

Combining Multiple Clusterings by Soft Correspondence

Bo Long, Zhongfei (Mark) Zhang
SUNY Binghamton
`{blong1, zzhang}@binghamton.edu`

Philip S. Yu
IBM Watson Research Center
`psyu@us.ibm.com`

Abstract

Combining multiple clusterings arises in various important data mining scenarios. However, finding a consensus clustering from multiple clusterings is a challenging task because there is no explicit correspondence between the classes from different clusterings. We present a new framework based on soft correspondence to directly address the correspondence problem in combining multiple clusterings. Under this framework, we propose a novel algorithm that iteratively computes the consensus clustering and correspondence matrices using multiplicative updating rules. This algorithm provides a final consensus clustering as well as correspondence matrices that gives intuitive interpretation of the relations between the consensus clustering and each clustering from clustering ensembles. Extensive experimental evaluations also demonstrate the effectiveness and potential of this framework as well as the algorithm for discovering a consensus clustering from multiple clusterings.

1. Introduction

Clustering is a fundamental tool in unsupervised learning that is used to group together similar objects [2], and has practical importance in a wide variety of applications. Recent research on data clustering increasingly focuses on cluster ensembles [15, 16, 17, 6], which seek to combine multiple clusterings of a given data set to generate a final superior clustering. It is well known that different clustering algorithms or the same clustering algorithm with different parameter settings may generate very different partitions of the same data due to the exploratory nature of the clustering task. Therefore, combining multiple clusterings to benefit from the strengths of individual clusterings offers better solutions in terms of robustness, novelty, and stability [17, 8, 15].

Distributed data mining also demands efficient methods to integrate clusterings from multiple distributed sources of features or data. For example, a cluster ensemble can be employed in privacy-preserving scenarios where it is not possible to centrally collect all the features for clustering analy-

sis because different data sources have different sets of features and cannot share that information with each other.

Clustering ensembles also have great potential in several recently emerged data mining fields, such as relational data clustering. Relational data typically have multi-type features. For example, Web document has many different types of features including content, anchor text, URL, and hyperlink. It is difficult to cluster relational data using all multi-type features together. Clustering ensembles provide a solution to it.

Combining multiple clusterings is more challenging task than combining multiple supervised classifications since patterns are unlabeled and thus one must solve a correspondence problem, which is difficult due to the fact that the number and shape of clusters provided by the individual solutions may vary based on the clustering methods as well as on the particular view of the data presented to that method. Most approaches [15, 16, 17, 6] to combine clustering ensembles do not explicitly solve the correspondence problem. Re-labeling approach [14, 7] is an exception. However, it is not generally applicable since it makes a simplistic assumption of one-to-one correspondence.

In this paper, we present a new framework based on soft correspondence to directly address the correspondence problem of clustering ensembles. By the concept of soft correspondence, a cluster from one clustering corresponds to each cluster from another clustering with different weight. Under this framework, we define a correspondence matrix as an optimal solution to a given distance function that results in a new consensus function. Based on the consensus function, we propose a novel algorithm that iteratively computes the consensus clustering and correspondence matrices using multiplicative updating rules. There are three main advantages to our approach: (1) It directly addresses the core problem of combining multiple clusterings, the correspondence problem, which has theoretic as well as practical importance; (2) Except for a final consensus clustering, the algorithm also provides correspondence matrices that give intuitive interpretation of the relations between the consensus clustering and each clustering from a clustering ensemble, which may be desirable in many application scenarios; (3) it is simple for the algorithm to handle clustering ensembles with missing labels.

2. Related Work

Some early works on combining multiple clusterings were based on co-association analysis, which measure the similarity between each pair of objects by the frequency they appear in the same cluster from an ensemble. Kellam et al. [13] used the co-association matrix to find a set of so-called robust clusters with the highest value of support based on object co-occurrences. Fred [9] applied a voting-type algorithm to the co-association matrix to find the final clustering. Further work by Fred and Jain [8] determined the final clustering by using a hierarchical (single-link) clustering algorithm applied to the co-association matrix. Strehl and Ghosh proposed Cluster-Based Similarity Partitioning (CSPA) in [15], which induces a graph from a co-association matrix and clusters it using the METIS algorithm [11]. The main problem with co-association based methods is its high computational complexity which is quadratic in the number of data items, i.e., $\mathcal{O}(N^2)$.

Re-labeling approaches seek to directly solve the correspondence problem, which is exactly what makes combining multiple clusterings difficult. Dudoit [14] applied the Hungarian algorithm to re-labeling each clustering from a given ensemble with respect to a reference clustering. After overall consistent re-labeling, voting can be applied to determining cluster membership for each data item. Dimitriadou et al. [5] proposed a voting/merging procedure that combines clusterings pair-wise and iteratively. The correspondence problem is solved at each iteration and fuzzy membership decisions are accumulated during the course of merging. The final clustering is obtained by assigning each object to a derived cluster with the highest membership value. A re-labeling approach is not generally applicable since it assumes that the number of clusters in every given clustering is the same as in the target clustering.

Graph partitioning techniques have been used to solve for the clustering combination problem under different formulations. Metal-CLustering algorithm (MCLA) [15] formulates each cluster in a given ensemble as a vertex and the similarity between two clusters as an edge weight. The induced graph is partitioned to obtain metaclusters and the weights of data items associated with the metaclusters are used to determine the final clustering. [15] also introduced HyperGraph Partitioning algorithm (HGPA), which represents each cluster as a hyperedge in a graph where the vertices correspond to data items. Then, a Hypergraph partition algorithm, such as HMETIS [10], is applied to generate the final clustering. Fern et al. [6] proposed the Hybrid Bipartite Graph Formulation (HBGF) to formulate both data items and clusters of the ensemble as vertices in a bipartite graph. A partition of this bi-partite graph partitions the data item vertices and cluster vertices simultaneously and the partition of the data items is given as the final clustering.

