenvectors of a graph affinity matrix,
or a matrix derived from the affinity matrix, to partition
the graph. Since eigenvectors computed do not correspond
directly to individual partitions, a postprocessing approach
[34], such as k-means, must be applied to find the final par-
titions.

Multilevel methods have been used extensively for graph
partitioning with the Kernighan-Lin objective, which at-
tempt to minimize the cut in the graph while maintaining
equal-sized clusters [4, 14, 17]. In multilevel algorithms,
the graph is repeatedly coarsened level by level until only
a small number of nodes are left. Then, an initial partition-
ing on this small graph is performed. Finally, the graph is
uncoarsened level by level, and at each level, the partition-
ing from the previous level is refined using the refinement
algorithm.

Recently, graph partitioning with an edge cut objective
has been shown to be mathematically equivalent to an ap-
propriate weighted kernel k-means objective function [7, 8].
Based on this equivalence, the weighted kernel k-means al-
gorithm has been proposed for graph partitioning [9, 7, 8].

Learning communities from a graph has also been in-
tensively studied in the context of social network analysis



[29]. Hierarchical clustering [29, 33] has been proposed to
learn communities. Recent algorithms [13, 24, 6] address
several problems related to the prior knowledge of com-
munity size, the precise definition of inter-nodes similar-
ity measure, and improved computational efficiency [25].
However, their main focus is still learning strongly intra-
connected communities. Some efforts [12, 31, 16, 16, 2]
can be viewed as community learning based on stochastic
block modeling.

There are efforts in the literature focusing on finding
communities based on dense bipartite graphs [20, 27]. The
trawling algorithm [20] extracts communities (which are
called emerging communities in [20] as the counterpart con-
cept of strongly intra-connected community) by first ap-
plying the the Apriori algorithm to find all possible cores
(complete bipartite graphs) and then expanding each core
to a full-fledged community with HITS algorithm [19]. [27]
proposes a different approach to extract the emerging com-
munities by finding all bipartite graphs instead of finding
cores.

In this study, we focus on how to divide the nodes of a
graph into disjoint communities based on link patterns.

3 Model Formulation

In this section, we propose a general model to learn link-
pattern based communities from a graph.

To derive our model to learn latent community structure
from a graph, we start from the following simpler prob-
lem: if the link-pattern based community structure of any
graph is known, can we draw a simple graph with explicit
latent community structure (latent link patterns) to represent
the original graph? We present the concept of a commu-
nity prototype graph as an answer. A community prototype
graph consists of a set of the community nodes and a set
of links including self-links for each community node and
inter-links for a pair of community nodes.

For example, Figure 1(b) shows a community prototype
graph for the graph in Figure 1(a). Note that for conve-
nience, in all the examples, we use 0-1 graphs where the
edge weight 0 denotes the absence of edge between two
nodes and the edges with weight 0 are not shown in the
graphs. However, all the discussions are applicable to a gen-
eral weighted graph. In Figure 1(b), the top-left community
node is associated with the nodes of C1 = {v1, v2, v3, v4}
from the original graph; the self-link of the top-left com-
munity node implies that all its associated nodes are linked
to each other; the inter-link between the top-left commu-
nity node and the bottom-left community node implies that
the nodes of C1 = {v1, v2, v3, v4} are linked to those of
C3 = {v9, v10, v11, v12}. Hence, the community prototype
graph in Figure 1(b) provides a clear view of the community
structure and link patterns for the original graph in Figure
1(a). Given the community structure of any graph, we can
always draw its community prototype graph.

Therefore, learning the hidden community structures
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Figure 3. A graph with strongly-connected
communities (a) and its community prototype
graph (b); the graph affinity matrices for (a)
and (b), (c) and (d), respectively.

from a graph can be formulated as finding its optimal com-
munity prototype graph which is the ”closest” to the orig-
inal graph, i.e., based on this community prototype graph,
the original graph can be constructed most precisely. By
representing a graph as an affinity matrix, this problem can
be formally formulated as an optimization problem of ma-
trix approximation,

arg min
A∗

||A − A∗||2, (1)

where A ∈ R
n×n
+ denotes the affinity matrix of the orig-

inal graph and A∗ ∈ R
n×n
+ denotes the affinity matrix of

a community prototype graph. The examples of A and A∗
are given in Figure 3(c) and 3(d), which are the affinity ma-
trices for the original graph Figure 3(a) and its community
prototype graph Figure 3(b), respectively.

