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Abstract

Object detection in aerial imagery has been well
studied in computer vision for years. However, given
the complexity of large variations of the appearance of
the object and the background in a typical aerial image,
a robust and efficient detection is still considered as an
open and challenging problem. In this paper, we have
developed a theoretic foundation for aerial imagery
object detection using semi-supervised learning. Based
on this theory, we have proposed a context-based object
detection methodology. Both theoretic analyses and
experimental evaluations have successfully
demonstrated the great promise of the developed theory
and the related detection methodology.

1. Introduction

Object detection in aerial imagery has been well
studied in computer vision for years [8,11,14,28,33].
However, given the complexity of large variations of the
appearance of the object and the background in a typical
aerial image, a robust and efficient detection is still
considered as an open and challenging problem.

The object detection problem is typically solved in
two stages: candidate generation and candidate
classification. Candidate generation generates regions of
an image that may contain the object, and candidate
classification further classifies and/or verifies the
generated regions. Two types of methods for candidate
generation are proposed in the literature. “Exhaustive
search” methods [8,11,21,29] consider all the windows
in an image as candidates while “segmentation based”
methods [12,27,33] consider only the segmented
features including regions as the candidates. The
limitation of the “exhaustive search” methods is the
demanding complexity, especially when the image
resolution is very high, which is typically true for aerial
imagery. The limitation of the “segmentation based”
methods is the imperfect segmentation by nature.

The majority of the classification models used in
detection proposed in the literature are based on
supervised learning, including boosting model [25],
cascade models [21,24,29], neural networks [10,11,20],
Bayesian networks [33], generative models [27], and
statistical models [26]. The problem with the supervised
learning classification methods is that in order to
achieve a reasonably good performance, typically a
large training data set is required; the larger the training
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set, the more expensive to ground-truth the training data.
Due to these considerations, we have developed a semi-
supervised learning based -classification theory that
simultaneously resolves both problems. For the
reference purpose, we call this theory as well as the
classification method SLC.

The semi-supervised learning [2,4,9,30,32] has
recently received intensive attention in machine learning
community. The techniques developed in this research
have been applied to solving problems in many areas
including computer vision [4,30]. SLC is motivated to
specifically take into account the reality for many
computer vision problems including the problem this
paper is addressing where only a very limited amount of
labeled training data is available but at the same time
there is always a large amount of unlabelled data
available; on the other hand, the accuracy of a trained
classifier is typically expected to be adaptive to different
unlabelled data in different applications even with the
same (often) very limited labeled training samples.
Consequently, the contribution of SLC roots in the novel
strategy to adaptively label the unlabelled samples given
in an application, which is theoretically proven to be
optimal to achieve the maximum accuracy.

Based on the developed theory, we have proposed a
context-based aerial imagery object detection
methodology, called CONTEXT in the rest of the paper.
Context-based image understanding has been studied
extensively in the literature [17,23,26]. Specifically,
considering the application of aerial imagery object
detection, it is well observed that typically an object is
surrounded by a relatively homogeneous “background”
region (e.g., an aircraft or a vehicle in the parking lot).
CONTEXT takes the advantage of the availability of
this specific context. The similar idea has been used in
other efforts (e.g., [27]). The main difference is that
context information is mostly used to improve the
accuracy in the previous methods while it is also used to
improve the efficiency in CONTEXT.

The paper is organized as follows. SLC theory and
the method are presented in Sec. 2. CONTEXT is
described in Sec. 3. The empirical evaluation focusing
on aircraft detection in real aerial imagery is reported in
Sec. 4. Finally, the paper is concluded in Sec. 5.

2. SLC theory and method



A typical semi-supervised learning method consists
of three steps: 1) to train a classifier using the labeled
training samples 2) to label the unlabelled training
samples using the current classifier 3) to train the
classifier using the labeled training samples and the
current status of the unlabelled training samples,
including their estimated labels and/or their probabilities.
Steps 2 and 3 are iterated until some stop criteria are met.

