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Abstract

Complex graphs, in which multi-type nodes are linked to
each other, frequently arise in many important applications,
such as Web mining, information retrieval, bioinformatics,
and epidemiology. In this study, We propose a general frame-
work for clustering on complex graphs. Under this frame-
work, we derive a family of clustering algorithms including
both hard and soft versions, which are capable of learning
cluster patterns from complex graphs with various structures
and statistical properties. We also establish the connections
between the proposed framework and the traditional graph
partitioning approaches. The experimental evaluation pro-
vides encouraging results to validate the proposed framework
and algorithms.

Introduction
Graph clustering has traditionally focused on homogeneous
graphs consisting of nodes of a single type. However, many
examples of real-world graphs involve multi-type nodes
linking to each other (we refer them as complex graphs in
this study). There are two types of links in a complex graph:
homogeneous links within the same type of nodes and het-
erogeneous links between two different types of nodes. For
example, in a complex graph consisting of paper nodes and
author nodes from a scientific publication domain, papers
are linked to each other by citations (homogeneous links)
and papers and authors are linked to each other by author-
ship (heterogeneous links); in a complex graph from Web
search system, Web pages are linked to each other by ho-
mogeneous links and there are heterogeneous links between
Web pages, search queries, and Web users; a collection
of documents has been formulated as a bi-partite complex
graphs with heterogeneous links between document nodes
and word nodes (Dhillon 2001).

In general, it is very difficult for traditional graph cluster-
ing approaches to learn hidden cluster patterns from a com-
plex graph, since they simply treat all the nodes as the same
type. For example, when applying a traditional graph parti-
tioning approach to a complex graph, we face two problems:

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

how to cut different types of links to get meaningful parti-
tions; how to interpret the resulting partitions consisting of
different types of nodes. Note that different types of nodes
have different cluster structures; partitioning them into the
same groups cannot tell this difference.

Another intuitive thought for complex graph learning is
to transform a complex graph into a set of small graphs of
single-type nodes and learn from each small graph individ-
ually. However, it is very difficult, if not impossible, to do
the transformation without information loss. Furthermore,
learning the hidden structures for each type of nodes individ-
ually cannot provide useful global structures of a complex
graph. For example, for a complex graph of document and
word nodes, besides the cluster structures for documents and
words, respectively, the relations between document clusters
and word clusters are also very useful.

Hence, complex graphs have presented a great challenge
to graph clustering. In this paper, we propose a general
framework for clustering on complex graphs. By represent-
ing a complex graph as a set of related matrices, cluster-
ing on a complex graph is formulated as the problem of re-
lated matrix approximation under an certain distance func-
tion. Under this framework, we consider both hard and soft
clustering. A hard clustering algorithm is derived and gener-
alized to various Bregman divergences. The soft clustering
algorithms are derived based on the bound optimization pro-
cedure (Salakhutdinov and Roweis 2003). We also investi-
gate the relation between the proposed framework and the
edge cut objectives to provide a unified view to traditional
graph partitioning approaches.

Problem Formulation
Suppose that we are given an undirected complex graph
with non-negative edge weights,G = ({Vi}m

i=1, E), where
{Vi}m

i=1 denotesm sets of different types of nodes, and
E denotes the edges in the graph. Rather than using one
affinity matrix to represent the whole graph, we represent
a complex graph as a set of related matrices{{S(i) ∈
Rni×ni

+ }m
i=1, {A(ij) ∈ Rni×nj

+ }m
i,j=1}, whereS(i) repre-

sents the edge weights for the homogeneous links within
Vi; A(ij) represents the edge weights for the heterogeneous
links betweenVi andVj ; ni denotes the number of nodes



in Vi. For convenience, here we assume that every type
of nodes has homogeneous links within them and hetero-
geneous links to all other types of nodes.