Due to the special structure of a community prototype
graph, its affinity matrix can be represented as a product of
three factors such that A∗ = CBCT , where C ∈ {0, 1}n×k

such that k is the number of communities and
∑

j Cij = 1,
i.e., C is an indicator matrix that provides the community
membership of each node (without loss of generality, we
assume there is no empty community); B ∈ R

k×k
+ such

that B is the community structure matrix that provides an
intuitive representation of the community structure, since
Bii denotes the self-link weight for the ith community node
and Bij for i �= j denotes inter-link weight between the ith
and the jth community nodes.

Based on the above observation, formally we define the
problem of learning communities from an undirected graph
as follows.

Definition 3.1. Given an undirected graph G = (V, E , A)
where A ∈ R

n×n
+ is the affinity matrix, and a positive in-

teger k, the optimized communities are given by the mini-
mization,

min
C∈{0,1}n×k,B∈R

k×k
+

C1=1

||A − CBCT ||2. (2)



where 1 denotes a vector consisting of 1’s (we omit its di-
mension, since it is clear in the context).

Definition 3.1 provides a general model, Community
Learning by Graph Approximation (CLGA), to learn var-
ious community structures from graphs. In the CLGA
model, the number of communities k is given. How to de-
cide the optimal k is a non-trivial model selection problem
and beyond the scope of this paper.

The problems of finding specific types of communities
can be formulated as special cases of the CLGA model. For
example, although there are different formulations of graph
partitioning with different objective functions, they all can
be viewed as special cases of the CLGA model. Since graph
partitioning is a very important case of community learning,
we propose the following theorem to establish the connec-
tion between the CLGA model and the existing graph parti-
tioning objectives.

Without loss of generality, we first re-define the cluster
indicator matric C as the following weighted cluster indica-
tor matrix C̃,

C̃ij =

{
1

|πj |
1
2

if vi ∈ πj

0 otherwise

where |πj | denotes the number of nodes in the jth commu-
nity. Clearly C̃ still captures the disjoint community mem-
berships and C̃T C̃ = Ik where Ik denotes k × k identity
matrix.

Theorem 3.2. The CLGA model in Definition 3.1 with the
extra constraint that B is an identity matrix, i.e.,

min
C̃

||A − C̃C̃T ||2, (3)

is equivalent to the maximization

max
c̃1,...,c̃k

k∑
p=1

c̃T
p Ac̃p (4)

where c̃p denotes the pth column vector of C̃.

Proof. Let tr(X) denote the trace of a matrix X and L de-
note the objective function in Eq. 3.

L = tr((A − C̃C̃T )T (A − C̃C̃T )) (5)

= tr(AT A) − 2tr(C̃C̃T A) + tr(C̃C̃T C̃C̃T ) (6)

= tr(AT A) − 2tr(C̃T AC̃) + k (7)

= tr(AT A) − 2
k∑

p=1

c̃T
p Ac̃p + k (8)

The above deduction uses the property of trace tr(XY ) =
tr(Y X) . Based on Eq.(8), since tr(AT A) and k, the num-
ber of communities, are constants, the minimization of L is
equivalent to the maximization of

∑k
p=1 c̃T

p Ac̃p. The proof
is completed.

Table 1. A list of variations of the CLGA
model.

Model Constraints on B
GCL no cotraints
IGP Identity matrix
GGP Diagonal matrix
IBCL Zero diagonal elements and

unit off-diagonal elemtnts
GBCL Zero diagonal elements

Theorem 3.2 states that if we fix the community structure
matrix B as the identity matrix Ik (the more general case is
aIk for any a ∈ R+), the CLGA model is reduced to the
trace maximization in (4). Since various graph partitioning
objectives, such as ratio association [30], normalized cut
[30], ratio cut [5], and Kernighan-Lin objective [18], can
be formulated as the trace maximization [7], Theorem 3.2
establishes the connection between the CLGA model and
the existing graph partitioning objectives.