The difference between the supervised learning and
the semi-supervised learning is the existence and the use
of the unlabelled samples. Consequently, the key step of
a semi-supervised learning method is how to make a
good use of the unlabelled samples. In the literature,
there are two strategies developed to make use of the
unlabelled data. One strategy considers that the
unlabeled samples have hard labels and the learning
procedure gradually updates the labels of the unlabelled
samples until convergence (e.g., [2,9]). The other
strategy considers that the unlabelled samples have soft
(fuzzy) labels (i.e., labels with probabilities) and the
learning procedure gradually updates the probabilities of
the unlabelled samples until convergence (e.g., [15,19]).
SLC theory follows the first strategy.

As shown below by SLC theory, an optimal
classification may be achieved by an iterative process of
two major steps: (1) labeling and (2) training. We first
give the related theory developed for the two steps, and
then list the overall learning procedure.

2.1 Labeling strategy

The labeling strategy assumes the following
information as the given input: two labeled sample sets
P (positive) and N (negative) and an unlabelled sample
set U={s;}. The probability of being positive, {p;}, for
each unlabelled sample is also part of the input. The
output of the labeling strategy is the estimated label {d;}
for each unlabelled sample. The goal of the labeling
strategy is to find the optimal label assignment for all
the unlabelled samples, which leads to the maximum
classifier accuracy. Assume that U can be further
potentially decomposed into two mutually exclusive,
arbitrary sets U; (positive sample set) and U, (negative
sample set) and U=U;+U,. Assume that UP; and UN;
are, respectively, the ground truth positive sample set
and the ground truth negative sample set in U;. Similar
definitions apply to UP, and UN,. Denote the correctly
classified sample numbers in P+U; and N+U, as CP
and CN, respectively. Then the classifier’s true positive
and true negative are:

TP=CP|/(|P|+|U,]) )]

TN=CNJ/IN[+]U, ) @

Note that TP and TN are determined by considering a
correct label assignment, i.e., U;=UP; and U,=UN,.
Denote the number of the correctly classified samples in

UP]_, UPz, UN]_, and UNZ as CP]_, CPz, CN]_, and CNz,
respectively. The expected true positive and the
expected true negative are defined as:
RTP=(|P|xTP+|CPR, +UPR,—CPR, )/(|P+UR +UR,|) (3)
RTN=(|N|xTN+|CN, +UN, ~CN, |)/(JP+UN, +UN,|) (4)
Though RTP and RTN are estimated using the
training samples, they are also correct for the test
samples as we will show later. We use subscripts to
denote the values of different classifiers (e.g., TP; is the
TP wvalue of classifier I). Assume that the trained
classifier has TP+TN>1, i.e., it can correctly classify at
least half of the training samples.
Lemma 1: Assume that s; and s; are two unlabelled
samples with pi>p;. For any two classifiers using the
same training samples with the only difference that in
classifier 1 s; is considered as positive and s; is
considered as negative while in classifier 1l s; is
considered as negative and s; is considered as positive,
classifier | has both higher RTP and RTN than those of
classifier 11 for the training samples.
Proof: Since the two classifiers have almost identical
training sample set, we assume that when the training
sample set is sufficiently large, TP;=TP,=TP and
TN=TN,=TN. Then we have:
RTP, —RTP, =(p, = p; (TP +TN 1) /(| P|+|U, |) (5)
RTN, —RTN, =(p, - p; (TP +TN =1)/(|P|+]U , ) (6)
Since pi>pjand TP+TN>1 by the assumption, we have
RTP;>RTP, and RTN;>RTN,. O
From Lemma 1, it is clear that if the maximum positive
probability of all the unlabelled samples in the negative
sample set is higher than the minimum positive
probability of all the unlabelled samples in the positive
sample set, the accuracy can be increased by changing
the labels of the two corresponding unlabelled samples.
By iteratively applying this conclusion, we have:
Lemma 2: Assume that we sort the unlabelled samples
by the ascending order of their positive probabilities.
Then the optimal label assignment of the unlabelled
samples satisfies pij<p; for any unlabelled sample s; in
the negative sample set and for any unlabelled sample s;
in the positive sample set.
From Lemma 2, it is clear that the optimal label
assignment problem is reduced to the problem of finding
the optimal split threshold in the probability space.
Theorem 1 provides an elegant solution to this problem
without the exhaustive search of the threshold.
Theorem 1: Given an arbitrary A, for an accuracy
function 1xRTP+(1-1)xRTN , the label assignment

which assigns the negative labels to the samples with
their positive probabilities less than 1—- 1 and the
positive labels to other samples is optimal.

