Combining Multiple Clusterings by Soft Correspondence

Bo Long, Zhongtei (Mark) Zhang
SUNY Binghamton

{blong1, zzhang } @binghamton.edu

Abstract

Combining multiple clusterings arises in various impor-
tant data mining scenarios. However, finding a consensus
clustering from multiple clusterings is a challenging task
because there is no explicit correspondence between the
classes from different clusterings. We present a new frame-
work based on soft correspondence to directly address the
correspondence problem in combining multiple clusterings.
Under this framework, we propose a novel algorithm that it-
eratively computes the consensus clustering and correspon-
dence matrices using multiplicative updating rules. This al-
gorithm provides a final consensus clustering as well as
correspondence matrices that gives intuitive interpretation
of the relations between the consensus clustering and each
clustering from clustering ensembles. Extensive experimen-
tal evaluations also demonstrate the effectiveness and po-
tential of this framework as well as the algorithm for dis-
covering a consensus clustering from multiple clusterings.

1. Introduction

Clustering is a fundamental tool in unsupervised learn-
ing that is used to group together similar objects [2], and
has practical importance in a wide variety of applications.
Recent research on data clustering increasingly focuses on
cluster ensembles [15, 16, 17, 6], which seek to combine
multiple clusterings of a given data set to generate a final
superior clustering. It is well known that different cluster-
ing algorithms or the same clustering algorithm with differ-
ent parameter settings may generate very different partitions
of the same data due to the exploratory nature of the cluster-
ing task. Therefore, combining multiple clusterings to ben-
efit from the strengths of individual clusterings offers bet-
ter solutions in terms of robustness, novelty, and stability
[17,8, 15].

Distributed data mining also demands efficient methods
to integrate clusterings from multiple distributed sources of
features or data. For example, a cluster ensemble can be em-
ployed in privacy-preserving scenarios where it is not possi-
ble to centrally collect all the features for clustering analy-

Philip S. Yu
IBM Watson Research Center
psyu@us.ibm.com

sis because different data sources have different sets of fea-
tures and cannot share that information with each other.

Clustering ensembles also have great potential in sev-
eral recently emerged data mining fields, such as relational
data clustering. Relational data typically have multi-type
features. For example, Web document has many different
types of features including content, anchor text, URL, and
hyperlink. It is difficult to cluster relational data using all
multi-type features together. Clustering ensembles provide
a solution to it.

Combining multiple clusterings is more challenging task
than combining multiple supervised classifications since
patterns are unlabeled and thus one must solve a correspon-
dence problem, which is difficult due to the fact that the
number and shape of clusters provided by the individual so-
lutions may vary based on the clustering methods as well as
on the particular view of the data presented to that method.
Most approaches [15, 16, 17, 6] to combine clustering en-
sembles do not explicitly solve the correspondence prob-
lem. Re-labeling approach [14, 7] is an exception. However,
it is not generally applicable since it makes a simplistic as-
sumption of one-to-one correspondence.

In this paper, we present a new framework based on
soft correspondence to directly address the correspondence
problem of clustering ensembles. By the concept of soft cor-
respondence, a cluster from one clustering corresponds to
each cluster from another clustering with different weight.
Under this framework, we define a correspondence matrix
as an optimal solution to a given distance function that re-
sults in a new consensus function. Based on the consen-
sus function, we propose a novel algorithm that iteratively
computes the consensus clustering and correspondence ma-
trices using multiplicative updating rules. There are three
main advantages to our approach: (1) It directly addresses
the core problem of combining multiple clusterings, the cor-
respondence problem, which has theoretic as well as prac-
tical importance; (2) Except for a final consensus cluster-
ing, the algorithm also provides correspondence matrices
that give intuitive interpretation of the relations between the
consensus clustering and each clustering from a clustering
ensemble, which may be desirable in many application sce-
narios; (3) it is simple for the algorithm to handle clustering
ensembles with missing labels.

2. Related Work

Some early works on combining multiple clusterings
were based on co-association analysis, which measure the
similarity between each pair of objects by the frequency
they appear in the same cluster from an ensemble. Kellam
et al. [13] used the co-association matrix to find a set of
so-called robust clusters with the highest value of support
based on object co-occurrences. Fred [9] applied a voting-
type algorithm to the co-association matrix to find the fi-
nal clustering. Further work by Fred and Jain [8] deter-
mined the final clustering by using a hierarchical (single-
link) clustering algorithm applied to the co-association ma-
trix. Strehl and Ghosh proposed Cluster-Based Similarity
Partitioning (CSPA) in [15], which induces a graph from a
co-association matrix and clusters it using the METIS al-
gorithm [11]. The main problem with co-association based
methods is its high computational complexity which is
quadratic in the number of data items, i.e., O(N 2).

Re-labeling approaches seek to directly solve the corre-
spondence problem, which is exactly what makes combin-
ing multiple clusterings difficult. Dudoit [14] applied the
Hungarian algorithm to re-labeling each clustering from a
given ensemble with respect to a reference clustering. Af-
ter overall consistent re-labeling, voting can be applied to
determining cluster membership for each data item. Dimi-
triadou et al. [S] proposed a voting/merging procedure that
combines clusterings pair-wise and iteratively. The corre-
spondence problem is solved at each iteration and fuzzy
membership decisions are accumulated during the course
of merging. The final clustering is obtained by assigning
each object to a derived cluster with the highest member-
ship value. A re-labeling approach is not generally applica-
ble since it assumes that the number of clusters in every
given clustering is the same as in the target clustering.