Therefore, the traditional graph partitioning can be
viewed as a special case of the CLGA model in which B
is restricted to be an identity matrix. By fixing B as an
identity matrix, the traditional graph partitioning objectives
make an implicit assumption about community structure of
the target graph, i.e., they assume that the nodes within each
community are fully connected (the diagonal elements of
B are all 1’s) and the nodes between communities are dis-
connected (the off-diagonal elements of B are all 0’s), i.e.,
the community prototype graphs consist of a set of sepa-
rated community nodes with self-links. This assumption
is consistent with our intuition about an ideal partitioning
(we call this special case of CLGA model Ideal Graph Par-
titioning (IGP)). However, it cannot catch the community
structures deviating from the ideal case. For example, for
a graph that has one strongly intra-connected graph and
one relative weak intra-connected graph, assuming B to be[

1 0
0 0.5

]
may be better than

[
1 0
0 1

]
. Furthermore, the

CLGA model provides the flexibility to learn B under var-
ious constraints. If B is relaxed from the identity matrix
to any diagonal matrix, i.e., if we assume zero connectivity
between communities but let the algorithm learn the within-
community connectivity, we obtain a new graph partitioning
model as another special case of the general CLGA model,
which we call General Graph Partitioning (GGP).

Similarly, with the appropriate constraint on B, the
CLGA model may focus on other specific types of com-
munity structures. For example, by restricting B to be the
matrix whose diagonal elements are 0 and off-diagonal ele-
ments are 1, CLGA learns the ideal weakly intra-connected
communities among which each pair of communities forms
a dense bi-partite graph (call it Ideal Bi-partite Community
Learning (IBCL)); by restricting B to be the matrix whose
diagonal elements are 0, CLGA learns communities of gen-
eral bi-partite subgraphs (call it General Bi-partite Commu-
nity Learning (GBCL)).

Table 1 summarizes several variations of the CLGA



model. For simplicity, for the general situation without any
constraints on B, we call it as General Community Learning
(GCL). The community structure matrix B plays an impor-
tant role in the CLGA model. If we have prior knowledge
about the community structure of the graph or we are only
interested in some special types of communities, it is easy
to incorporate it into the model by putting an appropriate
constraint on B.

4 Algorithm Derivation

In this section, we derive algorithms for the basic CLGA
model in Definition 3.1 and its extensions, soft CLGA
model and balanced CLGA model.

4.1 Hard CLGA Algorithm

The CLGA model in Definition 3.1 seeks hard commu-
nity membership for each node and the problem can be
shown to be NP-hard. The proof is easy since based on The-
orem 3.2 it can be reduced to the graph partitioning prob-
lem, which is NP-hard. We derive an alternative optimiza-
tion algorithm for the hard CLGA model.

We prove the following theorem which is the basis of our
algorithm.

Theorem 4.1. If C ∈ {0, 1}n×k and B ∈ R
k×k
+ are the

optimal solution to the minimization in Definition 3.1, then

B = (CT C)−1CT AC(CT C)−1. (9)

Proof. The objective function in Definition 3.1 can be ex-
panded as follows.

L = ||A − CBCT ||2
= tr((A − CBCT )T (A − CBCT ))

= tr(AT A) − 2tr(CBCT A) − tr(CBCT CBCT )

Take the derivative with respect to B, we obtain

∂L

∂B
= −2CT AC + 2CT CBCT C. (10)

Solve ∂L
∂B = 0 to obtain

B = (CT C)−1CT AC(CT C)−1; (11)

Note that CT C is a special diagonal matrix such that
[CT C]pp = |πp|, the size of the pth community, and since
A is a non-negative symmetric matrix, so is B. This com-
pletes the proof of the theorem.

Based on Theorem 4.1, we propose an iterative algorithm
which alternatively updates B and C and converges to a
local optimum. First, we fix C and update B. Eq (9) in
Theorem 4.1 provides an updating rule for B. This updat-
ing rule can be implemented more efficiently than it looks

Algorithm 1 Hard CLGA algorithm
Input: A graph affinity matrix A and a positive integer k.
Output: A community membership matrix C and a community structure matrix B.
Method:
1: Initialize B.
2: repeat
3: for h = 1 to n do
4: Chp∗ = 1 for p∗ = arg minp Lp where Lp denotes ||A−CBCT ||2

for Chp = 1.
5: end for
6: B = (CT C)−1CT AC(CT C)−1.
7: until convergence

like. First, it does not really involve computing inverse ma-
trices, since CT C is a special diagonal matrix with the size
of each community on its diagonal; second, the product of
CT AC can be calculated without normal matrix multipli-
cation, since C is an indicator matrix.

