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Abstract

Complex graphs, in which multi-type nodes are linked to
each other, frequently arise in many important applications,
such as Web mining, information retrieval, bioinformatics,
and epidemiology. In this study, We propose a general frame-
work for clustering on complex graphs. Under this frame-
work, we derive a family of clustering algorithms including
both hard and soft versions, which are capable of learning
cluster patterns from complex graphs with various structures
and statistical properties. We also establish the connections
between the proposed framework and the traditional graph
partitioning approaches. The experimental evaluation pro-
vides encouraging results to validate the proposed framework
and algorithms.

Introduction

Graph clustering has traditionally focused on homogeneous
graphs consisting of nodes of a single type. However, many
examples of real-world graphs involve multi-type nodes
linking to each other (we refer them as complex graphs in
this study). There are two types of links in a complex graph:

how to cut different types of links to get meaningful parti-
tions; how to interpret the resulting partitions consisting of
different types of nodes. Note that different types of nodes
have different cluster structures; partitioning them into the
same groups cannot tell this difference.

Another intuitive thought for complex graph learning is
to transform a complex graph into a set of small graphs of
single-type nodes and learn from each small graph individ-
ually. However, it is very difficult, if not impossible, to do
the transformation without information loss. Furthermore,
learning the hidden structures for each type of nodes individ-
ually cannot provide useful global structures of a complex
graph. For example, for a complex graph of document and
word nodes, besides the cluster structures for documents and
words, respectively, the relations between document clusters
and word clusters are also very useful.

Hence, complex graphs have presented a great challenge
to graph clustering. In this paper, we propose a general
framework for clustering on complex graphs. By represent-
ing a complex graph as a set of related matrices, cluster-
ing on a complex graph is formulated as the problem of re-
lated matrix approximation under an certain distance func-

homogeneous links within the same type of nodes and het- tion. Under this framework, we consider both hard and soft
erogeneous links between two different types of nodes. For clustering. A hard clustering algorithm is derived and gener-
example, in a complex graph consisting of paper nodes and alized to various Bregman divergences. The soft clustering
author nodes from a scientific publication domain, papers algorithms are derived based on the bound optimization pro-
are linked to each other by citations (homogeneous links) cedure (Salakhutdinov and Roweis 2003). We also investi-
and papers and authors are linked to each other by author-gate the relation between the proposed framework and the
ship (heterogeneous links); in a complex graph from Web edge cut objectives to provide a unified view to traditional
search system, Web pages are linked to each other by ho-graph partitioning approaches.

mogeneous links and there are heterogeneous links between

Web pages, search queries, and Web users; a collection
of documents has been formulated as a bi-partite complex
graphs with heterogeneous links between document nodes
and word nodes (Dhillon 2001).

In general, it is very difficult for traditional graph cluster-
ing approaches to learn hidden cluster patterns from a com-
plex graph, since they simply treat all the nodes as the same
type. For example, when applying a traditional graph parti-
tioning approach to a complex graph, we face two problems:

Problem Formulation

Suppose that we are given an undirected complex graph
with non-negative edge weights; = ({V;}>,,&), where
{V;}, denotesm sets of different types of nodes, and

£ denotes the edges in the graph. Rather than using one
affinity matrix to represent the whole graph, we represent
a complex graph as a set of related matri¢¢8() ¢

R mm (A6 e Ry My 3, whereS®) repre-
sents the edge weights for the homogeneous links within
Vi AU represents the edge weights for the heterogeneous
links betweenV; andV;; n; denotes the number of nodes
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in V;. For convenience, here we assume that every type
of nodes has homogeneous links within them and hetero-
geneous links to all other types of nodes.

We letC? € R"** denote the cluster membership ma-

trix for each type of node®; such thatCI(;‘,} denote the
weight that thepth node inV; is associated with thgth clus-
ter. The intra-type cluster pattern matiiX?) e R**%: de-
notes the link patterns within the same type of nodes such

that ng) denotes the link strength between thi clus-
ter and thegth cluster ofV;. The inter-type pattern matrix
B(7) ¢ R¥F*ki denotes the link patterns between the differ-

ent types of nodes such thB ’”q]) denotes the link strength
between theth cluster of); and thegth cluster of);. Inthe
above formulationg; is a given number of clusters. Then,
we formulate the objective function of clustering on a com-
plex graph as following,

L = Z w(i)@(s(i)7 cOP® (C(i))T)
i=1

+ 3 W DAE), cOBE) (CONT), (1)

i,j=1

where® denotes a given distance functian’, andw?® de-
note the given weight coefficients for users to express the
importance for different sets of links.