Proof: Assume that the samples in U are sorted by the
ascending order of their positive probabilities p;.
Assume U=U;+U; is the optimal assignment where U,



is the negative sample set and U, is the positive sample
set. Assume U; contains H samples. Based on Lemma 2,
we know that U; contains the first H samples in U while
U, contains the remaining samples. Denote the true
positive and the true negative of the classifier as TPy
and TNy. Denote the expected true positive and the
expected true negative as RTPy and RTNy. We have:
RTR, =(IPI+X.p;)xTR, + Y-p, x(1-TN, ) (1P| +]U, D7)
j>H j<H
RTN, =(IN|+Y 1 py XTN, + Y (1-p, JX(1-TR)/(INI+1U, 1) ®)
j<H j>H
Denote the accuracy function as ¥(H ), we have:

TP, x(P1+Yp,)+ Y py (1-TN,,)

P(H)=Ax e = +
|Pl+[Up |
TN, x(IN |+Z(1_ P; ))+Z(1_ Pj X1-TR,
(1-2)x = e )
IN[+]Uy |

Based on the same argument used in the proof of
Lemma 1, we assume that TP,=TPy+1=TP.1=TP and
that TNy=TNp.1=TN{.1=TN. Since the label assignment
is the optimal one, we have:
Y(H+1)-¥(H)<0and ¥(H)-¥(H-1)>0 (10)
Replace H with H+1 and H-1, respectively, in (9) and
substitute them accordingly in (10), we have
o < (1-2)x(PI+1U, D <o (1
(I=2)x(IP[+]Up N+ Ax(IN[+]Uy )
Based on the above argument, it 1is clear
that ¥(H) increases when H increases until py>
T (A-2)x(PI+]Us )
(I-A)x(IP]+]Up D+ Ax(N[+]Uy )
decreases when H increases. Consequently, by assigning
positive labels to the unlabelled samples with a positive
probability higher than T and negative labels to other
unlabelled samples, the accuracy function reaches its
maximum value, i.e., it is an optimal label assignment. I

We can select the A based on the relative importance
of the RTPs and the RTPs. This shows that SLC is
adaptive to different applications with different foci of
expected true positive and expected true negative
combinations.

Theorem 1 identifies the optimal split threshold
based on the positive probability of the unlabelled
samples. Since the probabilities are generally unknown,
in practice, an iterative procedure is used to estimate
them by considering them as unknown values and using
the EM algorithm [5] to solve for the problem.

and then

2.2 Classifier training

After the labeling step, the input to the training step
includes: the labeled samples, the unlabelled samples
with their estimated labels and their positive

probabilities p;. Intuitively, an unlabelled sample with a
large p; has a large probability that its estimated label is
correct. Similarly, an unlabelled sample with a low p;
has a large probability that its estimated label is correct.
On the other hand, an unlabelled sample with a
moderate p; has a low probability that its estimated label
is correct. Consequently, from Theorem 1, the certainty
h; is defined to represent the probability that the
estimated label for an unlabelled sample s;is correct:

N elpi-(1-2(1-2)-1 p,<1-4 (12)
i glpi-(1-a)2-1 p,>1-21

All the labeled samples have certainty 1. The reason
to introduce the certainty is that we expect the
unlabelled samples with a high certainty value to
contribute to the learning more than the unlabelled
samples with a low certainty value. This fact is
incorporated into the training error that is used to
evaluate the classifier. The certainty here is similar to
the weight in [19] with the difference that a certainty
value is dynamically determined while a weight value is
a constant, as different samples may have different
certainty values but the same weight.