Second, we fix B and update C. Since each row of C
is an indicator vector with only one element equal to 1, we
adopt the re-assignment procedure to update C row by row.
To determine which element of the hth row of C is equal
to 1, for p = 1, . . . , k, each time we let Chp = 1 and com-
pute the objective function L = ||A − CBCT ||2, which is
denoted as Lp, then

Chp∗ = 1 for p∗ = arg min
p

Lp (12)

Note that when we update the hth row of C, the necessary
computation involves only the hth row or column of A and
CBCT .

The algorithm, Hard CLGA, is summarized in Algorithm
1. The hard CLGA algorithm learns the general community
structures from a graph, since it does not put any constraint
on B. However, it is trivial to modify it to solve the varia-
tions of the general CLGA model, such as IGP, GGP, IBCL
and GBCL in Table 1. For example, the hard IGP algorithm
works as follows: fix B as the identity matrix and simply
update C by updating rule (12) until convergence; the hard
GGP algorithm works as follows: fix the off-diagonal ele-
ments of B as zero; update the diagonal elements of B by
updating rule (9) and update C by updating rule (12) until
convergence. Besides the variations in Table 1, it is easy for
Algorithm 1 to incorporate other prior knowledge through
B.

The complexity of hard CLGA can be shown to be
O(tn2k) where t is the number of iterations. It can be fur-
ther reduced for sparse graphs. When applied to graph par-
titioning task, the hard CLGA algorithm is computationally
more efficient than the popular spectral approaches which
involve expensive eigenvector computation and extra post-
processing on eigenvectors to obtain the partitioning. Com-
pared with the multi-level approaches such as METIS [17],
CLGA does not restrict communities to have an equal size.

The proof of the convergence of Algorithm 1 is easy due
to the following facts. First, based on Theorem 4.1, the ob-
jective function is non-increasing under updating rule (9);
second, by the criteria for reassignment in updating rule



(12), it is trivial to show that the objective function is non-
increasing under updating rule (12).

4.2 Soft CLGA algorithm

In the hard CLGA model of Definition 3.1, each node
belongs to only one community. It is natural to extend it to a
soft version, in which each node could belong to more than
one community with certain degrees. Formally, we define
the soft CLGA model as follows.

Definition 4.2. Given an undirected graph G = (V, E , A)
where A ∈ R

n×n
+ is the affinity matrix, and a positive in-

teger k, the optimized communities are given by the mini-
mization,

min
C∈R

n×k
+ ,B∈R

k×k
+

C1=1

||A − CBCT ||2. (13)

In the soft CLGA model, C is a soft membership matrix
such that Cij denotes the degree that the ith node is associ-
ated with the jth community and the sum of all the degrees
for each node equals to 1. Since the soft CLGA model de-
fines a constrained non-convex optimization, it is not real-
istic to expect an algorithm to find a global optimum. We
propose an alternative optimization algorithm which con-
verges to a local optimum.

Deriving the updating rules for C and B in the soft
CLGA model is more difficult than in the hard CLGA
model. First, it is difficult to deal with the constraint∑

j Cij = 1 efficiently. Hence, we transform it to a
”soft” constraint, i.e., we implicitly enforce the constraint
by adding a penalty term, α||C1 − 1||2 where 1 is a k-
dimension vector consisting of 1’s, α is a positive constant.
Therefore, we obtain the following optimization.

min
C∈R

n×k
+ ,B∈R

k×k
+

||A − CBCT ||2 + α||C1 − 1||2. (14)

Fixing B, the objective function in (14) is quartic with
respect to C. We derive a simple and efficient updating rule
for C based on the bound optimization procedure [28, 22].
The basic idea is to construct an auxiliary function which
is a convex upper bound for the original objective function
based on the solution obtained from the previous iteration.
Then, a new solution for the current iteration is obtained by
minimizing this upper bound.

Definition 4.3. G(S, St) is an auxiliary function for F (S)
if G(S, St) ≥ F (S) and G(S, S) = F (S).

The auxiliary function is useful due to the following
lemma.

Lemma 4.4. If G is an auxiliary function, then F
is non-increasing under the updating rule St+1 =
arg min

S
G(S, St).

Proof. F (St+1) ≤ G(St+1, St) ≤ G(St, St) ≤ F (St).

We propose an auxiliary function for C in the following
theorem.

Lemma 4.5.

G(C, C̃) =
�

ij

(Aij +
α

n
− 2
�

gh

(AijC̃igBghC̃jh(1 + 2 log Cjh

−2 log C̃jh) +
α

nk
C̃jh(1 + log Cjh − log C̃jh)) +

�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C4
jh

C̃4
jh

+

α

2nk
[C̃1]jC̃jh(

C4
jh

C̃4
jh

+ 1)))

is an auxiliary function for

F (C) = ||A − CBCT ||2 + α||C1 − 1||2. (15)

Proof. For convenience, we let β = α
nk .