We letCi ∈ Rni×ki
+ denote the cluster membership ma-

trix for each type of nodesVi such thatC(i)
pq denote the

weight that thepth node inVi is associated with theqth clus-
ter. The intra-type cluster pattern matrixD(i) ∈ Rki×ki de-
notes the link patterns within the same type of nodes such
that D(i)

pq denotes the link strength between thepth clus-
ter and theqth cluster ofVi. The inter-type pattern matrix
B(ij) ∈ Rki×kj denotes the link patterns between the differ-
ent types of nodes such thatB(ij)

pq denotes the link strength
between thepth cluster ofVi and theqth cluster ofVj . In the
above formulation,ki is a given number of clusters. Then,
we formulate the objective function of clustering on a com-
plex graph as following,

L =
m∑

i=1

w(i)D(S(i),C(i)D(i)(C(i))T )

+
m∑

i,j=1

w(ij)D(A(ij),C(i)B(ij)(C(j))T ), (1)

whereD denotes a given distance function,wi andwij de-
note the given weight coefficients for users to express the
importance for different sets of links.

In this study, we examine both hard and soft clustering
tasks, which are formulated as follows. In the following for-
mulation,1 denotes a vector consisting 1’s andI denotes an
identity matrix.

• Hard clustering C(i) is an cluster indicator matrix.

arg minC(i)∈{0,1}ni×ki ,C(i)1=1,D(i)∈Rki×ki ,B(ij)∈Rki×kj L

(2)

• Soft clustering C(i) is non-negative and with appropri-
ate normalization it can be interpreted as the soft weights
for the cluster membership.

arg min
C(i)∈Rni×ki

+ ,D(i)∈Rki×ki
+ ,B(ij)∈Rki×kj

+
L (3)

The proposed framework has the following advantages.
First, for a large complex graph, the framework avoids the
computation difficulty of working on one huge matrix repre-
senting the whole graph. Second, the framework is flexible
to make use of different types of link information to iden-
tify the cluster structures for each type of nodes. Third, the
framework allows the cluster structures of different types of
nodes to interact with each other, i.e., clustering one type of
nodes can be viewed as a dynamic dimension reduction for
other types of nodes. Fourth, cluster pattern matricesD(i)

andB(ij) provide an intuitive summary of link patterns in a
complex graph.

To avoid the clutter, in the following algorithm derivation,
we work on a basic type of complex graph,G = (V1,V2, E),
in which there exist homogeneous links withinV1 and het-
erogeneous links betweenV1 andV2. However, all the dis-
cussions in the rest of the paper can be easily extended to a

general complex graph. The basic type graph can be repre-
sented as{S ∈ Rn1×n1

+ ,A ∈ Rn1×n2
+ }. Then, the objective

function is simplified as follows (for convenience, we omit
weight coefficients),

L = D(S,C(1)D(C(1))T ) + D(A,C(1)B(C(2))T ), (4)

Hard clustering on complex graphs
First we derive a clustering algorithm for complex graphs
based on the most popular distance function, Euclidean dis-
tance function. Under Euclidean distance function, our task
is

min
C(1),C(2),D,B

||S−C(1)D(C(1))T ||2+||A−C(1)B(C(2))T ||2.
(5)

We present the following theorem which is the basis of
our algorithm.

Theorem 1. If C(1) ∈ {0, 1}n1×k1 , C(2) ∈ {0, 1}n2×k2 ,
D ∈ Rk1×k1 andB ∈ Rk1×k2 is the optimal solution to the
minimization in(5), then

D = ((C(1))T C(1))−1(C(1))T SC(1)((C(1))T C(1))−1

(6)

B = ((C(1))T C(1))−1(C(1))T AC(2)((C(2))T C(2))−1

(7)

Proof. Let L denote the objective function in (5).L can be
expanded as follows.

L = tr((S−C(1)D(C(1))T )T (S−C(1)D(C(1))T ))

+tr((A−C(1)B(C(2))T )T (A−C(1)B(C(2))T ))

= tr(ST S)− 2tr(C(1)DT (C(1))T S) +

tr(C(1)DT (C(1))T C(1)D(C(1))T ) + tr(AT A)

−2tr(C(2)BT (C(1))T A)

+tr(C(2)BT (C(1))T C(1)B(C(2))T ).

Take the derivative with respect toD andB, we obtain

∂L

∂D
= −2(C(1))T SC(1) + 2(C(1))T C(1)D(C(1))T C(1).