The following summaries the learning algorithm:

1. Estimate the split threshold T using (11)
2. Learn classifier 2, using L

3. Iteration number i set to 1
4. While stop criteria do not meet
For j=1to |U]
a. InputsjtoQ _ to determine p
b. Determine h; using equation (12)
c. Set dj:1 if pj>T and deO if pJST
Learn classifier @ using L, U, d;’s, and h;’s

Increase iteration number by 1
5.Output 0.,

3. Context-based object detection

We first define several terminologies before we
present the methodology. In the subsequent text, the
context regions in an image are referred to as the
surrounding regions (SRs), and the foreground regions
surrounded by the SRs are referred to as the enclosed
regions (ERs). Though there are differences among the
SRs in different images, in general, such differences are
much less than the possible differences among the
objects in different images. Consequently, it is easier to
build a classifier for the SRs with a high true positive,
which is the percentage of the SRs that are correctly
classified, and an acceptable true negative, which is the
percentage of the non-SRs that are correctly classified.

CONTEXT works as follows. An image is first
segmented by a conservative segmentation algorithm.
An SR classifier (called SRC) is applied to identify all
the background regions to generate all the potential SRs.



Finally, all the ERs and combination of ERs are
identified to form the object candidate set, which is in
turn classified by an object verifier (OV).

3.1 SR detection

In order to detect SR, a segmentation algorithm is
applied to an image to generate regions. Since we do not
expect an accurate segmentation, a simple edge-based
segmentation algorithm is used: first, three edge images
based on, respectively, R, G, and B color components
are generated using the gradient edge detector followed
by a thresholding; second, the three edge images are
combined and morphological operations are applied;
third, the connected component algorithm is applied to
the non-edge areas to generate the SR candidates.

Each region is denoted as a 7 dimensional vector
(Xl,Xz,..X7)T, where X;, Xp, and Xs are, respectively, the
means of the R, G, and B values of the region; X, is the
intensity standard variance of the region. Each
background region is divided into four sub-regions
which are, respectively, the left-up, left-down, right-up,
and right-down sub-regions, w.r.t. the center of the
region. Xs represents the standard variance of the
intensity means of the four sub-regions; Xg represents the
standard variance of the intensity standard variances of
the four sub-regions; and finally, X; represents the mean
of the intensity standard variances of the four sub-
regions. A linear discriminant analysis (LDA) model is
selected as the base classifier of SRC where the
unlabelled samples are exploited.

A classic LDA using only the labeled samples learns
a model through maximizing the ratio of the between-
class matrix (Sg) determinant to the within-class matrix
(Sw) determinant. Now we extend the classic LDA to the
LDA using the unlabelled samples. The differences are:

tp =(X s+ 2 hyxs ) IP|+X b)) (15)

py =X+ 2 ohyxs YN+ Y h)) (16)

p=( s+ 20 xs )L+ h,) 17
jeL jeu jeu

jeP

Sw :Z(Sj —Hp )(Sj —Hp )T +Zhj(sj —Hp )(Sj —Hp )T

# 28y— )8y = ) 2Ny (s, = (s, )T (D)
jeN d;=0

S =y — )ty — )"+t — )ty — )’ (19)
Assuming that W is the estimated LDA projection
matrix, the positive probability pjis defined as:

Py AWCs; = )W (s = 1 ) +IW(s; = )) - (20)

3.2 Object verification

After the SRs are detected, what is surrounded by the
SRs may be either a single ER or a group of ERs. In the
former case, the ER is considered as an object candidate
immediately. The latter case is likely to be an over-
segmentation scenario, and the ERs are merged together
to form a single object candidate using the repeatedly
subsampling approach [20]. Once an object candidate is
generated, it is classified using OV. An object is
detected if the candidate is classified as positive.

Two sets of features are extracted from a binarized
edge image. The first set includes the 7 invariant
moments in the order up to 3 while the second set is
denoted as (Yy,Y2..Yk), where y;, i = 1, ..., K, is the
number of the edge pixels whose distances to the gravity
center of edge pixels in the object candidate region are
less than i/K of the maximum distance between any edge
pixel to the center. Note that both sets of features are
translation and rotation invariant. To address the scale-
invariant property, we explicitly apply a scale
transformation to the training samples.