Graph partitioning techniques have been used to solve
for the clustering combination problem under different for-
mulations. Metal-CLustering algorithm (MCLA) [15] for-
mulates each cluster in a given ensemble as a vertex and the
similarity between two clusters as an edge weight. The in-
duced graph is partitioned to obtain metaclusters and the
weights of data items associated with the metaclusters are
used to determine the final clustering. [15] also introduced
HyperGraph Partitioning algorithm (HGPA), which repre-
sents each cluster as a hyperedge in a graph where the ver-
tices correspond to data items. Then, a Hypergraph parti-
tion algorithm, such as HMETIS [10], is applied to generate
the final clustering. Fern et al. [6] proposed the Hybrid Bi-
partite Graph Formulation (HBGF) to formulate both data
items and clusters of the ensemble as vertices in a bipar-
tite graph. A partition of this bi-partite graph partitions the
data item vertices and cluster vertices simultaneously and
the partition of the data items is given as the final cluster-
ing.

Another common method to solve for the clustering
combination problem is to transform it into a standard clus-
tering task by representing the given ensemble as a new set
of features and then using a clustering algorithm to produce

the final clustering. Topchy et al. [16] applied the k-means
algorithm in the new binary feature space which is specially
transformed from cluster labels of a given ensemble. It is
also shown that this procedure is equivalent to maximiz-
ing the quadratic mutual information between the empirical
probability distribution of labels in the consensus cluster-
ing and the labels in the ensemble. In [17], a mixture model
of multinomial distributions is used to do clustering in the
feature space induced by cluster labels of a given ensem-
ble. A final clustering is found as a solution to the corre-
sponding maximum likelihood problem using the EM algo-
rithm.

To summarize, the problem of combining multiple clus-
terings has been approached from combinatorial, graph-
based or statistical perspectives. However, there is no suf-
ficient research on the core problem of combining multiple
clusterings, the general correspondence problem. The main
trend of the recent research is to reduce the original problem
to a new clustering task which can be solved by one exist-
ing clustering algorithm, such as the hierarchical clustering,
graph partitioning, k-means, and the model-based cluster-
ing. However, this procedure brings back the problems re-
sulting from the explanatory nature of the clustering task,
such as the problem of robustness. Moreover, the heuris-
tic nature of this procedure makes it difficult to develop a
unified and solid theoretic framework for ensemble cluster-
ing [3]. In this paper, from the perspective of matrix com-
putation, we aim to solve the problem of combining multi-
ple clusterings by directly addressing the general correspon-
dence problem.

3. Soft Correspondence Formulation

Given a set of data points X = {x1, X2, ...,Xy,}, aclus-
tering of these n objects into k clusters can be represented
as a membership matrix M € R™*k where M;; > 0 and
Zj M;; = 1, i.e., the sum of the elements in each row of
M equals to 1. M;; denotes the weight of the ith points as-
sociated with the jth cluster. For a hard clustering, M is an
indicator matrix, i.e., M;; = 1 indicates that the ith points
belongs to the jth cluster.

The re-labeling approach tries to solve for the corre-
spondence problem by assuming the one-to-one correspon-
dence between clusters from two clusterings. This assump-
tion makes it only applicable in a special situation where the
number of clusters in each given clustering is the same as
in the target clustering. Even the number of clusters in two
clusterings are the same, if their distributions of the clus-
ters are very different and unbalanced, the one-to-one cor-
respondence is not an efficient representation of the relation
between the two clusterings, since it misses too much infor-
mation.

We propose the concept of soft correspondence to for-
mulate the relation between two clusterings. Soft corre-
spondence means that a cluster of a given clustering cor-
responds to every clusters in another clustering with dif-
ferent weights. Hence, the corresponding relation between
two clusterings may be formulated as a matrix. We call it

(soft) correspondence matrix, denoted as S. S;; denotes
the weight of the ith cluster of the source clustering cor-
responding to the jth cluster of the target clustering and
Z j Sij =1.

Under the re-labeling framework, after the label corre-
spondence is obtained, an “re-label” operation is applied
and then the labels of two clusterings have consistent mean-
ings. Similarly, under the soft correspondence framework,
we also need an operation, which is based on the corre-
spondence matrix, to transform the membership matrix of
a source clustering into the space of the membership matrix
of the target clustering to make the two membership matri-
ces reach a consistent meaning. The intuitive choice of this
operation is the linear transformation with the correspon-
dence matrix. Let M/ (°) denote the membership matrix of a
source clustering, M denote the membership matrix of a tar-
get clustering, and S denote the correspondence matrix of
M (©) with respect to M. Multiplied by S, M(©) is linearly
transformed into the space of M, i.e., M (0) 8 is the trans-
formed membership matrix that has the consistent meaning
with M. Next step, we need an objective function to de-
cide which correspondence matrix is optimal. The distance
function for matrices is a good choice, since the smaller
the distance between the target membership matrix M and
the transformed membership matrix M (%) S, the more pre-
cisely the correspondence matrix catches the relation be-
tween M (©) and M.

We give the formal definition of the correspondence ma-
trix as below.

Definition 3.1. Given a matrix distance function d and two
membership matrices, M 0) ¢ R"*k0 and M € R™*F the
correspondence matrix, S € RFoxE of M) with respect to
M is the minimizer of d(M, M(%)S) under the constraints
Sij > OandeSij =1,wherel <i<kpandl <j<k.