F (C) =
�

ij

((Aij −
�

gh

CigBghCjh)
2

+ β
�

gh

(Cjh − 1)
2
)

≤
�

ij

(
�

gh

C̃igBghC̃jh

[C̃BC̃T ]ij

(Aij − [C̃BC̃T ]ij

C̃igBghC̃jh

CigBghCjh)
2

+β
�

gh

C̃jh

[C̃1]j
(
[C̃1]j

C̃jh

Cjh − 1)
2
)

=
�

ij

(Aij − 2
�

gh

AijCigBghCjh +

�

gh

[C̃BC̃T ]ij

C̃igBghC̃jh

C
2
igB

2
ghC

2
jh + β

�

gh

[C̃1]j

C̃jh

C
2
jh

−2β
�

gh

Cjh + kβ)

=
�

ij

(Aij + kβ − 2
�

gh

(AijC̃igBghC̃jh
CigCjh

C̃igC̃jh

+
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During the above deduction, the second step uses Jensen’s
inequality and the fifth step uses the inequalities x ≥ 1 +
log x and x2 + y2 ≥ 2xy.

The following theorem provides the updating rule for C.

Theorem 4.6. The objective function F (C) in Eq.(15) is
nonincreasing under the updating rule,

C = C̃ � (
AC̃B + α

2

C̃BC̃T C̃B + α
2 C̃E

)
1
4 (16)

where C̃ denotes the solution from the previous iteration, E
denotes a k×k matrix of 1’s, � denotes entry-wise product,
and the division between two matrix is entry-wise division.

The Theorem can be proved by solving ∂G(C,C̃)
∂Cjh

= 0
and using Lemma 4.4 (details are omitted due to the space
limit).

Similarly, we present the following theorems to derive
updating rules for B. Note that Theorem 4.1 cannot be used
to update B, since C does not have the special structure of
the indicator matrix in this case; updating rule (9) cannot
guarantee that B is non-negative. To guarantee that B can
be updated appropriately, we have the following theorems.

Lemma 4.7.

G(B, B̃) =
∑
ij

(Aij − 2
∑
gh

AijCigBghCjh +

∑
gh

[CB̃C]ijCigCjh

B2
gh

B̃gh

)

is an auxiliary function for

F (B) = ||A − CBCT ||2. (17)

Theorem 4.8. The objective function F (B) in Eq.(17) is
nonincreasing under the updating rule

B = B̃ � CT AC

CT CB̃CT C
. (18)

Following the way to prove Lemma 4.5 and Theorem
4.6, it is easy to prove the above theorems. We omit details
here.

The soft CLGA algorithm is summarized in Algorithm
2. The implementation of the algorithm is simple and it is
easy to take the advantage of the distributed computation
for very large data. The complexity of the algorithm is still
O(tn2k) for t iterations and it can be further reduced for
sparse graphs. The convergence of the soft CLGA algo-
rithm is guaranteed by Theorem 4.6 and 4.8.

Like the hard CLGA algorithm, the soft CLGA can be
applied to learning the specific types of community struc-
tures by enforcing the corresponding constraint on B. For
example, soft IGP and GGP provide another two new graph
partitioning algorithms and they deal with the soft graph
partitioning problem which has not been addressed exten-
sively in the literature of graph partitioning.

Algorithm 2 Soft CLGA algorithm
Input: A graph affinity matrix A and a positive integer k.
Output: A community membership matrix C and a community structure matrix B.
Method:
1: Initialize B and C.
2: repeat
3:

B = B � CT AC

CT CBCT C
.

4:

C = C � (
ACB + α

2

CBCT CB + α
2 CE

)
1
4

5: until convergence

4.3 Balanced CLGA Algorithm

In some applications, users may be interested in commu-
nities of a balance size. We propose the balanced CLGA
model as follows.