Another common method to solve for the clustering combination problem is to transform it into a standard clustering task by representing the given ensemble as a new set of features and then using a clustering algorithm to produce

the final clustering. Topchy et al. [16] applied the k-means algorithm in the new binary feature space which is specially transformed from cluster labels of a given ensemble. It is also shown that this procedure is equivalent to maximizing the quadratic mutual information between the empirical probability distribution of labels in the consensus clustering and the labels in the ensemble. In [17], a mixture model of multinomial distributions is used to do clustering in the feature space induced by cluster labels of a given ensemble. A final clustering is found as a solution to the corresponding maximum likelihood problem using the EM algorithm.

To summarize, the problem of combining multiple clusterings has been approached from combinatorial, graph-based or statistical perspectives. However, there is no sufficient research on the core problem of combining multiple clusterings, the general correspondence problem. The main trend of the recent research is to reduce the original problem to a new clustering task which can be solved by one existing clustering algorithm, such as the hierarchical clustering, graph partitioning, k-means, and the model-based clustering. However, this procedure brings back the problems resulting from the explanatory nature of the clustering task, such as the problem of robustness. Moreover, the heuristic nature of this procedure makes it difficult to develop a unified and solid theoretic framework for ensemble clustering [3]. In this paper, from the perspective of matrix computation, we aim to solve the problem of combining multiple clusterings by directly addressing the general correspondence problem.

3. Soft Correspondence Formulation

Given a set of data points $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, a clustering of these n objects into k clusters can be represented as a membership matrix $M \in \mathbb{R}^{n \times k}$, where $M_{ij} \geq 0$ and $\sum_j M_{ij} = 1$, i.e., the sum of the elements in each row of M equals to 1. M_{ij} denotes the weight of the i th points associated with the j th cluster. For a hard clustering, M is an indicator matrix, i.e., $M_{ij} = 1$ indicates that the i th points belongs to the j th cluster.

The re-labeling approach tries to solve for the correspondence problem by assuming the one-to-one correspondence between clusters from two clusterings. This assumption makes it only applicable in a special situation where the number of clusters in each given clustering is the same as in the target clustering. Even the number of clusters in two clusterings are the same, if their distributions of the clusters are very different and unbalanced, the one-to-one correspondence is not an efficient representation of the relation between the two clusterings, since it misses too much information.

We propose the concept of soft correspondence to formulate the relation between two clusterings. Soft correspondence means that a cluster of a given clustering corresponds to every clusters in another clustering with different weights. Hence, the corresponding relation between two clusterings may be formulated as a matrix. We call it

(soft) correspondence matrix, denoted as S . S_{ij} denotes the weight of the i th cluster of the source clustering corresponding to the j th cluster of the target clustering and $\sum_j S_{ij} = 1$.

Under the re-labeling framework, after the label correspondence is obtained, an "re-label" operation is applied and then the labels of two clusterings have consistent meanings. Similarly, under the soft correspondence framework, we also need an operation, which is based on the correspondence matrix, to transform the membership matrix of a source clustering into the space of the membership matrix of the target clustering to make the two membership matrices reach a consistent meaning. The intuitive choice of this operation is the linear transformation with the correspondence matrix. Let $M^{(0)}$ denote the membership matrix of a source clustering, M denote the membership matrix of a target clustering, and S denote the correspondence matrix of $M^{(0)}$ with respect to M . Multiplied by S , $M^{(0)}$ is linearly transformed into the space of M , i.e., $M^{(0)}S$ is the transformed membership matrix that has the consistent meaning with M . Next step, we need an objective function to decide which correspondence matrix is optimal. The distance function for matrices is a good choice, since the smaller the distance between the target membership matrix M and the transformed membership matrix $M^{(0)}S$, the more precisely the correspondence matrix catches the relation between $M^{(0)}$ and M .

We give the formal definition of the correspondence matrix as below.

Definition 3.1. Given a matrix distance function d and two membership matrices, $M^{(0)} \in \mathbb{R}^{n \times k_0}$ and $M \in \mathbb{R}^{n \times k}$, the correspondence matrix, $S \in \mathbb{R}^{k_0 \times k}$, of $M^{(0)}$ with respect to M is the minimizer of $d(M, M^{(0)}S)$ under the constraints $S_{ij} \geq 0$ and $\sum_j S_{ij} = 1$, where $1 \leq i \leq k_0$ and $1 \leq j \leq k$.

In this paper, we adopt a widely used distance function, Euclidean distance. Therefore, the correspondence matrix of $M^{(0)}$ with respect to M is given as

$$S = \arg \min_Y \|M - M^{(0)}Y\|^2, \quad (1)$$

where $\|\cdot\|$ denotes Frobenius matrix norm.

Let us illustrate the above formulation with examples. Suppose three hard clusterings for six data points are given as the following label vectors.

$$\begin{aligned} \lambda &= (1, 1, 2, 2, 3, 3) \\ \lambda^{(1)} &= (3, 3, 1, 1, 2, 2) \\ \lambda^{(2)} &= (1, 1, 1, 1, 2, 2) \end{aligned}$$

Let M , $M^{(1)}$, and $M^{(2)}$ denote the membership matrices of the above three clusterings, respectively. Assume λ is the target clustering. Let $S^{(1)}$ and $S^{(2)}$ denote the correspondence matrices of $M^{(1)}$ and $M^{(2)}$ with respect to M respectively. M , $M^{(1)}$, and $S^{(1)}$ which is computed based on (1) are given as follows, respectively.

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Examination of the label vectors reveals that there is a perfect one-to-one correspondence relationship between λ and $\lambda^{(1)}$. Therefore, we expect the distance between the target membership matrix and the transformed membership matrix equals to 0. Simple calculation verifies $M = M^{(1)}S^{(1)}$. From another perspective, $\lambda^{(1)}$ is just a permutation of λ . Hence, in this situation the correspondence matrix $S^{(1)}$ is just a permutation matrix.

