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Abstract 
Object detection in aerial imagery has been well 

studied in computer vision for years. However, given 
the complexity of large variations of the appearance of 
the object and the background in a typical aerial image, 
a robust and efficient detection is still considered as an 
open and challenging problem. In this paper, we have 
developed a theoretic foundation for aerial imagery 
object detection using semi-supervised learning. Based 
on this theory, we have proposed a context-based object 
detection methodology. Both theoretic analyses and 
experimental evaluations have successfully 
demonstrated the great promise of the developed theory 
and the related detection methodology. 

 
1. Introduction 

 
Object detection in aerial imagery has been well 

studied in computer vision for years [8,11,14,28,33]. 
However, given the complexity of large variations of the 
appearance of the object and the background in a typical 
aerial image, a robust and efficient detection is still 
considered as an open and challenging problem.  

The object detection problem is typically solved in 
two stages: candidate generation and candidate 
classification. Candidate generation generates regions of 
an image that may contain the object, and candidate 
classification further classifies and/or verifies the 
generated regions. Two types of methods for candidate 
generation are proposed in the literature. “Exhaustive 
search” methods [8,11,21,29] consider all the windows 
in an image as candidates while “segmentation based” 
methods [12,27,33] consider only the segmented 
features including regions as the candidates. The 
limitation of the “exhaustive search” methods is the 
demanding complexity, especially when the image 
resolution is very high, which is typically true for aerial 
imagery. The limitation of the “segmentation based” 
methods is the imperfect segmentation by nature.  

The majority of the classification models used in 
detection proposed in the literature are based on 
supervised learning, including boosting model [25], 
cascade models [21,24,29], neural networks [10,11,20], 
Bayesian networks [33], generative models [27], and 
statistical models [26]. The problem with the supervised 
learning classification methods is that in order to 
achieve a reasonably good performance, typically a 
large training data set is required; the larger the training 

set, the more expensive to ground-truth the training data. 
Due to these considerations, we have developed a semi-
supervised learning based classification theory that 
simultaneously resolves both problems. For the 
reference purpose, we call this theory as well as the 
classification method SLC. 

The semi-supervised learning [2,4,9,30,32] has 
recently received intensive attention in machine learning 
community. The techniques developed in this research 
have been applied to solving problems in many areas 
including computer vision [4,30]. SLC is motivated to 
specifically take into account the reality for many 
computer vision problems including the problem this 
paper is addressing where only a very limited amount of 
labeled training data is available but at the same time 
there is always a large amount of unlabelled data 
available; on the other hand, the accuracy of a trained 
classifier is typically expected to be adaptive to different 
unlabelled data in different applications even with the 
same (often) very limited labeled training samples. 
Consequently, the contribution of SLC roots in the novel 
strategy to adaptively label the unlabelled samples given 
in an application, which is theoretically proven to be 
optimal to achieve the maximum accuracy.  

Based on the developed theory, we have proposed a 
context-based aerial imagery object detection 
methodology, called CONTEXT in the rest of the paper. 
Context-based image understanding has been studied 
extensively in the literature [17,23,26]. Specifically, 
considering the application of aerial imagery object 
detection, it is well observed that typically an object is 
surrounded by a relatively homogeneous “background” 
region (e.g., an aircraft or a vehicle in the parking lot). 
CONTEXT takes the advantage of the availability of 
this specific context. The similar idea has been used in 
other efforts (e.g., [27]). The main difference is that 
context information is mostly used to improve the 
accuracy in the previous methods while it is also used to 
improve the efficiency in CONTEXT.   

The paper is organized as follows. SLC theory and 
the method are presented in Sec. 2. CONTEXT is 
described in Sec. 3. The empirical evaluation focusing 
on aircraft detection in real aerial imagery is reported in 
Sec. 4. Finally, the paper is concluded in Sec. 5. 

 
2. SLC theory and method 

 



 

A typical semi-supervised learning method consists 
of three steps: 1) to train a classifier using the labeled 
training samples 2) to label the unlabelled training 
samples using the current classifier 3) to train the 
classifier using the labeled training samples and the 
current status of the unlabelled training samples, 
including their estimated labels and/or their probabilities. 
Steps 2 and 3 are iterated until some stop criteria are met.  