Definition 4.9. Given an undirected graph G = (V, E , A)
where A ∈ R

n×n
+ is the affinity matrix, and a positive in-

teger k, the optimized communities are given by the mini-
mization,

min
C∈R

n×k
+ ,B∈R

k×k
+

CT 1=1

||A − CBCT ||2. (19)

Unlike C1 = 1 in the soft CLGA model, we have
CT 1 = 1 in the balanced CLGA model, i.e., the sum of
elements in each column of the community membership
matrix equals to 1. This constraint enforces that for each
community, the sum of degrees that each node is associated
with this community equals to 1. As a result, the more the
nodes in a certain community, the smaller the average de-
gree that each node is associated with this community, the
more a node tends to belong to other communities with a
relative larger degree. Therefore, compared with the other
two CLGA models, the balanced CLGA model tends to
provide more balanced communities. Note that this con-
straint does not enforce strictly balanced communities of
equal sizes and it just pushes the model to provide commu-
nities as balanced as possible.

Due to the following lemma, the balanced CLGA model
can be simplified by dropping the constraint CT 1 = 1.

Lemma 4.10. If C ∈ R
n×k
+ , B ∈ R

k×k
+ , and D ∈ R

k×k
+

is a diagonal matrix s.t. Djj = 1�
i Cij

, then CBCT =

CDD−1BD−1(CD)T and (CD)T 1 = 1.

Proof. omitted.

Lemma 4.10 implies that we can always normalize C to
satisfy the constraint without changing the value of the ob-
jective function. Hence, the balanced CLGA can be reduced
to the following optimization,

min
C∈R

n×k
+ ,B∈R

k×k
+

||A − CBCT ||2. (20)



Algorithm 3 Balanced CLGA algorithm
Input: A graph affinity matrix A and a positive integer k.
Output: A community membership matrix C and a community structure matrix B.
Method:
1: Initialize B and C.
2: repeat
3:

B = B � CT AC

CT CBCT C
.

4:

C = C � (
ACB

CBCT CB
)
1
4 (21)

5: until convergence
6: Let D be a diagonal matrix s.t. Djj = 1�

i Cij
.

7: C = CD
8: B = D−1BD−1

Following the way to derive the soft CLGA algorithm,
we derive the balanced CLGA algorithm. Since Lemma
4.7 and Theorem 4.6 still hold true for the optimization in
(20), the balanced CLGA has the same updating rule for
B as the soft CLGA algorithm. By dropping off the term
α||C1 − 1||2 in (14), the theorems similar to lemmas 4.5
and 4.6 can be obtained to derive a simpler updating rule for
C (details are omitted due to the space limit). The balanced
CLGA algorithm is summarized in Algorithm 3. Similarly,
by enforcing constraints on B, it is easy to obtain other ver-
sions of the balanced CLGA algorithm, such as balanced
IGP and balanced GGP.

5 Experimental Results

In this section, we present experimental results to show
the effectiveness of various CLGA algorithms.

5.1 Data Sets and Parameter Setting

The data sets used in the experiments include synthetic
graphs with different types of community structures and real
graphs for text mining and social network analysis.

The synthetic graphs are 0-1 graphs generated based on
Bernoulli distribution. The distribution parameters to gen-
erate the graphs are listed in the second column of Table 2
as matrices. In a parameter matrix P , Pij denotes the prob-
ability that the nodes in the ith community are connected
to the nodes in the jth community. For example, in graph
W1, the nodes in community 1 are connected to the nodes
in community 2 with probability 0.1 and the nodes within
communities are connected to each other with probability
0. The graph G2 has ten communities mixing with strongly
intra-connected and weakly intra-connected communities.
Due to the space limit, its distribution parameters are omit-
ted here. Totally G2 has 5000 nodes and about 2.1 million
edges.

The graphs based on the text data have been widely used
to test graph learning algorithms [11, 10, 35]. We use