In this paper, we adopt a widely used distance function,
Euclidean distance. Therefore, the correspondence matrix
of M () with respect to M is given as

§ = argmin||M — MOY?, (1)

where || - || denotes Frobenius matrix norm.

Let us illustrate the above formulation with examples.
Suppose three hard clusterings for six data points are given
as the following label vectors.

A= (1,1,2,2,3,3)
2D = (3,3,1,1,2,2)
A2 = (1,1,1,1,2,2)

Let M, MM, and M denote the membership matri-
ces of the above three clusterings, respectively. Assume A
is the target clustering. Let S™) and S(®) denote the corre-
spondence matrices of M (1) and M) with respect to M

respectively. M, M), and S™) which is computed based
on (1) are given as follows, respectively.

SO OO = =
OO =M= OO
-0 O OO
OO R Rk OO
—_ -0 o0 oo
[N elelall
= o O
O O =
o = O

Examination of the label vectors reveals that there is a
perfect one-to-one correspondence relationship between A
and \(Y). Therefore, we expect the distance between the
target membership matrix and the transformed member-
ship matrix equals to 0. Simple calculation verifies M =
M®SM From another perspective, A1) is just a permuta-
tion of A. Hence , in this situation the correspondence ma-
trix S(V) is just a permutation matrix.

Similarly, we solve (1) with M and M (?) to obtain ().
The M), the S and the transformed membership matrix
M®) S are given in the equation below.

10 05 05 0
10 05 05 0
10 X{0.5 0.5 0] 05 0.5 0
10 0 0 1 05 05 0
01 0 0 1
01 0 0 1

The correspondence matrix S(?) indicates that the clus-
ter 1 in A(?) corresponds to the cluster 1 and cluster 2 in A
with the same weight and the cluster 2 in A(?) corresponds
to the cluster 3 in \. This is exactly the relationship between
A2 and \. By the information from the transformed mem-
bership matrix M (?)S() (the righthand side of the above
equation), the first fourth data points do not belong to clus-
ter 3 and whether they belong to cluster 1 or cluster 2 can-
not be determined, and the last two points belong to cluster
3. This is exactly the best information we can have by trans-
forming A(?) into the space of \.

4. Derivation of The Algorithm

The problem of clustering ensemble can be de-
scribed as follows: given a set of clusterings,
c = {MO MO . MO}, where MM €
Rk M2 e Rexke M) e Rk and a
number k, combine C into a final consensus cluster-
ing M € R™** using a consensus function.

Soft correspondence based on Euclidean distance pro-
vides a new consensus function for clustering ensemble.
Hence, we define the problem of clustering ensemble as an
optimization problem below.

Definition 4.1. Given r membership matrices, M) ¢
Rk M) e R"%F and k € Z7T, a consensus clus-
tering represented by M € R™** and r correspondence

matrices S(1) € RF>k S0 ¢ RFr*k gre given by the
minimization of

FOLSD S SO =37 M — MM SO ()
h=1

; : o olh) (R) _
subject to constraints Vh, 4, j : S;;° > 0 and Zj S’ =1

Although the consensus function in (2) is not convex in
M and each S(® simultaneously, it is convex in M and
each S respectively. Therefore, (2) can be minimized
(local minimum) by alternatively optimizing one of them
and fixing the others. We derive an EM [1] style algorithm
that converges to a local minimum by iteratively updating
the correspondence matrices and the consensus membership
matrix using a set of multiplicative updating rules [4].

To derive simple multiplicative updating rules that con-
verges to a good consensus clustering, we do two modifica-
tions for the consensus function (2).

First, the consensus clustering may converge to a clus-
tering with unreasonably small number of clusters. Note
that although the consensus clustering M € R"™*F, the
number of clusters in it could be less than k. This pro-
vides the flexibility to explore the structure of the cluster-
ing by automatically adjusting the number of clusters un-
der given k. However, it also provides the possibility that
the number of clusters deteriorates to the trivial small num-
ber. We propose the column-sparseness constraint on the
correspondence matrices to resolve this problem. A corre-
spondence matrix of M (") with respect to M is column-
sparse implies that only a small number of clusters from
M ™) significantly correspond to each cluster in M. Hence,
the column-sparseness constraint forces the consensus clus-
tering M to provide clusters as many as possible under a

given k. Since Si(;l) > 0 and Zj Si(]’.L) = 1, the sum of
the variation of each column of S(™ is a measure of the
column-sparseness of S(™, i.e., the greater the value of
S — ﬁlkhkhs(h)ﬂz is, the more column-sparse S(")
is. Therefore, to enforce the column-sparseness constraint,
we add a new term, —a Y [[S™ — L1y, 5, S™|2 to
the consensus function (2), where o > 0 is a constant and
1, %, 1S a kp-by-kj, matrix of 1s.

Second, it is difficult to deal with the external con-
straint - Sgl) = 1 efficiently. Hence, we transform it to
a ”’soft” constraint, i.e., we implicitly enforce the constraint
by adding a penalty term, 337) _, HS(h).lk;C — 1, 1% to
the consensus function (2), where 3 > 0 is a constant.

Based on the above modifications, we re-define the prob-
lem of clustering ensemble as follows.