The difference between the supervised learning and 
the semi-supervised learning is the existence and the use 
of the unlabelled samples. Consequently, the key step of 
a semi-supervised learning method is how to make a 
good use of the unlabelled samples. In the literature, 
there are two strategies developed to make use of the 
unlabelled data. One strategy considers that the 
unlabeled samples have hard labels and the learning 
procedure gradually updates the labels of the unlabelled 
samples until convergence (e.g., [2,9]). The other 
strategy considers that the unlabelled samples have soft 
(fuzzy) labels (i.e., labels with probabilities) and the 
learning procedure gradually updates the probabilities of 
the unlabelled samples until convergence (e.g., [15,19]). 
SLC theory follows the first strategy. 

As shown below by SLC theory, an optimal 
classification may be achieved by an iterative process of 
two major steps: (1) labeling and (2) training. We first 
give the related theory developed for the two steps, and 
then list the overall learning procedure. 

 
2.1 Labeling strategy 

 
The labeling strategy assumes the following 

information as the given input: two labeled sample sets 
P (positive) and N (negative) and an unlabelled sample 
set U={si}. The probability of being positive, {pi}, for 
each unlabelled sample is also part of the input. The 
output of the labeling strategy is the estimated label {di} 
for each unlabelled sample. The goal of the labeling 
strategy is to find the optimal label assignment for all 
the unlabelled samples, which leads to the maximum 
classifier accuracy. Assume that U can be further 
potentially decomposed into two mutually exclusive, 
arbitrary sets U1 (positive sample set) and U2 (negative 
sample set) and U=U1+U2. Assume that UP1 and UN1 
are, respectively, the ground truth positive sample set 
and the ground truth negative sample set in U1. Similar 
definitions apply to UP2 and UN2. Denote the correctly 
classified sample numbers in P+U1 and N+U2 as CP 
and CN, respectively. Then the classifier’s true positive 
and true negative are: 

|)||/(||| 1UPCPTP +=      (1) 
|)||/(||| 2UNCNTN +=     (2) 

Note that TP and TN are determined by considering a 
correct label assignment, i.e., U1=UP1 and U2=UN2. 
Denote the number of the correctly classified samples in 

UP1, UP2, UN1, and UN2 as CP1, CP2, CN1, and CN2, 
respectively. The expected true positive and the 
expected true negative are defined as: 

|)UPUPP/(||)CPUPCP|TP|P(|RTP 21221 ++−++×=  (3) 
|)UNUNP/(||)CNUNCN|TN|N(|RTN 21112 ++−++×=    (4) 

Though RTP and RTN are estimated using the 
training samples, they are also correct for the test 
samples as we will show later. We use subscripts to 
denote the values of different classifiers (e.g., TP1 is the 
TP value of classifier I). Assume that the trained 
classifier has TP+TN>1, i.e., it can correctly classify at 
least half of the training samples.  
Lemma 1: Assume that si and sj are two unlabelled 
samples with pi>pj. For any two classifiers using the 
same training samples with the only difference that in 
classifier I si is considered as positive and sj is 
considered as negative while in classifier II si is 
considered as negative and sj is considered as positive, 
classifier I has both higher RTP and RTN than those of 
classifier II for the training samples. 
Proof: Since the two classifiers have almost identical 
training sample set, we assume that when the training 
sample set is sufficiently large, TP1=TP2=TP and 
TN1=TN2=TN. Then we have: 

|)U||P/(|)1TNTP)(pp(RTPRTP Pji21 +−+−=−  (5) 