Table 2. Summary of the graphs with general
communities

Graph Parameter n k

S1

�
0.6 0.3 0.3
0.3 0.5 0.3
0.3 0.3 0.5

�
1500 3

W1

�
0 0.1 0.1

0.1 0 0.3
0.1 0.3 0

�
1500 3

G1

�
0.3 0.2 0.3
0.2 0 0.2
0.3 0.2 0

�
1500 3

G2 [0, 1]10×10 5000 10

Table 3. Summary of graphs based on text
datasets

Name n k Balance Source

tr11 414 9 0.046 TREC
tr23 204 6 0.066 TREC
tr45 690 10 0.0856 TREC

NG1-3 1600 3 0.5 20-newsgroups
NG1-20 14000 20 1.0 20-newsgroups

k1b 2340 6 0.043 WebACE

various data sets from 20-newsgroups [21], WebACE and
TREC [1] to construct the real graphs. The data are pre-
processed by removing the stop words and each document
is represented by a term-frequency vector using TF-IDF
weights. Then we construct a graph for each data set such
that each node denotes a document and the edge weight de-
notes the cosine similarity between documents. A summary
of all the data sets to construct graphs used in this paper is
shown in Table 3, in which n denotes the number of nodes
in a graph, k denotes the number of true communities, and
balance denotes the size ratio of the smallest community to
the largest community. Besides the graphs constructed di-
rectly from these data sets, we also construct three graphs
with virtual nodes, v-tr23, v-tr45 and v-NG1-20, for three
relatively difficult data sets. 5%n virtual nodes are added
into the original graphs to incorporate supervised informa-
tion. To simulate the concept documents provided by do-
main expert in real applications, the ”mean” documents of
the communities, which contain popular words of the cor-
responding communities, are used as virtual documents.

For performance measure, we elect to use the Normal-
ized Mutual Information (NMI) [32] between the resulting
community labels and the true community labels, which is
a standard way to measure the cluster quality. For the num-
ber of communities k, we simply use the number of the true
communities, since how to choose the optimal number of
communities is a nontrivial model selection problem and
beyond the scope of this paper.

Three versions of algorithms under different CLGA
models as listed in Table 1 are tested in the experiments.
We use ”H-”, ”S-” and ”B-” to represent hard, soft and
balanced versions, respectively. Two representative graph



Table 4. NMI scores on graphs of general
communities

Algorithm S1 W1 G1 G2

SGC 0.9902 0.4551 0.5086 0.6125
METIS 0.9811 0.0108 0.1495 0.6391
H-GGP 1.0000 0.0582 0.0151 0.6965

H-GBCL 0.0031 1.000 0.7932 0.8837
H-GCL 0.9103 0.9306 0.6531 0.9133
S-GGP 1.0000 0.0006 0.0009 0.5802

S-GBCL 0.0025 0.9270 0.8100 0.6494
S-GCL 0.9211 0.9295 0.8144 0.7314
B-GGP 1.0000 0.0002 0.0008 0.5832

B-GBCL 0.0011 0.9091 0.9976 0.7128
B-GCL 0.9666 0.9085 1.0000 0.7695

learning algorithms are selected as comparisons. Spectral
approaches have been applied to a wide range of graph
learning tasks from regular graph to bi-partite[10] and k-
partite graph learning [23]. In this study, we select to use
Spectral Graph Clustering (SGC) [26] that is generalization
of a number of graph learning algorithms. SGC learns link-
pattern based community structure by embedding commu-
nity structures into eigen-space and discovering them by the
eigenvectors. Another comparison is the classic multilevel
graph partitioning algorithm, METIS [17].

5.2 Results and Discussion

Table 4 shows the NMI scores of the eleven algorithms
on the graphs listed in Table 2. Each NMI score is the aver-
age of ten test runs. The graph S1 has three strongly intra-
connected communities. We observe that all the GGP algo-
rithms provide perfect scores on S1. However, the GBCL
algorithms totally fail, since their goal is to learn weakly
intra-connected communities which do not exist in S1. The
GCL algorithms perform not as good as the GGP algo-
rithms. The possible reason is that they do not focus on
strongly intra-connected communities and hence have more
local optimal solutions to converge. The graph W1 con-
sists of three weakly intra-connected communities. This
time the GBCL algorithms provide perfect or nearly per-
fect performance scores. METIS totally fails, since it only
looks for strongly intra-connected communities. SGC iden-
tifies part of community structures but its performance is
not satisfactory. Both G1 and G2 are graphs of mixed-
type community structures. Since there is only one strongly
intra-connected community in G1, it is still difficult for
the GGP algorithms and METIS to identify it. The graph
G2 is a large graph of ten communities consisting of four
strongly intra-connected communities and six weakly intra-
connected communities. The GGP and METIS algorithms
do not totally fail on G2, since they could learn strongly
intra-connected part from G2. The GBCL algorithms could
learn weakly intra-connected part from G2. However, over-
all the GCL algorithms perform better especially on G1 and

G2, since they are capable of learning general communities
of various types. In summary, the CLGA model provides
a family of algorithms for effectively learning general link-
pattern based community as well as specific types of com-
munity.