Definition 4.2. Given r membership matrices, M ® e
R>ky , M) e R"*k+ and k € Z*, a consensus clus-
tering represented by M € R™** and r correspondence ma-
trices S(1) € RFxk S ¢ RF»xE are given by the
minimization of

f(M,8Y 8y = Z||M—M(h)5(h)||2

h=1

1
70‘”5(}74) - Hlkhkh‘s(h) ”2

+B1SM Ly — il B3
subject to constraints Vh, i, j : Si(;L) > 0.

Taking the derivatives of f with respect to M and S,
where 1 < h < r, and after some algebraic manipulations,
the gradients about M/ and S(") are given as follows.

a% = 2M-2) M™Ms® 4)
h=1
of
RO —2(MPINT M 4 2(M YT ppth) g(h)

1
_2a(S(h) - 71’%’%5(}0)
kn,
+28(kSM 14y — klg, 1) (5)

Solving % = (, the update rule for M is given as
1 T
M==- MMsh, 6
. hz:jl (©6)

On the other hand, directly solving % = 0 does not

give a feasible update rule for S(*), because the solution in-
volves the computation of the inverse matrix that is usually
expensive and unstable. Another choice is the gradient de-
scent method, which gives the update rule as
of
(h) (h) _

S 8 @@(8S(h)), @)
where © denotes the Hadamard product of two matrices. ©
is a matrix of step size parameters. If each element of O is
carefully chosen to be a small positive number, the update
rule (7) will force the objective function (3) to be minimized
at each iteration. However the choice of © can be very in-
convenient for applications involving large data sets. There-
fore, we set O as follows to derive the multiplicative updat-
ing rules,

S(h)
0=55 ®)
where the division between two matrices is entrywise divi-
sion (it is the same in the rest of this paper) and

D = (MWW)Tpgh) _ o8t 4 kglkhkh Q)
Lok

+8kS M1y, 9)

Substituting (5), (8), and (9) into (7), we obtain the fol-

lowing multiplicative updating rule for each S(*).

(MUNTM + Bk,
D

St — g o (10

Based on (6) and (10), the Soft Correspondence Ensem-
ble Clustering (called SCEC) algorithm is listed in Algo-
rithm 1. In Step 5 of Algorithm 1, D is computed based on
(10) and € is a very small positive number used to avoid di-
viding by 0.

Algorithm 1 SCEC(M™, ..., M*) k)
1: Initialize M, SM, ..., S,
2: while convergence criterion of M is not satisfied do
33 forh=1tordo
4: while convergence criterion of S
do
5 S(h) - S(h) ®
6 end while
7: end for
8
9

) is not satisfied
(MUNT M+Bk1g, k
D+e

M=1 22—1 M) g(R)
end while

SCEC simply works as follows : First M is fixed,
and each S is updated to reduce the distance be-
tween MW S and M until S converges; Second
update M as the mean clustering of all of A/(") S("); Re-
peat above steps until M converges.

SCEC outputs a final consensus clustering as well as cor-
respondence matrices that give intuitive interpretation of the
relations between the consensus clustering and each clus-
tering from clustering ensembles which may be desirable
in many application scenarios. For example, in most dis-
tributed clustering scenarios, users from different sources
not only want to get a final clustering solution but also care
about the relationship between the clusterings they provide
and the final clustering.

It is easy for SCEC to deal with the clustering with miss-
ing labels. Suppose that the label of the ¢th object in the Ath
clustering M (" is missing. We simply let Mi(]h) = ﬁ for
1 < 5 < ky, i.e., the hth clustering does not provide use-
ful information to compute the final membership for the ith
object, which is interpolated based on the information from
other clusterings.

The computational complexity of SCEC can be shown
as O(tnrk?), where t is the number of iterations. It is much
faster than CSPA (O(n?rk)) [15], since n is large. SCEC
has the same complexity as that of two other efficient algo-
rithms, QMI based on k-means [16] and the approach based
on the mixture model [17]. In general, the computational
complexity of k-means is O(tnmk) where m is the number
of features. In [16], when applying k-means to the feature
space induced by a clustering ensemble, the number of fea-
tures is Y _, kx. Since kj, = ©(k), we have m = O(rk).

5. Proof of Correctness for SCEC

To prove SCEC is correct, we must prove that the con-
sensus function (3) is non-increasing under update rules (6)
and (10). It is obviously true for the update rule (6), since

it is derived directly from aaM = 0. The multiplicative up-
dating rule (10) can be viewed as a special type of gradi-
ent descent method. Since © in (8) is not small, it might
appear that there is no guarantee that the consensus func-
tion is non-increasing under (10). We prove that this is not
the case in the rest of this section.

Since the updating rules for all S() are the same, for
convenience, we simplify the problem to the case of the en-
semble with one clustering.

Theorem 5.1. Given two non-negative matrices
M € R™* and A € R™k o, and the constraint
Vi, 7 : Si; > 0, the objective function

F(S) = [|M~ AS||2—04H5— 1kok05|| +011S Lk —Lior |1
(11
is non-increasing under the update rule
AT M + Bkl
aSt + k%,]-kokost + ﬁkStlkk’
(12)

Sl Sto

AT ASt —

where t denotes the discrete time index.

To prove Theorem 5.1, we make use of the concept of
the auxiliary function [1, 12]. G(S, S*) is an auxiliary func-
tion for F(S) if G(S,S%) > F(S) and G(S,S) = F(S).
The auxiliary function is useful due to the following lemma.
Lemma 5.2. If G is an auxiliary function, then
F is non-increasing under the updating rule

St = arg min G(S,SY).