(8)
∂L

∂B
= −2(C(1))T AC(3) + 2(C(1))T C(1)B(C(2))T C(2).

(9)
According to KKT conditions, we solve∂L

∂D = 0 and ∂L
∂B =

0 to obtain Eq.(6) and Eq.(7). This completes the proof of
the theorem.

Based on Theorem 1, we propose an alternative optimiza-
tion algorithm, which alternatively updatesD, B, C(1) and
C(2) until convergence. Eqs (6) and (7) provide the updat-
ing rules forD andB, respectively, whileC(1) andC(2) are
fixed. The updating rules (6) and (7) can be implemented
more efficiently than it appears. First, they do not really in-
volve computing inverse matrices, since(C(1))T C(1) and



(C(2))T C(2) are special diagonal matrices with the size of
each cluster on its diagonal; second, the product ofCT AC
can be calculated without matrix multiplication, sinceC(1)

andC(2) are indicator matrices.
Then, we fixD, B andC(2) to updateC(1). Since each

row of C(1) is an indicator vector with only one element
equal to 1, we adopt the re-assignment procedure to update
C(1) row by row. To updatehth row ofC(1), we have

C(1)
hp∗ = 1 for p∗ = arg min

p
Lp (10)

whereLp denotes the objective function when thehth node
is assigned to thepth cluster. The updating rule re-assigns
each node to the cluster such that the objective function is
minimized at the current step. Note that the necessary com-
putation does not involve the whole objective function. Sim-
ilarly, we have the updating rule forC(2),

C(2)
hp∗ = 1 for p∗ = arg min

p
Lp. (11)

Since different complex graphs from different applica-
tions may have different statistical properties, Euclidean dis-
tance, which corresponds to normal distribution assump-
tion, is not appropriate for all graphs. A large num-
ber of useful distance functions, such as Euclidean dis-
tance, generalized I-divergence, and KL divergence, can be
generalized as the Bregman divergences (S.D.Pietra 2001;
Banerjee et al. 2004b), which correspond to a large number
of exponential family distributions. Due to the following
nice properties of Bregman divergences, Theorem 1 holds
true for all Bregman divergences.

Theorem 2. Let X be a random variable taking values in
X = {xi}n

i=1 ⊂ S ⊆ Rd following distributionv. Given a
Bregman divergenceDφ : S×int(S) 7→ [0,∞), the problem

min
s∈S

Ev[Dφ(X, s)] (12)

has a unique minimizer given bys∗ = Ev[X].
The proof of Theorem 2 is omitted (please refer to

(S.D.Pietra 2001; Banerjee et al. 2004b)). Theorem 2 states
the optimal estimation of a Bregman representative is always
the mean of a sample. In the objective function (4) under a
Bregman divergence,D andB contains Bregman represen-
tatives of edge weights between or within clusters of nodes.
When cluster membershipsC(1) andC(2) are given, accord-
ing to Theorem 2, the optimalBpq is obtained as the mean
edge weights between thepth cluster ofV1 and theqth clus-
ter ofV2

Bpq =
1

|π(1)
p ||π(2)

q |
∑

i∈π
(1)
p ,j∈π

(2)
q

Aij , (13)

whereπ
(1)
p andπ

(2)
q denote thepth cluster ofV1and theqth

cluster ofV2, respectively. If we write Eq (13) in a matrix
form by using the cluster indicator matrices, we obtain Eq.
(7), i.e., Eq. (7) holds true for all Bregman divergences.
Similarly, Eq. (6) holds true for all Bregman divergences.
As for updating rules (10) and (11), they work well for any

distance function as long as the objective function is calcu-
lated based on the corresponding distance function.

Hence, we obtain a general clustering algorithm for com-
plex graphs under various Bregman divergences, which it-
eratively updates cluster indicator matrices and cluster pat-
tern matrices by using the updating rules (6), (7), (10) and
(11) (similar updating rules for a general complex graph also
hold true) until convergence. The computational complexity
of the algorithm isO(tmn2k) for a general complex graph,
wheret denotes the number of iterations,n = max{ni}m

i=1
andk = max{ki}m

i=1. Based on Theorem 1, Theorem 2,
and the criteria for reassignment in (10) and (11), the objec-
tive function is non-increasing under these updating rules.
Therefore, the convergence of the algorithm is guaranteed.