Similarly, we solve (1) with M and $M^{(2)}$ to obtain $S^{(2)}$. The $M^{(2)}$, the $S^{(2)}$ and the transformed membership matrix $M^{(2)}S^{(2)}$ are given in the equation below.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

The correspondence matrix $S^{(2)}$ indicates that the cluster 1 in $\lambda^{(2)}$ corresponds to the cluster 1 and cluster 2 in λ with the same weight and the cluster 2 in $\lambda^{(2)}$ corresponds to the cluster 3 in λ . This is exactly the relationship between $\lambda^{(2)}$ and λ . By the information from the transformed membership matrix $M^{(2)}S^{(2)}$ (the righthand side of the above equation), the first four data points do not belong to cluster 3 and whether they belong to cluster 1 or cluster 2 cannot be determined, and the last two points belong to cluster 3. This is exactly the best information we can have by transforming $\lambda^{(2)}$ into the space of λ .

4. Derivation of The Algorithm

The problem of clustering ensemble can be described as follows: given a set of clusterings, $\mathcal{C} = \{M^{(1)}, M^{(2)}, \dots, M^{(r)}\}$, where $M^{(1)} \in \mathbb{R}^{n \times k_1}$, $M^{(2)} \in \mathbb{R}^{n \times k_2}, \dots, M^{(r)} \in \mathbb{R}^{n \times k_r}$, and a number k , combine \mathcal{C} into a final consensus clustering $M \in \mathbb{R}^{n \times k}$ using a consensus function.

Soft correspondence based on Euclidean distance provides a new consensus function for clustering ensemble. Hence, we define the problem of clustering ensemble as an optimization problem below.

Definition 4.1. Given r membership matrices, $M^{(1)} \in \mathbb{R}^{n \times k_1}, \dots, M^{(r)} \in \mathbb{R}^{n \times k_r}$, and $k \in \mathbb{Z}^+$, a consensus clustering represented by $M \in \mathbb{R}^{n \times k}$ and r correspondence

matrices $S^{(1)} \in \mathbb{R}^{k_1 \times k}, \dots, S^{(r)} \in \mathbb{R}^{k_r \times k}$ are given by the minimization of

$$f(M, S^{(1)}, S^{(2)}, \dots, S^{(r)}) = \sum_{h=1}^r \|M - M^{(h)}S^{(h)}\|^2 \quad (2)$$

subject to constraints $\forall h, i, j : S_{ij}^{(h)} \geq 0$ and $\sum_j S_{ij}^{(h)} = 1$.

Although the consensus function in (2) is not convex in M and each $S^{(h)}$ simultaneously, it is convex in M and each $S^{(h)}$ respectively. Therefore, (2) can be minimized (local minimum) by alternatively optimizing one of them and fixing the others. We derive an EM [1] style algorithm that converges to a local minimum by iteratively updating the correspondence matrices and the consensus membership matrix using a set of multiplicative updating rules [4].

To derive simple multiplicative updating rules that converges to a good consensus clustering, we do two modifications for the consensus function (2).

First, the consensus clustering may converge to a clustering with unreasonably small number of clusters. Note that although the consensus clustering $M \in \mathbb{R}^{n \times k}$, the number of clusters in it could be less than k . This provides the flexibility to explore the structure of the clustering by automatically adjusting the number of clusters under given k . However, it also provides the possibility that the number of clusters deteriorates to the trivial small number. We propose the column-sparseness constraint on the correspondence matrices to resolve this problem. A correspondence matrix of $M^{(h)}$ with respect to M is column-sparse implies that only a small number of clusters from $M^{(h)}$ significantly correspond to each cluster in M . Hence, the column-sparseness constraint forces the consensus clustering M to provide clusters as many as possible under a given k . Since $S_{ij}^{(h)} \geq 0$ and $\sum_j S_{ij}^{(h)} = 1$, the sum of the variation of each column of $S^{(h)}$ is a measure of the column-sparseness of $S^{(h)}$, i.e., the greater the value of $\|S^{(h)} - \frac{1}{k_h} \mathbf{1}_{k_h k_h} S^{(h)}\|^2$ is, the more column-sparse $S^{(h)}$ is. Therefore, to enforce the column-sparseness constraint, we add a new term, $-\alpha \sum_{h=1}^r \|S^{(h)} - \frac{1}{k_h} \mathbf{1}_{k_h k_h} S^{(h)}\|^2$ to the consensus function (2), where $\alpha \geq 0$ is a constant and $\mathbf{1}_{k_h k_h}$ is a k_h -by- k_h matrix of 1s.

Second, it is difficult to deal with the external constraint $\sum_j S_{ij}^{(h)} = 1$ efficiently. Hence, we transform it to a "soft" constraint, i.e., we implicitly enforce the constraint by adding a penalty term, $\beta \sum_{h=1}^r \|S^{(h)} \mathbf{1}_{kk} - \mathbf{1}_{k_h k_h}\|^2$, to the consensus function (2), where $\beta \geq 0$ is a constant.

Based on the above modifications, we re-define the problem of clustering ensemble as follows.

Definition 4.2. Given r membership matrices, $M^{(1)} \in \mathbb{R}^{n \times k_1}, \dots, M^{(r)} \in \mathbb{R}^{n \times k_r}$, and $k \in \mathbb{Z}^+$, a consensus clustering represented by $M \in \mathbb{R}^{n \times k}$ and r correspondence matrices $S^{(1)} \in \mathbb{R}^{k_1 \times k}, \dots, S^{(r)} \in \mathbb{R}^{k_r \times k}$ are given by the minimization of

$$\begin{aligned} f(M, S^{(1)}, \dots, S^{(r)}) &= \sum_{h=1}^r \|M - M^{(h)}S^{(h)}\|^2 \\ &\quad - \alpha \|S^{(h)} - \frac{1}{k_h} \mathbf{1}_{k_h k_h} S^{(h)}\|^2 \\ &\quad + \beta \|S^{(h)} \mathbf{1}_{kk} - \mathbf{1}_{k_h k_h}\|^2 \end{aligned} \quad (3)$$

subject to constraints $\forall h, i, j : S_{ij}^{(h)} \geq 0$.