The key of the proof is to define an appropriate auxiliary
function. We propose an auxiliary function for the objective
function (11) in the following lemma.

Lemma 5.3. Let U = 532, Then

G(S, 8" = tr(M"M —25TATM +UT AT AS")
—tr(aUTSt — %UleUkOSt) (13)
0
+tr(BLeUT S 1y, — 281510 S1ir, + Bhlir)

is an auxiliary function for (11), where tr denotes the trace
of a matrix.

Proof. The objective function (11) can be rewritten as:
F(S) = tr(M"™M —2S"A" M + ST AT AS)
—tr(aSTS — kﬁsleokOS) (14)
0
+tr(B1re ST Sl — 281k Sk + BkLik)

When S = S*, we have U = S. Thus G(S, S) = F(S). To
show G(S,St) > F(S), we compare (13) with (14) to find
that it can be done by showing the following conditions.

tr(UT AT AS* — STATAS) > 0 (15
tr(UTsf TSy = 0 (6

(k Uﬁkokost—fsﬁkoko) > 0 (17)
tr(lkkUTS 1kk_1kkS Slp) > 0 (18)

For convenience, let Q = AT A; hence Q is a non-negative
symmetric matrix. We prove (15) as follows.

A = tr(U"ATAS" — ST AT AS)
Z UiuQijS]ta — Z SiuQiij(L
a,i,j a,i,j
= Z Q” Sia — SiaSja)
a,i,j
+ S2a, t
= 3 (Qu(GE Sl ~ SuSie) + QG S — S1aSi)
a,1<j
= Z QZ] S’LG.S;/(L Sjasfa)Q
a,i<j za ja
> 0

where 1 < a < kand 1 < 4,5 < kg. Similarly, we can
prove (16), (17), and (18). O

Now we are ready to prove Theorem 5.1.
Proof. The derivative of G (.S, S*) with respect to S is

oG

55 = —2ATM — 2Bk1, + 25

S (AT AS?
—aSt + 1k0kost + BES 114,). (19)

Solving g—g

= 0, we obtain the updating rule (12). By
Lemma 5.2, F'(S) i

is non-increasing under (12). O

6. Empirical Evaluations

We conduct experiments on three real world data sets to
demonstrate the accuracy and robustness of SCEC in com-
parison with four other state-of-the-art algorithms for com-
bining multiple clusterings.

6.1. Data sets and Parameter Settings

Three real-world data sets from the UCI machine learn-
ing repository are used in our experiments. The charac-
teristics of the data sets are summarized in Table 1. IRIS
is a classical data set in the pattern recognition literature.
PENDIG is for pen-based recognition of handwritten dig-
its and there are ten classes of roughly equal size in the
data corresponding to the digits 0 to 9. ISOLET®6 is a sub-
set of the ISOLET spoken letter recognition training set and
it contains the instances of six classes randomly selected out
of twenty six classes.

We compare SCEC with four other state-of-the-art rep-
resentative algorithms. Two of them are graph partition-
ing based algorithms, CSPA and MCLA [15]. The code for
them is available at http://www.strehl.com. The third algo-
rithm is QMI that is based on k-means [16]. The last one
is based on the mixture model [17] and we call it Mixture
Model based Ensemble Clustering (MMEC).

The k-means algorithm is used to generate the cluster-
ing ensembles in three ways. For each data set, three types
of clustering ensembles are generated as follows. The first

No.of No. of | No. of No. of
Dataset
Instances | features | classes clusters
IRIS 150 4 3 (2,3.4)
PENDIG 3498 16 10 (5,10,15,20)
ISOLET6 1440 617 6 (3,6,9,12)

Table 1. Summary of the data sets

is generated with Random Initiation (RI) of k-means and
the number of clusters for each clustering in the ensemble
is set to be the number of clusters in the consensus (tar-
get) clustering. The second is generated such that the num-
ber of clusters for each clustering in the ensemble is a Ran-
dom Number (RN) between 2 and 2c¢, where c is the true
number of classes. The third is generated to simulate dis-
tributed clustering scenarios such that each clustering of an
ensemble is based on a data set in a Random Subspace (RS)
of the original full feature space. The dimension of the sub-
space for each data set is set to about a half of the dimen-
sion of the full feature space, i.e., 2, 8, and 308 are for IRIS,
PENDIG and ISOLETS®, respectively.

For the number of clusters in the consensus (target) clus-
tering k, we do not fix it on the true number of the classes.
Since in real applications, usually we do not know the true
number of classes, it is desirable to test the robustness of
an algorithm to different number of clusters. The last col-
umn of Table 1 reports the numbers of clusters used for
each data set. For the number of combined clusterings r,
we adopt r = 5, 20,50 for each data set. For the initial-
ization of SCEC algorithm, the consensus clustering M is
set as a clustering randomly chosen from the ensemble and
each correspondence matrix is initialized with a randomly
generated correspondence matrix.

For the evaluation criterion, we select to use an informa-
tion theoretic criterion — the Normalized Mutual Informa-
tion (NMI) criterion [15]. Treating cluster labels and class
labels as random variables, NMI measures the mutual infor-
mation shared by the two random variables and is normal-
ized to a [0, 1] range.