|)U||P/(|)1TNTP)(pp(RTNRTN Nji21 +−+−=− (6) 
Since pi>pj and TP+TN>1 by the assumption, we have 
RTP1>RTP2 and RTN1>RTN2.                                        � 
From Lemma 1, it is clear that if the maximum positive 
probability of all the unlabelled samples in the negative 
sample set is higher than the minimum positive 
probability of all the unlabelled samples in the positive 
sample set, the accuracy can be increased by changing 
the labels of the two corresponding unlabelled samples. 
By iteratively applying this conclusion, we have:  
Lemma 2: Assume that we sort the unlabelled samples 
by the ascending order of their positive probabilities. 
Then the optimal label assignment of the unlabelled 
samples satisfies pi<pj for any unlabelled sample si in 
the negative sample set and for any unlabelled sample sj 
in the positive sample set. 
From Lemma 2, it is clear that the optimal label 
assignment problem is reduced to the problem of finding 
the optimal split threshold in the probability space. 
Theorem 1 provides an elegant solution to this problem 
without the exhaustive search of the threshold. 
Theorem 1: Given an arbitrary λ , for an accuracy 
function RTN)1(RTP ×−+× λλ , the label assignment 
which assigns the negative labels to the samples with 
their positive probabilities less than λ−1 and the 
positive labels to other samples is optimal. 
Proof: Assume that the samples in U are sorted by the 
ascending order of their positive probabilities pi. 
Assume U=U1+U2 is the optimal assignment where U1 



 

is the negative sample set and U2 is the positive sample 
set. Assume U1 contains H samples. Based on Lemma 2, 
we know that U1 contains the first H samples in U while 
U2 contains the remaining samples. Denote the true 
positive and the true negative of the classifier as TPH 
and TNH. Denote the expected true positive and the 
expected true negative as RTPH and RTNH. We have: 

|)U||P/(|)TN1(pTP)p|P(|RTP PH
Hj
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Based on the same argument used in the proof of 
Lemma 1, we assume that TPH=TPH+1=TPH-1=TP and 
that TNH=TNH+1=TNH-1=TN. Since the label assignment 
is the optimal one, we have: 

0)H()1H( ≤−+ ΨΨ  and 0)1H()H( ≥−−ΨΨ   (10) 
Replace H with H+1 and H-1, respectively, in (9) and 
substitute them accordingly in (10), we have 
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Based on the above argument, it is clear 
that )H(Ψ increases when H increases until pH> 
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decreases when H increases. Consequently, by assigning 
positive labels to the unlabelled samples with a positive 
probability higher than T and negative labels to other 
unlabelled samples, the accuracy function reaches its 
maximum value, i.e., it is an optimal label assignment. �  

We can select the λ based on the relative importance 
of the RTPs and the RTPs. This shows that SLC is 
adaptive to different applications with different foci of 
expected true positive and expected true negative 
combinations. 

Theorem 1 identifies the optimal split threshold 
based on the positive probability of the unlabelled 
samples. Since the probabilities are generally unknown, 
in practice, an iterative procedure is used to estimate 
them by considering them as unknown values and using 
the EM algorithm [5] to solve for the problem.   
 
2.2 Classifier training  

 
After the labeling step, the input to the training step 

includes: the labeled samples, the unlabelled samples 
with their estimated labels and their positive 

probabilities pi. Intuitively, an unlabelled sample with a 
large pi has a large probability that its estimated label is 
correct. Similarly, an unlabelled sample with a low pi 
has a large probability that its estimated label is correct. 
On the other hand, an unlabelled sample with a 
moderate pi has a low probability that its estimated label 
is correct. Consequently, from Theorem 1, the certainty 
hi is defined to represent the probability that the 
estimated label for an unlabelled sample si is correct: 
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All the labeled samples have certainty 1. The reason 
to introduce the certainty is that we expect the 
unlabelled samples with a high certainty value to 
contribute to the learning more than the unlabelled 
samples with a low certainty value. This fact is 
incorporated into the training error that is used to 
evaluate the classifier. The certainty here is similar to 
the weight in [19] with the difference that a certainty 
value is dynamically determined while a weight value is 
a constant, as different samples may have different 
certainty values but the same weight.  