Taking the derivatives of f with respect to M and $S^{(h)}$, where $1 \leq h \leq r$, and after some algebraic manipulations, the gradients about M and $S^{(h)}$ are given as follows.

$$\frac{\partial f}{\partial M} = 2rM - 2 \sum_{h=1}^r M^{(h)}S^{(h)} \quad (4)$$

$$\begin{aligned} \frac{\partial f}{\partial S^{(h)}} &= -2(M^{(h)})^T M + 2(M^{(h)})^T M^{(h)}S^{(h)} \\ &\quad - 2\alpha(S^{(h)} - \frac{1}{k_h} \mathbf{1}_{k_h k_h} S^{(h)}) \\ &\quad + 2\beta(kS^{(h)} \mathbf{1}_{kk} - \mathbf{1}_{k_h k_h}) \end{aligned} \quad (5)$$

Solving $\frac{\partial f}{\partial M} = 0$, the update rule for M is given as

$$M = \frac{1}{r} \sum_{h=1}^r M^{(h)}S^{(h)}. \quad (6)$$

On the other hand, directly solving $\frac{\partial f}{\partial S^{(h)}} = 0$ does not give a feasible update rule for $S^{(h)}$, because the solution involves the computation of the inverse matrix that is usually expensive and unstable. Another choice is the gradient descent method, which gives the update rule as

$$S^{(h)} \leftarrow S^{(h)} - \Theta \odot \left(\frac{\partial f}{\partial S^{(h)}} \right), \quad (7)$$

where \odot denotes the Hadamard product of two matrices. Θ is a matrix of step size parameters. If each element of Θ is carefully chosen to be a small positive number, the update rule (7) will force the objective function (3) to be minimized at each iteration. However the choice of Θ can be very inconvenient for applications involving large data sets. Therefore, we set Θ as follows to derive the multiplicative updating rules,

$$\Theta = \frac{S^{(h)}}{2D}, \quad (8)$$

where the division between two matrices is entrywise division (it is the same in the rest of this paper) and

$$\begin{aligned} D &= (M^{(h)})^T M^{(h)}S^{(h)} - \alpha S^{(h)} + \frac{\alpha}{k_h} \mathbf{1}_{k_h k_h} S^{(h)} \\ &\quad + \beta k S^{(h)} \mathbf{1}_{kk}. \end{aligned} \quad (9)$$

Substituting (5), (8), and (9) into (7), we obtain the following multiplicative updating rule for each $S^{(h)}$.

$$S^{(h)} \leftarrow S^{(h)} \odot \frac{(M^{(h)})^T M + \beta k \mathbf{1}_{k_h k_h}}{D} \quad (10)$$

Based on (6) and (10), the Soft Correspondence Ensemble Clustering (called SCEC) algorithm is listed in Algorithm 1. In Step 5 of Algorithm 1, D is computed based on (10) and ϵ is a very small positive number used to avoid dividing by 0.

Algorithm 1 SCEC($M^{(1)}, \dots, M^{(k_r)}, k$)

```

1: Initialize  $M, S^{(1)}, \dots, S^{(r)}$ .
2: while convergence criterion of  $M$  is not satisfied do
3:   for  $h = 1$  to  $r$  do
4:     while convergence criterion of  $S^{(h)}$  is not satisfied
        do
5:        $S^{(h)} \leftarrow S^{(h)} \odot \frac{(M^{(h)})^T M + \beta k \mathbf{1}_{k_h k}}{D + \epsilon}$ 
6:     end while
7:   end for
8:    $M = \frac{1}{r} \sum_{h=1}^r M^{(h)} S^{(h)}$ 
9: end while

```

SCEC simply works as follows : First M is fixed, and each $S^{(h)}$ is updated to reduce the distance between $M^{(h)} S^{(h)}$ and M until $S^{(h)}$ converges; Second update M as the mean clustering of all of $M^{(h)} S^{(h)}$; Repeat above steps until M converges.

SCEC outputs a final consensus clustering as well as correspondence matrices that give intuitive interpretation of the relations between the consensus clustering and each clustering from clustering ensembles which may be desirable in many application scenarios. For example, in most distributed clustering scenarios, users from different sources not only want to get a final clustering solution but also care about the relationship between the clusterings they provide and the final clustering.

It is easy for SCEC to deal with the clustering with missing labels. Suppose that the label of the i th object in the h th clustering $M^{(h)}$ is missing. We simply let $M_{ij}^{(h)} = \frac{1}{k_h}$ for $1 \leq j \leq k_h$, i.e., the h th clustering does not provide useful information to compute the final membership for the i th object, which is interpolated based on the information from other clusterings.

The computational complexity of SCEC can be shown as $\mathcal{O}(tnrk^2)$, where t is the number of iterations. It is much faster than CSPA ($\mathcal{O}(n^2rk)$) [15], since n is large. SCEC has the same complexity as that of two other efficient algorithms, QMI based on k-means [16] and the approach based on the mixture model [17]. In general, the computational complexity of k-means is $\mathcal{O}(tnmk)$ where m is the number of features. In [16], when applying k-means to the feature space induced by a clustering ensemble, the number of features is $\sum_{h=1}^r k_h$. Since $k_h = \Theta(k)$, we have $m = \Theta(rk)$.

5. Proof of Correctness for SCEC

To prove SCEC is correct, we must prove that the consensus function (3) is non-increasing under update rules (6) and (10). It is obviously true for the update rule (6), since

it is derived directly from $\frac{\partial f}{\partial M} = 0$. The multiplicative updating rule (10) can be viewed as a special type of gradient descent method. Since Θ in (8) is not small, it might appear that there is no guarantee that the consensus function is non-increasing under (10). We prove that this is not the case in the rest of this section.

Since the updating rules for all $S^{(h)}$ are the same, for convenience, we simplify the problem to the case of the ensemble with one clustering.