We argue that using the edge information only, as we
proposed here, is sufficient for the object verification in
the context of object detection in aerial imagery. This is
due to the fact that for many objects in aerial imagery
the shape features are typically preferred to other
features such as color, as there are typically a very
limited number of object shapes for these objects (e.g.,
aircraft) as compared with a substantially larger number
of variations for other features such as object color.
Since edge image is a good representation of object
shape feature, we elect to use edge information as the
only feature for OV. This observation is also true in
many object detection efforts beyond the aerial imagery
context from the state-of-the-art literature (e.g., the EOH
features for the face detection work in [13]).

To learn OV, similar to SRC learning, a small
number of labeled samples and a large number of
unlabelled samples are selected. The differences are
the A selection and the base classifier selection. Since
now there is no preference on RTP or RTN, Ais set to
0.5. Since it is unlikely that the object feature space and
the non-object feature space are linearly separable, a
non-linear classifier is used to achieve the expected
accuracy. A standard multi-layer perceptron (MLP) with
Back Propagation (BP) training is used due to its
simplicity to accommodate the certainty. Assuming that
the original updating weight in a standard BP training
is AW incurred by the training sample S; with certainty h,
the modified updating weight here ish, AW .

Due to the expected imperfect segmentation and the
typical complexity of the object appearance in aerial
imagery, occasionally an object candidate may be over-
segmented or under-segmented. The over-segmentation
problem is resolved by repeatedly subsumpling [20] the
ERs. An object candidate failing to be verified in a



higher resolution may be verified in a lower resolution.
The under-segmentation scenario typically occurs, in the
context of aerial imagery, when two objects are located
very close to each other. In this case, we consider this
type of under-segmentation as a correct segmentation as

long as OV correctly detects the ER as the object. In Fig.

3 (c), the four aircrafts in the left-middle of the image
are detected as one “aircraft” object.

We note that for aerial imagery, CONTEXT is more
efficient and effective than the “direct” methods that the
majority of the existing object detection work in the
literature is categorized to. This is due to the fact that for
a typical aerial image, the “background” regions are
typically homogeneous and there are only a very limited
number of variations, which means that it is easy to train
SRC. With the detected SR context, the number of
possible variations of an object candidate in terms of a
feature space (e.g., the shape feature) is rather limited,
which means that it is much easier to train OV than to
train a typical object classifier using a “direct” method.
Consequently, the training complexity of CONTEXT is
much lower than that of a typical “direct” method.
Therefore, with the same training complexity,
CONTEXT would result in higher detection accuracy
than a typical “direct” method. This observation is
supported in the experiments in Sec. 4.

4. Evaluation

We evaluate CONTEXT by focusing on aircraft
detection. The evaluation data set consists of 42 color
aerial images of airport scenes. The images vary
substantially in scale, with the maximum resolution as
10496 x21618 and the minimum resolution as 326x291.
The number of aircrafts in each image varies from 13 to
47. The minimum aircraft is in a 17x17 bounding box

and the maximum aircraft is in a 348 x 348 bounding box.

24 images are randomly selected to build the training
samples. The segmentation algorithm described in Sec.
3.1 is first applied to the 24 images. 15 positive SRs and
15 negative SRs are manually selected. In addition, 270
unlabelled SRs are also randomly selected. These 300
regions form the training sample set for SRC.

After the learning of SRC, the SRs in the 24 images
are detected. 25 positive aircraft samples and 25
negative aircraft samples are manually selected and
extracted from the ERs. For each sample, scale
transformations of 1.2, 1.5, and 1.8 are applied. Thus,
we have 100 positive samples and 100 negative samples
to train OV. In addition, 800 unlabelled samples are
randomly selected to add into the training set.

In order to evaluate the effect of the number of the
training samples vs. the classifier accuracy, the
following experiment is conducted. Denote the number
of the training samples for a classifier, either SRC or
OV, as A, where B percent of the samples are labeled

samples. The classifier accuracy with different A and B
values is reported in Table 1 and Table 2. In both Tables,
the first column represents A values while the first row
represents B values. From the Tables, it is clear that in
general the accuracy increases with the increase of A or
B except when A or B is small. For SRC, typically RTP
is higher than RTN, which is consistent with the
higher A value selected for SRC.