The following summaries the learning algorithm: 
1. Estimate the split threshold T using (11) 
2. Learn classifier

0Ω using L 
3. Iteration number i set to 1 
4. While stop criteria do not meet 

For j=1 to |U| 
a. Input sj to 1i−Ω to determine pj  
b. Determine hj using equation (12) 
c. Set dj=1 if pj>T and dj=0 if pj≤T 

Learn classifier iΩ using L, U, dj’s, and hj’s 
Increase iteration number by 1 

5. Output 1i−Ω  
 
3. Context-based object detection 

 
We first define several terminologies before we 

present the methodology. In the subsequent text, the 
context regions in an image are referred to as the 
surrounding regions (SRs), and the foreground regions 
surrounded by the SRs are referred to as the enclosed 
regions (ERs). Though there are differences among the 
SRs in different images, in general, such differences are 
much less than the possible differences among the 
objects in different images. Consequently, it is easier to 
build a classifier for the SRs with a high true positive, 
which is the percentage of the SRs that are correctly 
classified, and an acceptable true negative, which is the 
percentage of the non-SRs that are correctly classified. 

CONTEXT works as follows. An image is first 
segmented by a conservative segmentation algorithm. 
An SR classifier (called SRC) is applied to identify all 
the background regions to generate all the potential SRs. 



 

Finally, all the ERs and combination of ERs are 
identified to form the object candidate set, which is in 
turn classified by an object verifier (OV). 

 
3.1 SR detection 

 
In order to detect SR, a segmentation algorithm is 

applied to an image to generate regions. Since we do not 
expect an accurate segmentation, a simple edge-based 
segmentation algorithm is used: first, three edge images 
based on, respectively, R, G, and B color components 
are generated using the gradient edge detector followed 
by a thresholding; second, the three edge images are 
combined and morphological operations are applied; 
third, the connected component algorithm is applied to 
the non-edge areas to generate the SR candidates.  

Each region is denoted as a 7 dimensional vector 
(x1,x2,..x7)T, where x1, x2, and x3 are, respectively, the 
means of the R, G, and B values of the region; x4 is the 
intensity standard variance of the region. Each 
background region is divided into four sub-regions 
which are, respectively, the left-up, left-down, right-up, 
and right-down sub-regions, w.r.t. the center of the 
region. x5 represents the standard variance of the 
intensity means of the four sub-regions; x6 represents the 
standard variance of the intensity standard variances of 
the four sub-regions; and finally, x7 represents the mean 
of the intensity standard variances of the four sub-
regions. A linear discriminant analysis (LDA) model is 
selected as the base classifier of SRC where the 
unlabelled samples are exploited. 

A classic LDA using only the labeled samples learns 
a model through maximizing the ratio of the between-
class matrix (SB) determinant to the within-class matrix 
(SW) determinant. Now we extend the classic LDA to the 
LDA using the unlabelled samples. The differences are:  
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Assuming that W is the estimated LDA projection 
matrix, the positive probability pj is defined as: 

|))s(W||)s(W/(||)s(W|p NjPjPjj µµµ −+−−=      (20) 
 
3.2 Object verification 

 

After the SRs are detected, what is surrounded by the 
SRs may be either a single ER or a group of ERs. In the 
former case, the ER is considered as an object candidate 
immediately. The latter case is likely to be an over-
segmentation scenario, and the ERs are merged together 
to form a single object candidate using the repeatedly 
subsampling approach [20]. Once an object candidate is 
generated, it is classified using OV. An object is 
detected if the candidate is classified as positive. 

Two sets of features are extracted from a binarized 
edge image. The first set includes the 7 invariant 
moments in the order up to 3 while the second set is 
denoted as (y1,y2..yK), where yi, i = 1, …, K, is the 
number of the edge pixels whose distances to the gravity 
center of edge pixels in the object candidate region are 
less than i/K of the maximum distance between any edge 
pixel to the center. Note that both sets of features are 
translation and rotation invariant. To address the scale-
invariant property, we explicitly apply a scale 
transformation to the training samples. 

We argue that using the edge information only, as we 
proposed here, is sufficient for the object verification in 
the context of object detection in aerial imagery. This is 
due to the fact that for many objects in aerial imagery 
the shape features are typically preferred to other 
features such as color, as there are typically a very 
limited number of object shapes for these objects (e.g., 
aircraft) as compared with a substantially larger number 
of variations for other features such as object color. 
Since edge image is a good representation of object 
shape feature, we elect to use edge information as the 
only feature for OV. This observation is also true in 
many object detection efforts beyond the aerial imagery 
context from the state-of-the-art literature (e.g., the EOH 
features for the face detection work in [13]).  