Theorem 5.1. *Given two non-negative matrices $M \in \mathbb{R}^{n \times k}$ and $A \in \mathbb{R}^{n \times k_0}$, and the constraint $\forall i, j : S_{ij} \geq 0$, the objective function*

$$F(S) = \|M - AS\|^2 - \alpha \|S - \frac{1}{k_0} \mathbf{1}_{k_0 k_0} S\|^2 + \beta \|S \mathbf{1}_{kk} - \mathbf{1}_{k_0 k_0} S\|^2 \quad (11)$$

is non-increasing under the update rule

$$S^{t+1} \leftarrow S^t \odot \frac{A^T M + \beta k \mathbf{1}_{k_0 k}}{A^T A S^t - \alpha S^t + \frac{\alpha}{k_0} \mathbf{1}_{k_0 k_0} S^t + \beta k S^t \mathbf{1}_{kk}}, \quad (12)$$

where t denotes the discrete time index.

To prove Theorem 5.1, we make use of the concept of the auxiliary function [1, 12]. $G(S, S^t)$ is an auxiliary function for $F(S)$ if $G(S, S^t) \geq F(S)$ and $G(S, S) = F(S)$. The auxiliary function is useful due to the following lemma.

Lemma 5.2. *If G is an auxiliary function, then F is non-increasing under the updating rule $S^{t+1} = \arg \min_S G(S, S^t)$.*

The key of the proof is to define an appropriate auxiliary function. We propose an auxiliary function for the objective function (11) in the following lemma.

Lemma 5.3. *Let $U = \frac{S \odot S}{S^t}$. Then*

$$\begin{aligned} G(S, S^t) &= \text{tr}(M^T M - 2S^T A^T M + U^T A^T A S^t) \\ &\quad - \text{tr}(\alpha U^T S^t - \frac{\alpha}{k_0} U^T \mathbf{1}_{k_0 k_0} S^t) \\ &\quad + \text{tr}(\beta \mathbf{1}_{kk} U^T S^t \mathbf{1}_{kk} - 2\beta \mathbf{1}_{k_0 k_0} S \mathbf{1}_{kk} + \beta k \mathbf{1}_{kk}) \end{aligned} \quad (13)$$

is an auxiliary function for (11), where tr denotes the trace of a matrix.

Proof. The objective function (11) can be rewritten as:

$$\begin{aligned} F(S) &= \text{tr}(M^T M - 2S^T A^T M + S^T A^T A S) \\ &\quad - \text{tr}(\alpha S^T S - \frac{\alpha}{k_0} S^T \mathbf{1}_{k_0 k_0} S) \\ &\quad + \text{tr}(\beta \mathbf{1}_{kk} S^T S \mathbf{1}_{kk} - 2\beta \mathbf{1}_{k_0 k_0} S \mathbf{1}_{kk} + \beta k \mathbf{1}_{kk}) \end{aligned} \quad (14)$$

When $S = S^t$, we have $U = S$. Thus $G(S, S) = F(S)$. To show $G(S, S^t) \geq F(S)$, we compare (13) with (14) to find that it can be done by showing the following conditions.

$$\text{tr}(U^T A^T A S^t - S^T A^T A S) \geq 0 \quad (15)$$

$$\text{tr}(U^T S^t - S^T S) = 0 \quad (16)$$

$$\text{tr}\left(\frac{\alpha}{k_0} U^T \mathbf{1}_{k_0 k_0} S^t - \frac{\alpha}{k_0} S^T \mathbf{1}_{k_0 k_0} S\right) \geq 0 \quad (17)$$

$$\text{tr}(\beta \mathbf{1}_{kk} U^T S^t \mathbf{1}_{kk} - \mathbf{1}_{kk} S^T S \mathbf{1}_{kk}) \geq 0 \quad (18)$$

For convenience, let $Q = A^T A$; hence Q is a non-negative symmetric matrix. We prove (15) as follows.

$$\begin{aligned}
\Delta &= \text{tr}(U^T A^T A S^t - S^T A^T A S) \\
&= \sum_{a,i,j} U_{ia} Q_{ij} S_{ja}^t - \sum_{a,i,j} S_{ia} Q_{ij} S_{ja} \\
&= \sum_{a,i,j} Q_{ij} \left(\frac{S_{ia}^2}{S_{ia}^t} S_{ja}^t - S_{ia} S_{ja} \right) \\
&= \sum_{a,i < j} \left(Q_{ij} \left(\frac{S_{ia}^2}{S_{ia}^t} S_{ja}^t - S_{ia} S_{ja} \right) + Q_{ji} \left(\frac{S_{ja}^2}{S_{ja}^t} S_{ia}^t - S_{ja} S_{ia} \right) \right) \\
&= \sum_{a,i < j} \frac{Q_{ij}}{S_{ia}^t S_{ja}^t} (S_{ia} S_{ja}^t - S_{ja} S_{ia}^t)^2 \\
&\geq 0
\end{aligned}$$

where $1 \leq a \leq k$ and $1 \leq i, j \leq k_0$. Similarly, we can prove (16), (17), and (18). \square

Now we are ready to prove Theorem 5.1.

Proof. The derivative of $G(S, S^t)$ with respect to S is

$$\begin{aligned}
\frac{\partial G}{\partial S} &= -2A^T M - 2\beta k \mathbf{1}_{k_0 k} + 2 \frac{S}{S^t} \odot (A^T A S^t \\
&\quad - \alpha S^t + \frac{\alpha}{k_0} \mathbf{1}_{k_0 k_0} S^t + \beta k S^t \mathbf{1}_{kk}). \quad (19)
\end{aligned}$$

Solving $\frac{\partial G}{\partial S} = 0$, we obtain the updating rule (12). By Lemma 5.2, $F(S)$ is non-increasing under (12). \square

6. Empirical Evaluations

We conduct experiments on three real world data sets to demonstrate the accuracy and robustness of SCEC in comparison with four other state-of-the-art algorithms for combining multiple clusterings.