Soft clustering on complex graphs
In this section, we derive alternative optimization algorithms
for soft clustering on complex graphs based on the ideas
of the bound optimization procedure (Salakhutdinov and
Roweis 2003; Lee and Seung 2000). The basic idea is
to construct an auxiliary function which is a convex upper
bound for the original objective function based on the solu-
tion obtained from the previous iteration. Then, a new so-
lution to the current iteration is obtained by minimizing this
upper bound. The definition of the auxiliary function and a
useful lemma (Lee and Seung 2000) are given as follows.

Definition 3. G(S, St) is an auxiliary function forF (S) if
G(S, St) ≥ F (S) andG(S, S) = F (S).

Lemma 4. If G is an auxiliary function, then F
is non-increasing under the updating ruleSt+1 =
arg min

S
G(S, St).

First, we derive an algorithm under Euclidean distance
function. The most difficult part is the updating rule for
C(1), since the objective function involves bothC(1) and
(C(1))T . We propose an auxiliary function forC(1) in the
following theorem.

Lemma 5.

G(C
(1)

, C̃
(1)

) =
X

i,j

(S
2
ij +

X

g,h

([C̃
(1)

D(C̃
(1)

)
T

]ijC̃
(1)
ig DghC̃

(1)
jh

(C
(1)
ig )4

(C̃
(1)
ig )4

− 2SijC̃
(1)
ig DghC̃

(1)
jh

(1 + 2 log C
(1)
ig − 2 log C̃

(1)
ig ))) +

X

i,l

(A
2
il

+
X

g

(
1

2
[C̃

(1)
B(C

(2)
)
T

]ilC̃
(1)
ig [B(C

(2)
)
T

]gl

(
(C

(1)
ig )4

(C̃
(1)
ig )4

+ 1)− 2AilC̃
(1)
ig [B(C

(2)
)
T

]gl

(1 + log C
(1)
ig − log C̃

(1)
ig ))) (14)

is an auxiliary function for

F (C
(1)

) = ||S−C
(1)

D(C
(1)

)
T ||2 + ||A−C

(1)
B(C

(2)
)
T ||2. (15)

Proof.

F (C
(1)

) =
X

i,j

(Sij − [C
(1)

D(C
(1)

)
T

]ij)
2



+
X

i,l

(Ail − [C
(1)

B(C
(2)

)
T

]il)
2

≤
X

i,j

X

g,h

C̃
(1)
ig DghC̃

(1)
jh

[C̃(1)D(C̃(1))T ]ij

(Sij −
[C̃(1)D(C̃(1))T ]ij

C̃
(1)
ig DghC̃

(1)
jh

C
(1)
ig DghC

(1)
jh )

2
+
X

i,l

X
g

C̃
(1)
ig [B(C(2))T ]gl

[C̃(1)B(C(2))T ]il

(Ail −

[C̃(1)B(C(2))T ]il

C̃
(1)
ig [B(C(2))T ]gl

[C
(1)

B(C
(2)

)
T

]il)
2

=
X

i,j

(S
2
ij +

X

g,h

([C̃
(1)

D(C̃
(1)

)
T

]ijC̃
(1)
ig DghC̃

(1)
jh

(C
(1)
ig )2(C

(1)
jh )2

(C̃
(1)
ig )2(C̃

(1)
jh )2

− 2SijC
(1)
ig DghC

(1)
jh )) +

X

i,l

(A
2
il

+
X

g

([C̃
(1)

B(C
(2)

)
T

]ilC̃
(1)
ig [B(C

(2)
)
T

]gl

(C
(2)
ig )2

(C̃
(2)
ig )2

− 2AilC
(1)
ig [B(C

(2)
)
T

]gl))