To learn OV, similar to SRC learning, a small 
number of labeled samples and a large number of 
unlabelled samples are selected. The differences are 
the λ selection and the base classifier selection. Since 
now there is no preference on RTP or RTN, λ is set to 
0.5. Since it is unlikely that the object feature space and 
the non-object feature space are linearly separable, a 
non-linear classifier is used to achieve the expected 
accuracy. A standard multi-layer perceptron (MLP) with 
Back Propagation (BP) training is used due to its 
simplicity to accommodate the certainty. Assuming that 
the original updating weight in a standard BP training 
is W∆ incurred by the training sample si with certainty hi, 
the modified updating weight here is Whi∆ .  

Due to the expected imperfect segmentation and the 
typical complexity of the object appearance in aerial 
imagery, occasionally an object candidate may be over-
segmented or under-segmented. The over-segmentation 
problem is resolved by repeatedly subsumpling [20] the 
ERs. An object candidate failing to be verified in a 



 

higher resolution may be verified in a lower resolution. 
The under-segmentation scenario typically occurs, in the 
context of aerial imagery, when two objects are located 
very close to each other. In this case, we consider this 
type of under-segmentation as a correct segmentation as 
long as OV correctly detects the ER as the object. In Fig. 
3 (c), the four aircrafts in the left-middle of the image 
are detected as one “aircraft” object. 

We note that for aerial imagery, CONTEXT is more 
efficient and effective than the “direct” methods that the 
majority of the existing object detection work in the 
literature is categorized to. This is due to the fact that for 
a typical aerial image, the “background” regions are 
typically homogeneous and there are only a very limited 
number of variations, which means that it is easy to train 
SRC. With the detected SR context, the number of 
possible variations of an object candidate in terms of a 
feature space (e.g., the shape feature) is rather limited, 
which means that it is much easier to train OV than to 
train a typical object classifier using a “direct” method. 
Consequently, the training complexity of CONTEXT is 
much lower than that of a typical “direct” method. 
Therefore, with the same training complexity, 
CONTEXT would result in higher detection accuracy 
than a typical “direct” method. This observation is 
supported in the experiments in Sec. 4. 

 
4. Evaluation 

 
We evaluate CONTEXT by focusing on aircraft 

detection. The evaluation data set consists of 42 color 
aerial images of airport scenes. The images vary 
substantially in scale, with the maximum resolution as 
10496×21618 and the minimum resolution as 326×291. 
The number of aircrafts in each image varies from 13 to 
47. The minimum aircraft is in a 17×17 bounding box 
and the maximum aircraft is in a 348×348 bounding box. 

24 images are randomly selected to build the training 
samples. The segmentation algorithm described in Sec. 
3.1 is first applied to the 24 images. 15 positive SRs and 
15 negative SRs are manually selected. In addition, 270 
unlabelled SRs are also randomly selected. These 300 
regions form the training sample set for SRC. 

After the learning of SRC, the SRs in the 24 images 
are detected. 25 positive aircraft samples and 25 
negative aircraft samples are manually selected and 
extracted from the ERs. For each sample, scale 
transformations of 1.2, 1.5, and 1.8 are applied. Thus, 
we have 100 positive samples and 100 negative samples 
to train OV. In addition, 800 unlabelled samples are 
randomly selected to add into the training set. 

In order to evaluate the effect of the number of the 
training samples vs. the classifier accuracy, the 
following experiment is conducted. Denote the number 
of the training samples for a classifier, either SRC or 
OV, as A, where B percent of the samples are labeled 

samples. The classifier accuracy with different A and B 
values is reported in Table 1 and Table 2. In both Tables, 
the first column represents A values while the first row 
represents B values. From the Tables, it is clear that in 
general the accuracy increases with the increase of A or 
B except when A or B is small. For SRC, typically RTP 
is higher than RTN, which is consistent with the 
higherλ value selected for SRC. 