Table 1: SRC evaluation results

2% 5% 10% 15% 20%

160 ]0.76/0.52/0.83/0.52 0.78/0.68 | 0.83/0.67 | 0.82/0.78

180 [0.82/0.640.87/0.71] 0.89/0.69 | 0.92/0.73 | 0.93/0.78

200 0.87/0.73[0.90/0.77| 0.96/0.83 | 0.96/0.85 | 0.96/0.85

220 0.89/0.79[0.91/0.81 0.99/0.85 | 0.99/0.87 | 0.99/0.87

Table 2: OV evaluation results

5% 10% 15% 20% 25%

800 |0.69/0.72{0.73/0.77| 0.77/0.82| 0.77/0.84 | 0.81/0.88

900 |0.81/0.79(0.84/0.82] 0.88/0.89| 0.91/0.90 | 0.92/0.93

1000 |0.83/0.84(0.87/0.84]| 0.91/0.89 0.93/0.92 | 0.94/0.95

1100 | 0.85/0.84(0.86/0.80| 0.90/0.89| 0.93/0.92 | 0.94/0.96

We apply CONTEXT to all the 42 images.
Examples of the detection are displayed in Fig. 4. The
processing time is very promising. For images with a
resolution about 2000x 2000, the detection time is less
than 1 second under the platform of Pentium IV 2GHz
CPU with 512MB memory. From the figure, it is clear
that almost all the aircrafts, including the helicopters,
are successfully detected given the complex and varied
appearances of the object and the background.

In order to demonstrate the strength of SLC theory
and the method, we evaluate the classification
performance of SLC against the classic semi-supervised
learning method by Nigam et al [19] (for the reference
purpose, we call it NMTM). To ensure a fair comparison,
we use the same features and the comparison is
observed for SRC, OV, and the combination. Fig. 3
documents the performance comparison between the
two semi-supervised learning methods using the same
aircraft detection data set. From the figure, it is clear
that SLC performs substantially better than this classic
method. In addition, it appears that SRC accuracy
difference between the two methods is in general larger
than OV accuracy difference between the two methods.
This is due to the fact that RTP is more important than
RTN in SRC.

1
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0z 03 04 o0& 0.6 07 08
Labelled data percentage

Fig. 3: Performance comparison between SLC and NMTM.




In order to experimentally justify that CONTEXT is
superior to the conventional “direct” methods for aerial
imagery, we disabled SRC and used only OV for object
detection. We call this method as DIRECT for the
reference purpose. To ensure a fair comparison, we used
the number of samples to train DIRECT as the total
number of the samples to train SRC and OV in
CONTEXT. The detection performance is measured in
terms of the detection rate, which is defined as the
percentage of the number of correctly detected objects
from the ground-truthed number of objects in the data
set, and the false alarm rate, which is defined as the
percentage of the number of incorrectly detected objects
from the number of the detected objects in the data set.
Table 3 documents the performance comparison
between CONTEXT and DIRECT. Clearly, CONTEXT
outperforms DIRECT. It is also noted that in addition to
the better detection effectiveness, CONTEXT also
outperforms DIRECT in detection efficiency.

Finally, in order to demonstrate the strength of
CONTEXT, we evaluate the performance of CONTEXT
against that of a state-of-the-art object detection method
by Viola&Jones [29] (called VI here) using all the test
images for aircraft detection. To ensure a reasonable
performance for VJ, we used twice the number of the
labeled samples as the total number of the labeled
samples used in SRC and OV in CONTEXT. Table 3
reports the comparison. Clearly, CONTEXT
outperforms VJ. It is also noticed that VJ is substantially
slower in terms of the detection time than both DIRECT
and CONTEXT.

Table 3: Detection performance comparison
CONTEXT DIRECT \2
Detection rate 95% 91% 89%
False alarm rate 7% 27% 17%
Detection time 0.27sec. 0.51sec. 3.63min.

5. Conclusion

In this paper, we have made two contributions. First,
we have developed a theoretic foundation for aerial

imagery object detection using semi-supervised learning.

Second, based on this theory, we have proposed a
context-based object detection methodology. Both
theoretic analyses and experimental evaluations have
successfully demonstrated the great promise of the
developed theory and the related detection methodology.