6.2. Results and Discussion

The results for each data set are presented in Table 2-
10. The tables report the mean NMI from 20 independent
runs of each combination of r and k. Except for the five al-
gorithms, the mean NMIs for the Base Learner (BL), the
k-means, are also reported in the tables.

Comparing the base learner, none of the five algorithms
leads to the performance improvement over the base learner
in all cases. SCEC gives performance improvement over the
base learner under 77 out of 99 situations. This is the best re-
sult among the five algorithms. An interesting observation is
that the most situations when the algorithms fail to improve
performance are the situations where the number of clusters
is set to be less than the true number of the classes. The pos-
sible reason is that under this situation the base learner tend

to give more data points random assignments, which make
the ensemble provide less useful information.

Comparing the five algorithms with each other, none of
the algorithms is the absolute winner that has the best mean
NMI in every situation. Each algorithm may achieve bet-
ter performance under some specific conditions. For exam-
ple, MCLA tends to give good performance under the true
number of the classes because that provides nearly-balanced
clusters. MMEC works better on a large size data set be-
cause reliability of model parameter estimation is improved
in this situation. SCEC is observed to be the most robust al-
gorithm and it outperforms the other algorithms in most sit-
uations.

However, to evaluate the overall performance strictly, di-
rect observation of the data is not sufficient and we need to
do statistical test on the result. We do the paired t-test on the
99 pairs of NMIs from all the tables for each pair of the al-
gorithms. The p-value for each test is reported in Table 11.
The (4, j) entry of Table 11 presents the p-value for the fol-
lowing one-sided paired t-test: Hy: the mean of the mean
NMI for algorithm 7 equals to the mean of the mean NMI
for algorithm j vs H:the mean of the mean NMI for algo-
rithm ¢ is greater than the mean of the mean NMI for algo-
rithm j, i.e., if p-value in (¢, j) entry is less than 0.05, we
accept H with confidence level 0.95, which means that we
can make a conclusion that algorithm ¢ outperforms algo-
rithm j significantly.

By Table 11, SCEC performs significantly better than all
other algorithms. The performance of CSPA is significantly
worse than all others. The possible reason is that CSPA
needs a large number of clusterings to provide a reliable es-
timate of the co-association values. However ensembles of a
very large size are less important in practice. MCLA is sig-
nificantly better than MMEC and there is no significant dif-
ference between MCLA and QMI. Also there is no signif-
icant difference between QMI and MMEC. When compar-
ing the base learner, SCEC is the only one that leads to a
significant performance improvement over the base learner.

7. conclusions

In this paper, we have proposed a new soft correspon-
dence framework for combining multiple clusterings. Un-
der this framework, we define a correspondence matrix as
an optimal solution to a given distance function and it re-
sults in a new consensus function. Based on the consen-
sus function, we propose a novel algorithm SCEC that it-
eratively computes the consensus clustering and the corre-
spondence matrices using the multiplicative updating rules.
We have shown the correctness of the SCEC algorithm the-
oretically. We have also reported extensive empirical evalu-
ations to demonstrate the superior effectiveness of SCEC to
several well-known algorithms in the literature on combin-
ing multiple clusterings.

8. Acknowledgments

This research is supported in part by a grant from Air
Force Research Laboratory (AFRL) through the award
number FA8750-04-1-0234. We acknowledge the ad-
vice from Dr. John Salerno at AFRL.

References

[1] N. M. L. A. P. Dempster and D. B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, 39(8):1-38, 1977.

[2] A.K.Jain and R.C.Dubes. Algorithms for Clustering Data.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[3] M. H. C. L. Alexander P. Topchy and A. K. Jain. Analysis of
consensus partition in cluster ensemble. In ICDM’04, pages
1101 — 1111. 2004.

[4] D.D.Lee and H.S.Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401:788-791,
1999.

[5] E. Dimitriadou, A. Weingessel, and K. Hornik. Voting-
merging: An ensemble method for clustering. In ICANN ’01.

[6] X.Z.Fernand C. E. Brodley. Solving cluster ensemble prob-
lems by bipartite graph partitioning. In ICML ’04.

[7]1 B. Fischer and J. M. Buhmann. Path-based clustering for
grouping of smooth curves and texture segmentation. /EEE
Trans. Pattern Anal. Mach. Intell., 25(4):513-518, 2003.

[8] A. L. Fred and A. K. Jain. Data clustering using evidence
accumulation. In /CPR ’02.

[9] A.L.N. Fred. Finding consistent clusters in data partitions.
In Multiple Classifier Systems, pages 309-318, 2001.

[10] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multi-
level hypergraph partitioning: application in vlsi domain. In
DAC *97.

[11] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci. Com-
put., 20(1):359-392, 1998.

[12] D.D. Lee and H. S. Seung. Algorithms for non-negative ma-
trix factorization. In NIPS, pages 556-562, 2000.

[13] N. C. S. PKellam, X.Lin and A.Tucker. Comparing, con-
trasting and combining clusters in viral gene expression data.
In Proceedings of 6th Workshop on Intelligence Data Analy-
sis in Medicine an Pharmocology, pages 56—62, 2001.

[14] S.Dudoit and J. Fridlyand. Bagging to improve the accuracy
of a clustering procedure. Bioinformatics, 19(9):1090-1099,
2003.

[15] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge
reuse framework for combining partitionings. In AAAI 2002.
AAAI/MIT Press.