 
Table 1: SRC evaluation results 

 2% 5% 10% 15% 20% 
160 0.76/0.52 0.83/0.52 0.78/0.68 0.83/0.67 0.82/0.78 
180 0.82/0.64 0.87/0.71 0.89/0.69 0.92/0.73 0.93/0.78 
200 0.87/0.73 0.90/0.77 0.96/0.83 0.96/0.85 0.96/0.85 
220 0.89/0.79 0.91/0.81 0.99/0.85 0.99/0.87 0.99/0.87 

Table 2: OV evaluation results 
 5% 10% 15% 20% 25% 

800 0.69/0.72 0.73/0.77 0.77/0.82 0.77/0.84 0.81/0.88
900 0.81/0.79 0.84/0.82 0.88/0.89 0.91/0.90 0.92/0.93
1000 0.83/0.84 0.87/0.84 0.91/0.89 0.93/0.92 0.94/0.95
1100 0.85/0.84 0.86/0.80 0.90/0.89 0.93/0.92 0.94/0.96

 We apply CONTEXT to all the 42 images. 
Examples of the detection are displayed in Fig. 4. The 
processing time is very promising. For images with a 
resolution about 2000×2000, the detection time is less 
than 1 second under the platform of Pentium IV 2GHz 
CPU with 512MB memory. From the figure, it is clear 
that almost all the aircrafts, including the helicopters, 
are successfully detected given the complex and varied 
appearances of the object and the background.  

In order to demonstrate the strength of SLC theory 
and the method, we evaluate the classification 
performance of SLC against the classic semi-supervised 
learning method by Nigam et al [19] (for the reference 
purpose, we call it NMTM). To ensure a fair comparison, 
we use the same features and the comparison is 
observed for SRC, OV, and the combination. Fig. 3 
documents the performance comparison between the 
two semi-supervised learning methods using the same 
aircraft detection data set. From the figure, it is clear 
that SLC performs substantially better than this classic 
method. In addition, it appears that SRC accuracy 
difference between the two methods is in general larger 
than OV accuracy difference between the two methods. 
This is due to the fact that RTP is more important than 
RTN in SRC.  

 
Fig. 3: Performance comparison between SLC and NMTM. 



 

In order to experimentally justify that CONTEXT is 
superior to the conventional “direct” methods for aerial 
imagery, we disabled SRC and used only OV for object 
detection. We call this method as DIRECT for the 
reference purpose. To ensure a fair comparison, we used 
the number of samples to train DIRECT as the total 
number of the samples to train SRC and OV in 
CONTEXT. The detection performance is measured in 
terms of the detection rate, which is defined as the 
percentage of the number of correctly detected objects 
from the ground-truthed number of objects in the data 
set, and the false alarm rate, which is defined as the 
percentage of the number of incorrectly detected objects 
from the number of the detected objects in the data set. 
Table 3 documents the performance comparison 
between CONTEXT and DIRECT. Clearly, CONTEXT 
outperforms DIRECT. It is also noted that in addition to 
the better detection effectiveness, CONTEXT also 
outperforms DIRECT in detection efficiency. 

Finally, in order to demonstrate the strength of 
CONTEXT, we evaluate the performance of CONTEXT 
against that of a state-of-the-art object detection method 
by Viola&Jones [29] (called VJ here) using all the test 
images for aircraft detection. To ensure a reasonable 
performance for VJ, we used twice the number of the 
labeled samples as the total number of the labeled 
samples used in SRC and OV in CONTEXT. Table 3 
reports the comparison. Clearly, CONTEXT 
outperforms VJ. It is also noticed that VJ is substantially 
slower in terms of the detection time than both DIRECT 
and CONTEXT. 

 
Table 3: Detection performance comparison 
 CONTEXT DIRECT VJ 

Detection rate 95% 91% 89% 
False alarm rate 7% 27% 17% 
Detection time 0.27sec. 0.51sec. 3.63min. 
 
5. Conclusion 

 
In this paper, we have made two contributions. First, 

we have developed a theoretic foundation for aerial 
imagery object detection using semi-supervised learning. 
Second, based on this theory, we have proposed a 
context-based object detection methodology. Both 
theoretic analyses and experimental evaluations have 
successfully demonstrated the great promise of the 
developed theory and the related detection methodology. 
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