≤
X

i,j

(S
2
ij +

X

g,h

(
1

2
[C̃

(1)
D(C̃

(1)
)
T

]ijC̃
(1)
ig DghC̃

(1)
jh

(
(C

(1)
ig )4

(C̃
(1)
ig )4

+
(C

(1)
jh )4

(C̃
(1)
jh )4

)− 2SijC̃
(1)
ig DghC̃

(1)
jh (1 + log C

(1)
ig

+ log C
(1)
jh − log C̃

(1)
ig − log C̃

(1)
jh ))) +

X

i,l

(A
2
il +

X
g

(
1

2
[C̃

(1)
B(C

(2)
)
T

]ilC̃
(1)
ig [B(C

(2)
)
T

]gl(
(C

(2)
ig )4

(C̃
(2)
ig )4

+ 1)

−2AilC̃
(1)
ig [B(C

(2)
)
T

]gl(1 + log C
(1)
ig − log C̃

(1)
ig )))

= G(C
(1)

, C̃
(1)

)

During the above deduction, we uses Jensen’s inequality,
convexity of the quadratic function and inequalities,x2 +
y2 ≥ 2xy andx ≥ 1 + log x.

The following theorem provides the updating rule for
C(1).
Theorem 6. The objective functionF (C(1)) in Eq.(15) is
nonincreasing under the updating rule,

C
(1)

= C̃
(1) ¯ (

SC̃(1)D + 1
2AC(2)BT

C̃(1)D(C̃(1))T C̃(1)D + 1
2 C̃(1)B(C(2))T C(2)BT

)
1
4 ,

(16)

whereC̃(1) denotes the solution from the previous iteration,
¯ denotes entry-wise product, and the division between two
matrices is entry-wise division.

Proof. Solve ∂G(C(1),C̃(1))

∂C
(1)
ig

= 0 and write the solution into

the matrix form to obtain (16). Then, by Lemma (4), The ob-
jective function in (15) is nonincreasing under this updating
rule.

Similarly, by designing appropriate auxiliary functions
(details are omitted due to the space limit), we obtain the
updating rules forC(2), D andB,

C(2) = C̃(2) ¯ (
AT C(1)B

C̃(2)BT (C(1))T C(1)B
) (17)

D = D̃¯ (
(C(1))T SC(1)

(C(1))T C(1)D̃(C(1))T C(1)
) (18)

B = B̃¯ (
(C(1))T AC(2)

(C(1))T C(1)B̃(C(2))T C(2)
) (19)

Unfortunately, unlike the hard clustering, the above up-
dating rules do not hold true for all Bregman divergences.
For different divergences, we need to design different auxil-
iary functions to derive updating rules.

A Unified View to Graph Partitioning
The traditional graphs of single-type nodes can be viewed
as a special case of complex graphs, i.e., we have only one
graph affinity matrixS. When applied to this special case,
the proposed framework actually provides a family of new
graph partition algorithms with both hard and soft versions.

Existing graph partitioning approaches are mainly based
on the edge cut objectives, such as ratio association (Shi
and Malik 2000), ratio cut (Chan, Schlag, and Zien 1993),
Kernighan-Lin objective (Kernighan and Lin 1970), and nor-
malized cut (Shi and Malik 2000), which can be formulated
as the following trace maximization (Dhillon, Guan, and
Kulis 2004), i.e.,max tr(CT SC), Typically, C is formu-
lated as a weighted indicator matrix such thatCT C = I,
whereI is an identity matrix.

We propose the following theorem to show that the edge
cut objectives are mathematically equivalent to a special
case of the proposed framework. To be consistent with
the tradition in edge cut objects, in the following theorem,
we assume thatC is a weighted indicator matrix such that
CT C = I.
Theorem 7. The minimization

min
CT C=I,D=rI

||S−CDCT ||2 (20)

is equivalent to the maximization

max
CT C=I

tr(CT SC), (21)

wherer is a positive constant and tr denotes the trace of a
matrix.

Proof. Let L denote the objective function in Eq. 20.

L = ||S−C(rI)CT ||2
= tr(ST S)− 2rtr(CCT S) + r2tr(CCT CCT )

= tr(ST S)− 2rtr(CT SC) + r2k

Since tr(ST S), r andk are constants, the minimization ofL
is equivalent to the maximization of tr(CT SC). The proof
is completed.