[16] A. Topchy, A. K. Jain, and W. Punch. Combining multiple
weak clusterings. In Proceedings of the Third IEEE Interna-
tional Conference on Data Mining, page 331, 2003.

[17] A. Topchy, A. K. Jain, and W. Punch. A mixture model for
clustering ensembles. In proc. AIAM Data mining, page 379,
2004.

r k SCEC CSPA MCLA QMI MMEC BL
5 2 0.6793 04164 0.6793 0.6793 0.6793 0.6793
5 3 0.7463 0.6978 0.7517 0.6567 0.7288 0.7069
5 4 07266 0.5610 0.7050 0.6356 0.7052 0.7008
20 2 0.6793 04164 0.6793 0.6793 0.6793 0.6793
20 3 0.7528 0.6921 0.7476 0.6764 0.7257 0.7201
20 4 0.7274 0.5826 0.7171 0.6603 0.6385 0.6999
50 2 0.6793 04164 0.6793 0.6793 0.6793 0.6793
50 3 0.7528 0.6916 0.7428 0.6731 0.6962 0.7166
50 4 0.7515 0.5879 0.7177 0.6119 0.6351 0.7003
Avg 0.7217 0.5625 0.7133 0.6981 0.6613 0.6853
Table 2. IRIS dataset with RI
r k SCEC CSPA MCLA QMI MMEC BL
5 2 0.6914 0.4941 0.5724 0.6385 0.5958 0.6738
5 3 0.7545 0.8102 0.7891 0.6464 0.7067 0.6826
5 4 0.7367 05709 0.7111 0.6883 0.6691 0.6900
20 2 0.753 0.5012 0.5174 0.644 0.4964 0.6761
20 3 0.7706 0.8383 0.8166 0.6758 0.5775 0.6773
20 4 0.7305 0.5898 0.6823 0.6712 0.619 0.6811
50 2 0.7612 0.5076 0.4963 0.6863 0.4365 0.6774
50 3 0.7804 0.8411 0.8539 0.6183 0.5284 0.6777
50 4 0.7391 0.5868 0.6857 0.6583 0.5251 0.6773
Avg 0.7464 0.6378 0.6805 0.6586 0.5727 0.6793
Table 3. IRIS dataset with RN
r k SCEC CSPA MCLA QMI MMEC BL
5 2 0.6560 04380 0.6497 0.5960 0.6756 0.5825
5 3 07626 0.7748 0.7686 0.7018 0.7665 0.6856
5 4 0.6851 0.5556 0.6685 0.6822 0.6921 0.6294
20 2 0.6831 0.4635 0.6758 0.6895 0.6437 0.5932
20 3 0.7658 0.7735 0.7664 0.7185 0.7494 0.6828
20 4 0.7425 0.5870 0.7098 0.7006 0.6976 0.6336
50 2 0.7059 0.4596 0.6858 0.7186 0.6184 0.5991
50 3 0.7532 0.7775 0.7496 0.7248 0.7062 0.6746
50 4 0.7418 0.5841 0.7106 0.7173 0.6861 0.6358
Avg 0.7218 0.6015 0.7094 0.6944 0.6928 0.6352
Table 4. IRIS dataset with RS
r k SCEC CSPA MCLA QMI MMEC BL
5 5 0.5585 0.4855 0.5639 0.5228 0.5517 0.5607
5 10 0.6734 0.6245 0.6734 0.6434 0.6564 0.6808
5 15 0.731 0.6458 0.7202 0.688 0.7143 0.7253
5 20 0.743 0.6813 0.7289 0.6931 0.7183 0.7355
20 5 0.5593 04942 0.5673 0.5328 0.5336 0.5601
20 10 0.6756 0.6394 0.6823 0.6499 0.643 0.6818
20 15 0.732 0.661 0.7213 0.687 0.6911 0.7247
20 20 0.7484 0.6941 0.7388 0.7091 0.701 0.7361
50 5 0.5691 0.506 0.5686 0.5353 0.533 0.5608
50 10 0.6778 0.6463 0.6817 0.6468 0.6415 0.6815
50 15 0.733 0.6588 0.722 0.6897 0.6849 0.7236
50 20 07526 0.6932 0.7356 0.7175 0.6852 0.7357
Avg. 0.6795 0.6192 0.6753 0.643 0.6462 0.6755
Table 5. PENDIG dataset with RT
r k SCEC CSPA MCLA QMI MMEC BL
5 5 0.5709 0.5282 0.5413 0.5164 0.5584 0.6247
5 10 0.6915 0.6383 0.6285 0.6281 0.6746 0.6702
5 15 0.718 0.6344 0.6305 0.6921 0.7097 0.666
5 20 0.7118 0.6399 0.6463 0.6969 0.7137 0.6669
20 5 0.5738 0.5445 0.5781 0.5394 0.54 0.6422
20 10 0.6901 0.6417 0.6828 0.6627 0.6518 0.6515
20 15 0.7108 0.6494 0.6441 0.6936 0.7021 0.627
20 20 0.7256 0.6523 0.6277 0.6986 0.7153 0.6535
50 5 0.5833 0.5489 0.5841 0.5483 0.5227 0.6474
50 10 0.6935 0.6493 0.6907 0.6581 0.6534 0.6485
50 15 0.7179 0.6536 0.7035 0.6876 0.6805 0.6477
50 20 0.712 0.6557 0.6741 0.6964 0.707 0.6433
Avg. 0.6749 0.6197 0.636 0.6432 0.6524 0.6491