Table 5 shows the NMI scores of the nine algorithms.
Since the graphs mainly consist of strongly intra-connected
communities, GBCL algorithms are not appropriate. Hence
IGP (GGP works similarly to IGP and their result are omit-
ted) and GCL results are reported in comparison with SGC,
METIS and a state-of-the-art document clustering algo-
rithm, VMF, which is based on von Mises-Fisher distrib-
ution and was reported as one of the best document clus-
tering algorithm [3]. We observe that although there is no
single winner on all the graphs, for most graphs CLGA al-
gorithms perform better than or close to SGC, METIS and
VMF. The CLGA algorithms provide the best performance
on eight out of the nine graphs. By adding virtual nodes into
the graphs, the community structures are reinforced by link
patterns induced by the virtual nodes. Although all the al-
gorithms benefit from the virtual nodes, CLGA algorithms
always achieve the best performance on the graphs with vir-
tual nodes. For example, S-GCL provides the best perfor-
mance on v-tr23 and increases the performance about 50%
by making use of the virtual nodes. Hence, when learning
the communities of documents (with or without supervised
information), the CLGA model provides a family of new
algorithms which are competitive compared with the exist-
ing state-of-the-art graph learning algorithms and document
clustering algorithm.

We also run the GCL algorithm on the actor graph based
on IMDB movie data set for a case study of social network
analysis. We formulate a graph of 20000 nodes, in which
each node represents an actor and the edges denote collab-
oration between actors. However, we delete all the links
between the actors of the same gender, i.e., the links be-
tween male actors and the links between female actors. Al-
though there is no ground truth for the community structure
of this graph, the GCL algorithm provides a large number
of meaningful communities, which represent the major cast
members of one movie or movie series. For example, Ta-
ble 6 shows Community 11 consisting of 10 male actors
and Community 87 consisting of 12 female actors and the
community structure shows that the two communities are
strongly related to each other. In fact, all these actor/actress
are from the movies series ”American Pie”. Although the
links within the communities are missing, these communi-
ties are still identified by the GCL algorithm.

6 Conclusions

In this paper, we propose a general model based on graph
approximation to learn link-pattern based community struc-
tures from a graph. The model demonstrates a good theo-
retic generalization by unifying the traditional graph parti-
tioning objectives and providing a new view to understand



Table 5. NMI scores on graphs of text data
Data VMF SGC METIS H-IGP H-GCL S-IGP S-GCL B-IGP B-GCL

tr11 0.5990 0.5848 0.5708 0.5902 0.6048 0.6070 0.5941 0.6016 0.5959
tr23 0.2420 0.3003 0.2454 0.3223 0.2158 0.3065 0.3011 0.2905 0.2894
tr45 0.4821 0.5224 0.4290 0.5570 0.4991 0.4753 0.4793 0.5068 0.5107

NG1-3 0.5611 0.5515 0.4998 0.4574 0.5101 0.6132 0.6104 0.5840 0.5799
NG1-20 0.5102 0.4770 0.5343 0.4977 0.4015 0.5131 0.5102 0.5124 0.5211

k1b 0.4998 0.4758 0.5058 0.5066 0.5007 0.5146 0.5087 0.4946 0.4903
v-tr23 0.4001 0.3805 0.3530 0.3873 0.4147 0.4606 0.4648 0.4265 0.4492
v-tr45 0.6095 0.6225 0.6050 0.6184 0.6205 0.6163 0.6304 0.5953 0.5967

v-NG1-20 0.5468 0.5597 0.5684 0.5873 0.5954 0.6031 0.6208 0.6177 0.6336

Table 6. Two communities from the actor
graph.

Community 11

Jason Biggs, James DeBello,Chris Klein,
Thomas Ian Nicholas, Seann William Scott,

Eugene Levy, Chris Owen, Eric Lively,
Joseph D. Reitman, James B. Rogers

Community 87

Alyson Hannigan, Shannon Elizabeth, Tara Reid,
Mena Suvari, Jennifer Coolidge, Natasha Lyonne,

Lisa Arturo, Joelle Carter, Christina Milian,
Eden Riegel, Lee Garlington, Joanna Garcia

the graph partitioning problem. Under this model, we de-
rive three novel algorithms to learn the general community
structures from a graph, which cover three main versions of
unsupervised learning algorithms, hard, soft and balanced
versions, to provide a complete family of community learn-
ing algorithms. Besides the theoretic analysis, extensive
experiments on both real and synthetic graphs also demon-
strate the effectiveness and the great potential of the pro-
posed model and algorithms.
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