Theorem 7 states that the traditional edge cut objectives
are equivalent to a special case of the complex graph clus-
tering, clustering on a homogeneous graph under Euclid-
ean distance with cluster pattern matrixD restricted to be
of form rI, i.e., a diagonal matrix. Based on this connec-
tion, edge cut objectives make two implicit assumptions for
a graph. First, Euclidean distance in Theorem 7 implies nor-
mal distribution assumption for the edge weights in a graph.
Second, the diagonal constraint onD assumes that a cluster
of nodes always forms a strongly intra-connected subgraph.



These two assumptions are not always true in real applica-
tions. The distribution of edge weights could deviate from
normal distribution; a cluster of nodes could weakly intra-
connected but have the same link pattern, i.e., they all are
strongly linked to another set of nodes (Long et al. 2007).
On the other hand, the proposed framework and algorithms
are flexible to avoid these assumptions when necessary.

Related work
Traditional graph clustering mainly focus on homogeneous
graphs of single-type nodes. Graph partitioning divides
a graph into subgraphs by finding the best edge cuts of
the graph. Several edge cut objectives, such as the aver-
age cut (Chan, Schlag, and Zien 1993), average associa-
tion (Shi and Malik 2000), normalized cut (Shi and Ma-
lik 2000), and min-max cut (Ding et al. 2001), have been
proposed. Various spectral algorithms have been developed
for these objective functions (Chan, Schlag, and Zien 1993;
Shi and Malik 2000; Ding et al. 2001). Multilevel meth-
ods have been used extensively for graph partitioning with
the Kernighan-Lin objective, which attempts to minimize
the cut in the graph while maintaining equal-sized clusters
(Hendrickson and Leland 1995; Karypis and Kumar 1998).
(Yu, Yu, and Tresp 2005) proposes the graph-factorization
clustering for soft graph partitioning, which seeks to con-
struct a bipartite graph to approximate a given graph. (van
Dongen 2000) proposes a graph clustering algorithm based
on flow simulation. (Shental et al. 2004) formulates graph
clustering as inferences in an undirected graphical model.

Clustering on a special case of a complex graphs, a bi-
partite graph consisting of two types of nodes, has been
touched in the literature as co-clustering. (Dhillon 2001)
proposes a spectral approach on a bi-partite graph. A gen-
eralized co-clustering framework is presented by (Baner-
jee et al. 2004a) wherein any Bregman divergence can be
used in the objective function. Another special case of a
complex graph is a k-partite graph consisting of multi-type
nodes. (Long et al. 2006) proposes a framework of re-
lation summary network to cluster k-partite graphs. (Gao
et al. 2005) proposes an algorithm based on semi-definite
programming for clustering star-structured k-partite graphs.
Note that these approaches focus on special complex graphs
with only heterogeneous links and cannot make use of ho-
mogeneous link information.

Experiments
We consider the task of learning cluster structures from a
collection of linked documents, such as a collection of cited
papers or a collection of linked Web pages. The linked doc-
uments can be formulated as a complex graph of document
nodes and word nodes, in which there are homogeneous
links within document nodes and heterogeneous links be-
tween document and word nodes.

In this study, we use benchmark document data sets from
the 20-newsgroups (Lang 1995), WebACE and TREC (tre ),
which cover data sets of different sizes, different balances
and different levels of difficulties. The documents are pre-
processed by removing the stop words. We construct com-

Table 1: Summary of data sets for constructing complex
graphs.

Name n k Balance Source
tr11 414 9 0.046 TREC
tr45 690 10 0.0856 TREC

NG1-20 14000 20 1.0 20-newsgroups
k1b 2340 6 0.043 WebACE

plex graphs as follows. The link weights between document
nodes and word nodes are TF-IDF weights; since the ex-
plicit link information is not available, the links between
two documents are simulated based on Bernoulli distribu-
tion such that the documents from the same cluster link to
each other with probability0.2 and the documents form the
different clusters link to each other with probability0.1. Un-
der this construction, both homogeneous and heterogeneous
links provide information for the cluster structures. A sum-
mary of all the data sets to construct complex graphs used in
this paper is shown in Table 1, in whichn denotes the num-
ber of documents,k denotes the number of true document
clusters, andbalancedenotes the size ratio of the smallest
clusters to the largest clusters.