Table 6. PENDIG dataset with RN

r k SCEC CSPA MCLA QMI MMEC BL
5 5 0.5033 04790 0.4944 0.4962 0.5311 0.4896
5 10 0.6546 0.6247 0.6496 0.6451 0.6841 0.6092
5 15 0.6944 0.6290 0.6657 0.6620 0.7085 0.6422
5 20 0.7017 0.6592 0.6689 0.6934 0.7200 0.6483
20 5 0.5383 0.5101 0.5464 0.5598 0.5626 0.4952
20 10 0.6586 0.6468 0.6790 0.6850 0.6862 0.6143
20 15 0.7129 0.6560 0.7022 0.7197 0.7302 0.6401
20 20 0.7281 0.6991 0.7124 0.7190 0.7218 0.6539
50 5 0.5428 0.5189 0.5458 0.5665 0.5778 0.4950
50 10 0.6596 0.6548 0.6790 0.6869 0.6841 0.6047
50 15 0.7238 0.6653 0.7009 0.7326 0.7105 0.6431
50 20 0.7322 0.6925 0.7167 0.7371 0.6988 0.6540
Avg. 0.6542 0.6196 0.6468 0.6586 0.6680 0.5991
Table 7. PENDIG dataset with RS
r k SCEC CSPA MCLA QMI MMEC BL
5 3 0.6661 0.5366 0.7039 0.5981 0.645 0.6686
5 6 0.7147 0.7021 0.7284 0.5909 0.6829 0.6631
5 9 0.6761 0.5521 0.6374 0.6415 0.6338 0.6502
5 12 0.6644 0.6296 0.6356 0.6126 0.6286 0.6374
20 3 0.5978 0.5471 0.596 0.6144 0.5974 0.6271
20 6 0.6955 0.7006 0.698 0.6432 0.6747 0.6655
20 9 0.6875 0.546 0.6452 0.638 0.6332 0.6503
20 12 0.683 0.6406 0.639 0.6438 0.6311 0.6375
50 3 0.6052 0.5468 0.6808 0.6345 0.6059 0.6385
50 6 0.7048 0.7006 0.698 0.6123 0.6318 0.6608
50 9 0.6901 0.5541 0.644 0.6456 0.6331 0.6512
50 12 0.6716 0.6416 0.6432 0.6471 0.611 0.6341
Avg 0.6714 0.6082 0.6625 0.6268 0.634 0.6487
Table 8. ISOLET6 dataset with RI
r k SCEC CSPA MCLA QMI MMEC BL
5 3 0.6705 0.6169 0.6463 0.554 0.5203 0.7072
5 6 0.7393 0.7487 0.665 0.6773 0.7019 0.7057
5 9 0.7686 0.6225 0.6139 0.7201 0.764 0.7189
5 12 0.7543 0.7269 0.5909 0.7397 0.7447 0.7062
20 3 0.6753 0.5708 0.545 0.5949 0.5498 0.6988
20 6 0.7292 0.8241 0.6891 0.696 0.7038 0.6963
20 9 0.7629 0.6196 0.6525 0.7215 0.7173 0.6948
20 12 0.779 0.7434 0.5197 0.7448 0.752 0.6957
50 3 0.6769 0.5874 0.602 0.5928 0.5404 0.7075
50 6 0.7627 0.8239 0.798 0.7346 0.7044 0.7085
50 9 0.7802 0.6041 0.7468 0.7525 0.7138 0.7044
50 12 0.7831 0.7454 0.6634 0.7328 0.7296 0.7037
Avg 0.7402 0.6862 0.6444 0.6884 0.6785 0.704
Table 9. ISOLET6 dataset with RN
r k SCEC CSPA MCLA QMI MMEC BL
5 3 0.6469 0.5286 0.6424 0.6706 0.6622 0.6512
5 6 0.7175 0.7532 0.7349 0.6865 0.7198 0.7218
5 9 0.7352 0.6188 0.7298 0.7100 0.7346 0.7133
5 12 0.7415 0.7210 0.7168 0.7010 0.7272 0.7024
20 3 0.6644 0.5838 0.6305 0.6788 0.6623 0.6518
20 6 0.7075 0.7554 0.7119 0.7101 0.7090 0.7080
20 9 0.7757 0.6228 0.7440 0.7513 0.7496 0.7169
20 12 0.7338 0.7502 0.7463 0.7324 0.7236 0.7057
50 3 0.6270 0.6004 0.6535 0.6640 0.6411 0.6522
50 6 0.7218 0.7907 0.7297 0.7106 0.7050 0.7239
50 9 0.7791 0.6218 0.7328 0.7390 0.7380 0.7204
50 12 0.7568 0.7523 0.7477 0.7518 0.7287 0.7067
Avg 0.7173 0.6749 0.7100 0.7088 0.7084 0.6979
Table 10. ISOLET6 dataset with RS
SCEC CSPA MCLA QMI MMEC BL
SCEC NA 0.000 0.000 0.000 0.000 0.000
CSPA 1.000 NA 1.000 1.000 1.000 1.000
MCLA 1.000 0.000 NA 0.084 0.034 0.088
QMI 1.000 0.000 0.916 NA 0.229 0.538
MMEC 1.000 0.000 0.966 0.771 NA 0.727
BL 1.000 0.000 0.912 0.462 0.273 NA

Table 11. P-values of paired t-tests