6.1. Data sets and Parameter Settings

Three real-world data sets from the UCI machine learning repository are used in our experiments. The characteristics of the data sets are summarized in Table 1. IRIS is a classical data set in the pattern recognition literature. PENDIG is for pen-based recognition of handwritten digits and there are ten classes of roughly equal size in the data corresponding to the digits 0 to 9. ISOLET6 is a subset of the ISOLET spoken letter recognition training set and it contains the instances of six classes randomly selected out of twenty six classes.

We compare SCEC with four other state-of-the-art representative algorithms. Two of them are graph partitioning based algorithms, CSPA and MCLA [15]. The code for them is available at <http://www.strehl.com>. The third algorithm is QMI that is based on k-means [16]. The last one is based on the mixture model [17] and we call it Mixture Model based Ensemble Clustering (MMEC).

The k-means algorithm is used to generate the clustering ensembles in three ways. For each data set, three types of clustering ensembles are generated as follows. The first

Dataset	No.of Instances	No. of features	No. of classes	No. of clusters
IRIS	150	4	3	(2,3,4)
PENDIG	3498	16	10	(5,10,15,20)
ISOLET6	1440	617	6	(3,6,9,12)

Table 1. Summary of the data sets

is generated with Random Initiation (RI) of k-means and the number of clusters for each clustering in the ensemble is set to be the number of clusters in the consensus (target) clustering. The second is generated such that the number of clusters for each clustering in the ensemble is a Random Number (RN) between 2 and $2c$, where c is the true number of classes. The third is generated to simulate distributed clustering scenarios such that each clustering of an ensemble is based on a data set in a Random Subspace (RS) of the original full feature space. The dimension of the subspace for each data set is set to about a half of the dimension of the full feature space, i.e., 2, 8, and 308 are for IRIS, PENDIG and ISOLET6, respectively.

For the number of clusters in the consensus (target) clustering k , we do not fix it on the true number of the classes. Since in real applications, usually we do not know the true number of classes, it is desirable to test the robustness of an algorithm to different number of clusters. The last column of Table 1 reports the numbers of clusters used for each data set. For the number of combined clusterings r , we adopt $r = 5, 20, 50$ for each data set. For the initialization of SCEC algorithm, the consensus clustering M is set as a clustering randomly chosen from the ensemble and each correspondence matrix is initialized with a randomly generated correspondence matrix.

For the evaluation criterion, we select to use an information theoretic criterion – the Normalized Mutual Information (NMI) criterion [15]. Treating cluster labels and class labels as random variables, NMI measures the mutual information shared by the two random variables and is normalized to a $[0, 1]$ range.

6.2. Results and Discussion

The results for each data set are presented in Table 2-10. The tables report the mean NMI from 20 independent runs of each combination of r and k . Except for the five algorithms, the mean NMIs for the Base Learner (BL), the k-means, are also reported in the tables.

Comparing the base learner, none of the five algorithms leads to the performance improvement over the base learner in all cases. SCEC gives performance improvement over the base learner under 77 out of 99 situations. This is the best result among the five algorithms. An interesting observation is that the most situations when the algorithms fail to improve performance are the situations where the number of clusters is set to be less than the true number of the classes. The possible reason is that under this situation the base learner tends

to give more data points random assignments, which make the ensemble provide less useful information.

Comparing the five algorithms with each other, none of the algorithms is the absolute winner that has the best mean NMI in every situation. Each algorithm may achieve better performance under some specific conditions. For example, MCLA tends to give good performance under the true number of the classes because that provides nearly-balanced clusters. MMEC works better on a large size data set because reliability of model parameter estimation is improved in this situation. SCEC is observed to be the most robust algorithm and it outperforms the other algorithms in most situations.

However, to evaluate the overall performance strictly, direct observation of the data is not sufficient and we need to do statistical test on the result. We do the paired t-test on the 99 pairs of NMIs from all the tables for each pair of the algorithms. The p-value for each test is reported in Table 11. The (i, j) entry of Table 11 presents the p-value for the following one-sided paired t-test: H_0 : the mean of the mean NMI for algorithm i equals to the mean of the mean NMI for algorithm j vs H : the mean of the mean NMI for algorithm i is greater than the mean of the mean NMI for algorithm j , i.e., if p-value in (i, j) entry is less than 0.05, we accept H with confidence level 0.95, which means that we can make a conclusion that algorithm i outperforms algorithm j significantly.

By Table 11, SCEC performs significantly better than all other algorithms. The performance of CSPA is significantly worse than all others. The possible reason is that CSPA needs a large number of clusterings to provide a reliable estimate of the co-association values. However ensembles of a very large size are less important in practice. MCLA is significantly better than MMEC and there is no significant difference between MCLA and QMI. Also there is no significant difference between QMI and MMEC. When comparing the base learner, SCEC is the only one that leads to a significant performance improvement over the base learner.

7. conclusions

In this paper, we have proposed a new soft correspondence framework for combining multiple clusterings. Under this framework, we define a correspondence matrix as an optimal solution to a given distance function and it results in a new consensus function. Based on the consensus function, we propose a novel algorithm SCEC that iteratively computes the consensus clustering and the correspondence matrices using the multiplicative updating rules. We have shown the correctness of the SCEC algorithm theoretically. We have also reported extensive empirical evaluations to demonstrate the superior effectiveness of SCEC to several well-known algorithms in the literature on combining multiple clusterings.

8. Acknowledgments

This research is supported in part by a grant from Air Force Research Laboratory (AFRL) through the award number FA8750-04-1-0234. We acknowledge the advice from Dr. John Salerno at AFRL.