We compare our Hard Complex Graph Clustering
(HCGC) and Soft Complex Graph Clustering (SCGC) un-
der Euclidean distance with three representative algorithms.
The first one is a classic graph partitioning algorithm, Nor-
malized Cut Graph Partitioning (NCGP), which is capable of
using homogeneous links; the second is Spectral Bi-partite
Graph Clustering (SBGC), which is capable of using het-
erogeneous links in a bi-partite graph. To our best knowl-
edge, there are no clustering algorithms for general com-
plex graphs in the literature. However, (Neville, Adler, and
Jensen 2003) proposes an approach, Spectral Graph Clus-
tering using both Links and Attributes (SGCLA), which is
able to use both link and word information by treating word
information as attributes. We use SGCLA as the third com-
parison algorithm.

For the number of clustersk, we simply use the number
of the true document clusters. For performance measure,
we elect to use the Normalized Mutual Information (NMI)
(Strehl and Ghosh 2002) between the resulting cluster labels
and the true cluster labels, which is a standard way to mea-
sure the cluster quality. The final performance score is the
average of ten runs.

Since NCGP makes use of only homogeneous links and
SBGC makes use of only heterogeneous links, we actu-
ally have three types of graphs in the experiments, complex
graphs of both homogeneous and heterogeneous links (the
results are reported with suffix ”-all”), homogeneous graphs
of only homogeneous links (with suffix ”-ho”); bi-partite
complex graphs of only heterogeneous links (with suffix ”-
he”). The NMI scores are reported in Table 2. First, we ob-
serve that CGC algorithms always provide the best perfor-
mances when using both homogeneous and heterogeneous
links. For example, for the difficult tr23 data, compared with
SGCLA, HCGC increases performance about40%. Second,
for the bipartite graphs of only heterogeneous links, CGC



Table 2: NMI scores comparison
Algorithm tr23 tr45 k1b NG1-20
NCGP-ho 0.239± 0.019 0.528± 0.022 0.399± 0.009 0.296± 0.020
SBGC-he 0.272± 0.034 0.539± 0.029 0.493± 0.016 0.380± 0.030
SGCLA-all 0.358± 0.006 0.701± 0.012 0.554± 0.016 0.538± 0.011
HCGC-ho 0.321± 0.030 0.653± 0.033 0.481± 0.029 0.331± 0.035
SCGC-ho 0.330± 0.021 0.642± 0.035 0.493± 0.019 0.403± 0.019
HCGC-he 0.313± 0.033 0.563± 0.029 0.553± 0.017 0.402± 0.017
SCGC-he 0.307± 0.026 0.570± 0.034 0.573± 0.021 0.413± 0.023
HCGC-all 0.501± 0.027 0.801± 0.035 0.613± 0.012 0.540± 0.031
SCGC-all 0.490± 0.024 0.793± 0.028 0.640± 0.007 0.590± 0.018

algorithms perform slightly better than SBGC. This verifies
the effectiveness of CGC algorithms on the bi-partite com-
plex graphs. Third, We observe that CGC algorithms per-
form better than NCGP on the homogeneous graphs of only
homogeneous links. This demonstrates the great potential of
CGC algorithms as new graph partitioning algorithms. Be-
sides the document clusters, the CGC algorithms also pro-
vide the word clusters and the relations between document
clusters and word clusters, which are very useful to identify
the topics of the document clusters. Finally, it is worth to
note that although the Euclidean distance function is most
popular, CGC algorithms under other Bregman divergences
may be more desirable in specific complex graph cluster-
ing applications depending on the statistical properties of the
graphs.

Conclusions
We have proposed a general framework and a family of al-
gorithms to cluster different types of nodes in a complex
graph by using both homogeneous and heterogeneous links.
Experiments show encouraging results. Future work may
include automatic learning the number of clusters and a
through investigation on more complex graphs from various
applications.
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