Reference

[2] K.P.Bennett, A.Demiriz, and R.Maclin, “Exploiting
Unlabeled Data in Ensemble Methods”, KDD 2002, 289-296

[3] P.B.Chou and C.M.Brown, “The theory and practice of
bayesian image labeling”, Int. J. Comp. Vis., 4(1990), 185-210

[4] L.Cohen, F.G.Cozman, N.Sebe, M.C.Cirelo, and T.S.Huang,
“Semisupervised Learning of Classifiers: Theory, Algorithms,
and Their Application to Human-Computer Interaction”,
PAMI 26(12), 2004, 1553-1567

[5] A.P.Dempster, N.M.Laird, and D.B.Rubin, “Maximum-
likelihood from incomplete data via the em algorithm”,
J.Royal Statist. Soc., 39, 1977, 1-38

[8] A.Filippidis, L.C.Jain, and N.Martin, “Fusion of intelligent
agents for the detection of aircraft in SAR images”, PAMI
22(4), 2000, 378-383

[9] S.A.Goldman and Y.Zhou, “Enhancing Supervised
Learning with Unlabeled Data”, ICML 2000

[10] B.Kamgar-Parsi, B.Kamgar-Parsi, A.K.Jain, and
J.E.Dayhoff, “Aircraft Detection: A case study in using human
similarity measure”, PAMI 23(12), 2001, 1404-1414

[11] M.A.Khabou and P.D.Gader, “Automatic target detection
using entropy optimized shared-weight neural networks”,
IEEE. Trans. Neural Network, 11(1), 2000, 186-193

[12] ZKim and J.Malik, “Fast Vehicle Detection with
Probabilistic Feature Grouping and Its Application to Vehicle
Tracking”, ICCV 2003

[13] K.Levi and Y.Weiss, “Learning Object Detection from a
Small Number of Examples: the Importance of Good
Features”, CVPR 2004, 53-60

[14] J.Li, R.Nevatia, and S.Nornoha, “User Assisted Modeling
of Buildings from Aerial Images”, CVPR, 1999

[15] B.Liu, W-S.Lee, P.S.Yu, and X-L.Li, “Partially
supervised classification of text documents”, ICML 2002

[17] J.L.Mundy and T.M.Strat, Proc. IEEE Workshop on
Context Based Vision, 1995

[19] K.Nigam, A.K.McCallum, S.Thrun, & T.M.Mitchell,
“Text classification from labeled and unlabelled data using
EM”, Machine Learning, 2000 (39), 103-134

[20] H.A.Rowley, S.Baluja, and T.Kanade, “Neural network-
based face detection”, PAMI, 20(1):23-38, 1998

[21] H.Schneiderman, “Feature-centric evaluation for efficient
cascaded object detection”, CVPR 2004, 29-36

[23] T.M.Strat and M.A.Fischler, “Context-Based Vision:
Recognizing Objects Using Information from Both 2D and 3D
Imagery”, PAMI, 13(10), 1991, 1050-1065

[24] J.Sun, J.M.Rehg, and A.Bobick, “Automatic Cascade
Training with Perturbation Bias”, CVPR 2004, 276-283

[25] A.Torralba, K.P.Murphy, and W.T.Freeman, ““Sharing
visual features for multiclass and multiview object detection”,
CVPR 2004, 762-769

[26] Anatonio Torralba and Pawan Sinha, “Statistical context
priming for object detection”, ICCV 2001, 763-770

[27] Z.Tu, X.Chen, A.L.Yuille, and S-C.Zhu, “Image parsing:
unifying segmentation, detection, and recognition”, ICCV
2003, 18-25

[28] V.Venkateswar and R.Chellappa, “A Framework for
Interpretation of Aerial Images”, ICPR, 1990, 204-206

[29] P.Viola and M.Jones, “Rapid object detection using a
boosted cascade of simple features”, CVPR 2001, 511-518

[30] Ying Wu, Thomas S. Huang, and Kentaro Toyama, “Self-
supervised learning for object recognition based on kernel
discriminant-EM algorithm”, ICCV 2001, 275-280

[32] T.Zhang, F.J.Oles, “A probability analysis on the value of
unlabeled data for classification problems”, ICML 2000

[33] Tao Zhao and Ram Nevatia, “Car detection in low
resolution aerial image”, ICCV 2001, 710-71