References

- [1] N. M. L. A. P. Dempster and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, 39(8):1–38*, 1977.
- [2] A.K.Jain and R.C.Dubes. *Algorithms for Clustering Data*. Prentice-Hall, Englewood Cliffs, NJ, 1988.
- [3] M. H. C. L. Alexander P. Topchy and A. K. Jain. Analysis of consensus partition in cluster ensemble. In *ICDM'04*, pages 1101 – 1111. 2004.
- [4] D.D.Lee and H.S.Seung. Learning the parts of objects by non-negative matrix factorization. *Nature*, 401:788–791, 1999.
- [5] E. Dimitriadou, A. Weingessel, and K. Hornik. Voting-merging: An ensemble method for clustering. In *ICANN '01*.
- [6] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In *ICML '04*.
- [7] B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture segmentation. *IEEE Trans. Pattern Anal. Mach. Intell.*, 25(4):513–518, 2003.
- [8] A. L. Fred and A. K. Jain. Data clustering using evidence accumulation. In *ICPR '02*.
- [9] A. L. N. Fred. Finding consistent clusters in data partitions. In *Multiple Classifier Systems*, pages 309–318, 2001.
- [10] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multi-level hypergraph partitioning: application in vlsi domain. In *DAC '97*.
- [11] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. *SIAM J. Sci. Comput.*, 20(1):359–392, 1998.
- [12] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In *NIPS*, pages 556–562, 2000.
- [13] N. C. S. P.Kellam, X.Lin and A.Tucker. Comparing, contrasting and combining clusters in viral gene expression data. In *Proceedings of 6th Workshop on Intelligence Data Analysis in Medicine an Pharmacology*, pages 56–62, 2001.
- [14] S.Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure. *Bioinformatics*, 19(9):1090–1099, 2003.
- [15] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combining partitionings. In *AAAI 2002*. AAAI/MIT Press.
- [16] A. Topchy, A. K. Jain, and W. Punch. Combining multiple weak clusterings. In *Proceedings of the Third IEEE International Conference on Data Mining*, page 331, 2003.
- [17] A. Topchy, A. K. Jain, and W. Punch. A mixture model for clustering ensembles. In *proc. AIAM Data mining*, page 379, 2004.

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	2	0.6793	0.4164	0.6793	0.6793	0.6793	0.6793
5	3	0.7463	0.6978	0.7517	0.6567	0.7288	0.7069
5	4	0.7266	0.5610	0.7050	0.6356	0.7052	0.7008
20	2	0.6793	0.4164	0.6793	0.6793	0.6793	0.6793
20	3	0.7528	0.6921	0.7476	0.6764	0.7257	0.7201
20	4	0.7274	0.5826	0.7171	0.6603	0.6385	0.6999
50	2	0.6793	0.4164	0.6793	0.6793	0.6793	0.6793
50	3	0.7528	0.6916	0.7428	0.6731	0.6962	0.7166
50	4	0.7515	0.5879	0.7177	0.6119	0.6351	0.7003
Avg.		0.7217	0.5625	0.7133	0.6981	0.6613	0.6853

Table 2. IRIS dataset with RI

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	2	0.6914	0.4941	0.5724	0.6385	0.5958	0.6738
5	3	0.7545	0.8102	0.7891	0.6464	0.7067	0.6826
5	4	0.7367	0.5709	0.7111	0.6883	0.6691	0.6900
20	2	0.753	0.5012	0.5174	0.644	0.4964	0.6761
20	3	0.7706	0.8383	0.8166	0.6758	0.5775	0.6773
20	4	0.7305	0.5898	0.6823	0.6712	0.619	0.6811
50	2	0.7612	0.5076	0.4963	0.6863	0.4365	0.6774
50	3	0.7804	0.8411	0.8539	0.6183	0.5284	0.6777
50	4	0.7391	0.5868	0.6857	0.6583	0.5251	0.6773
Avg.		0.7464	0.6378	0.6805	0.6586	0.5727	0.6793

Table 3. IRIS dataset with RN

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	2	0.6560	0.4380	0.6497	0.5960	0.6756	0.5825
5	3	0.7626	0.7748	0.7686	0.7018	0.7665	0.6856
5	4	0.6851	0.5556	0.6685	0.6822	0.6921	0.6294
20	2	0.6831	0.4635	0.6758	0.6895	0.6437	0.5932
20	3	0.7658	0.7735	0.7664	0.7185	0.7494	0.6828
20	4	0.7425	0.5870	0.7098	0.7006	0.6976	0.6336
50	2	0.7059	0.4596	0.6858	0.7186	0.6184	0.5991
50	3	0.7532	0.7775	0.7496	0.7248	0.7062	0.6746
50	4	0.7418	0.5841	0.7106	0.7173	0.6861	0.6358
Avg.		0.7218	0.6015	0.7094	0.6944	0.6928	0.6352

Table 4. IRIS dataset with RS

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	5	0.5585	0.4855	0.5639	0.5228	0.5517	0.5607
5	10	0.6734	0.6245	0.6734	0.6434	0.6564	0.6808
5	15	0.731	0.6458	0.7202	0.688	0.7143	0.7253
5	20	0.743	0.6813	0.7289	0.6931	0.7183	0.7355
20	5	0.5593	0.4942	0.5673	0.5328	0.5336	0.5601
20	10	0.6756	0.6394	0.6823	0.6499	0.643	0.6818
20	15	0.732	0.661	0.7213	0.687	0.6911	0.7247
20	20	0.7484	0.6941	0.7388	0.7091	0.701	0.7361
50	5	0.5691	0.506	0.5686	0.5353	0.533	0.5608
50	10	0.6778	0.6463	0.6817	0.6468	0.6415	0.6815
50	15	0.733	0.6588	0.722	0.6897	0.6849	0.7236
50	20	0.7526	0.6932	0.7356	0.7175	0.6852	0.7357
Avg.		0.6795	0.6192	0.6753	0.643	0.6462	0.6755

Table 5. PENDIG dataset with RI

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	5	0.5709	0.5282	0.5413	0.5164	0.5584	0.6247
5	10	0.6915	0.6383	0.6285	0.6281	0.6746	0.6702
5	15	0.718	0.6344	0.6305	0.6921	0.7097	0.666
5	20	0.7118	0.6399	0.6463	0.6969	0.7137	0.6669
20	5	0.5738	0.5445	0.5781	0.5394	0.54	0.6422
20	10	0.6901	0.6417	0.6828	0.6627	0.6518	0.6515
20	15	0.7108	0.6494	0.6441	0.6936	0.7021	0.627
20	20	0.7256	0.6523	0.6277	0.6986	0.7153	0.6535
50	5	0.5833	0.5489	0.5841	0.5483	0.5227	0.6474
50	10	0.6935	0.6493	0.6907	0.6581	0.6534	0.6485
50	15	0.7179	0.6536	0.7035	0.6876	0.6805	0.6477
50	20	0.712	0.6557	0.6741	0.6964	0.707	0.6433
Avg.		0.6749	0.6197	0.636	0.6432	0.6524	0.6491

Table 6. PENDIG dataset with RN

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	5	0.5033	0.4790	0.4944	0.4962	0.5311	0.4896
5	10	0.6546	0.6247	0.6496	0.6451	0.6841	0.6092
5	15	0.6944	0.6290	0.6657	0.6620	0.7085	0.6422
5	20	0.7017	0.6592	0.6689	0.6934	0.7200	0.6483
20	5	0.5383	0.5101	0.5464	0.5598	0.5626	0.4952
20	10	0.6586	0.6468	0.6790	0.6850	0.6862	0.6143
20	15	0.7129	0.6560	0.7022	0.7197	0.7302	0.6401
20	20	0.7281	0.6991	0.7124	0.7190	0.7218	0.6539
50	5	0.5428	0.5189	0.5458	0.5665	0.5778	0.4950
50	10	0.6596	0.6548	0.6790	0.6869	0.6841	0.6047
50	15	0.7238	0.6653	0.7009	0.7326	0.7105	0.6431
50	20	0.7322	0.6925	0.7167	0.7371	0.6988	0.6540
Avg.		0.6542	0.6196	0.6468	0.6586	0.6680	0.5991

Table 7. PENDIG dataset with RS

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	3	0.6661	0.5366	0.7039	0.5981	0.645	0.6686
5	6	0.7147	0.7021	0.7284	0.5909	0.6829	0.6631
5	9	0.6761	0.5521	0.6374	0.6415	0.6338	0.6502
5	12	0.6644	0.6296	0.6356	0.6126	0.6286	0.6374
20	3	0.5978	0.5471	0.596	0.6144	0.5974	0.6271
20	6	0.6955	0.7006	0.698	0.6432	0.6747	0.6655
20	9	0.6875	0.546	0.6452	0.638	0.6332	0.6503
20	12	0.683	0.6406	0.639	0.6438	0.6311	0.6375
50	3	0.6052	0.5468	0.6808	0.6345	0.6059	0.6385
50	6	0.7048	0.7006	0.698	0.6123	0.6318	0.6608
50	9	0.6901	0.5541	0.644	0.6456	0.6331	0.6512
50	12	0.6716	0.6416	0.6432	0.6471	0.611	0.6341
Avg.		0.6714	0.6082	0.6625	0.6268	0.634	0.6487

Table 8. ISOLET6 dataset with RI

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	3	0.6705	0.6169	0.6463	0.554	0.5203	0.7072
5	6	0.7393	0.7487	0.665	0.6773	0.7019	0.7057
5	9	0.7686	0.6225	0.6139	0.7201	0.764	0.7189
5	12	0.7543	0.7269	0.5909	0.7397	0.7447	0.7062
20	3	0.6753	0.5708	0.545	0.5949	0.5498	0.6988
20	6	0.7292	0.8241	0.6891	0.696	0.7038	0.6963
20	9	0.7629	0.6196	0.6525	0.7215	0.7173	0.6948
20	12	0.779	0.7434	0.5197	0.7448	0.752	0.6957
50	3	0.6769	0.5874	0.602	0.5928	0.5404	0.7075
50	6	0.7627	0.8239	0.798	0.7346	0.7044	0.7085
50	9	0.7802	0.6041	0.7468	0.7525	0.7138	0.7044
50	12	0.7831	0.7454	0.6634	0.7328	0.7296	0.7037
Avg.		0.7402	0.6862	0.6444	0.6884	0.6785	0.704

Table 9. ISOLET6 dataset with RN

r	k	SCEC	CSPA	MCLA	QMI	MMEC	BL
5	3	0.6469	0.5286	0.6424	0.6706	0.6622	0.6512
5	6	0.7175	0.7532	0.7349	0.6865	0.7198	0.7218
5	9	0.7352	0.6188	0.7298	0.7100	0.7346	0.7133
5	12	0.7415	0.7210	0.7168	0.7010	0.7272	0.7024
20	3	0.6644	0.5838	0.6305	0.6788	0.6623	0.6518
20	6	0.7075	0.7554	0.7119	0.7101	0.7090	0.7080
20	9	0.7757	0.6228	0.7440	0.7513	0.7496	0.7169
20	12	0.7338	0.7502	0.7463	0.7324	0.7236	0.7057
50	3	0.6270	0.6004	0.6535	0.6640	0.6411	0.6522
50	6	0.7218	0.7907	0.7297	0.7106	0.7050	0.7239
50	9	0.7791	0.6218	0.7328	0.7390	0.7380	0.7204
50	12	0.7568	0.7523	0.7477	0.7518	0.7287	0.7067
Avg.		0.7173	0.6749	0.7100	0.7088	0.7084	0.6979

Table 10. ISOLET6 dataset with RS

	SCEC	CSPA	MCLA	QMI	MMEC	BL
SCEC	NA	0.000	0.000	0.000	0.000	0.000
CSPA	1.000	NA	1.000	1.000	1.000	1.000
MCLA	1.000	0.000	NA	0.084	0.034	0.088
QMI	1.000	0.000	0.916	NA	0.229	0.538
MMEC	1.000	0.000	0.966	0.771	NA	0.727
BL	1.000	0.000	0.912	0.462	0.273	NA

Table 11. P-values of paired t-tests