In this study, we examine both hard and soft clustering
tasks, which are formulated as follows. In the following for-
mulation,1 denotes a vector consisting 1's ahdenotes an
identity matrix.

e Hard clustering C® is an cluster indicator matrix.

arg minc(i) €{0,1}™i Xk 7C(i) 1:1,D(i) cRFi X ki ,B(ij) E]Rk, Xk L
)
e Soft clustering C() is non-negative and with appropri-
ate normalization it can be interpreted as the soft weights
for the cluster membership.

arg min kyxcky L

%

The proposed framework has the following advantages.
First, for a large complex graph, the framework avoids the
computation difficulty of working on one huge matrix repre-
senting the whole graph. Second, the framework is flexible
to make use of different types of link information to iden-
tify the cluster structures for each type of nodes. Third, the
framework allows the cluster structures of different types of
nodes to interact with each other, i.e., clustering one type of

C(i')GRii X kg ,D(j’) GRT Xkj ’B(ij) cR

general complex graph. The basic type graph can be repre-
sented a§S € R* ", A € R**"2}. Then, the objective
function is simplified as follows (for convenience, we omit
weight coefficients),

L=29(S,CYUDCNT) + D4, cHB(C)T), (4)

Hard clustering on complex graphs

First we derive a clustering algorithm for complex graphs
based on the most popular distance function, Euclidean dis-
tance function. Under Euclidean distance function, our task
is

IS—COD(CO)T||24|A—CHB(CP) T2,

®)
We present the following theorem which is the basis of
our algorithm.

Theorem 1. If C) ¢ {0,1}*k1 C) ¢ {0,1}72%Fz,
D < R¥>*k1 and B € R **2 js the optimal solution to the
minimization in(5), then

min
c),c® ,D,B

D = ((C(l))TC(l))—l(C(l))TSC(l)((C(l))TC(l))_l
(6)
B = ((C(l))Tc(l))—l(C(l))TAC(z)((C(g))TC(z)),l
(1)

Proof. Let L denote the objective function in (5. can be
expanded as follows.

tr((S — cWD(C)NT(s - cVD(CM)T))
+tr((A — CcHB(CO)TT(A — cHB(C®)TY)
tr(8”S) — 2r(CHUDT(CMTS) +
tr(CODT(CTCODCNT) +tr(ATA)
—2tr(C@BT(CM)TA)
+tr(C@BT(CcM)TcHB(C®)T).

L

Take the derivative with respect 10 andB, we obtain

gi — _o(CcW)TSCM 4 2T CO p(cMyT ),
D

(8)

gLL _ _o(C)TAC® 4 2(CV)TCIB(CP)TC®.
B

9)

According to KKT conditions, we solvds = 0 and 2%
0 to obtain Eq.(6) and Eq.(7). This completes the proof of
O

nodes can be viewed as a dynamic dimension reduction for the theorem.

other types of nodes. Fourth, cluster pattern matrio&s
andB () provide an intuitive summary of link patterns in a
complex graph.

To avoid the clutter, in the following algorithm derivation,
we work on a basic type of complex gragh= (V1, Vs, £),
in which there exist homogeneous links withih and het-
erogeneous links betweén and),. However, all the dis-

Based on Theorem 1, we propose an alternative optimiza-
tion algorithm, which alternatively updaté&, B, C(*) and
C® until convergence. Egs (6) and (7) provide the updat-
ing rules forD andB, respectively, whil&C") andC®) are
fixed. The updating rules (6) and (7) can be implemented
more efficiently than it appears. First, they do not really in-

cussions in the rest of the paper can be easily extended to avolve computing inverse matrices, sing€™)TC(® and



(CHTC® are special diagonal matrices with the size of distance function as long as the objective function is calcu-

each cluster on its diagonal; second, the product6#C lated based on the corresponding distance function.

can be calculated without matrix multiplication, sincé!) Hence, we obtain a general clustering algorithm for com-

andC® are indicator matrices. plex graphs under various Bregman divergences, which it-
Then, we fixD, B andC® to updateC"). Since each eratively updates cluster indicator matrices and cluster pat-

row of C1) is an indicator vector with only one element t€rn matrices by using the updating rules (6), (7), (10) and

equal to 1, we adopt the re-assignment procedure to update(ll) (similar updating rules for a general complex graph also

C() row by row. To updatéth row of C(1), we have hold true) until convergence. The computational complexity
' ' of the algorithm isO(tmn?2k) for a general complex graph,

wheret denotes the number of iterations = max{n; }" ,
andk = max{k;}!",. Based on Theorem 1, Theorem 2,
whereL, denotes the objective function when thih node and the criteria for reassignment in (10) and (11), the objec-

is assigned to theth cluster. The updating rule re-assigns tive function is non-increasing under th_ese _updating rules.
each node to the cluster such that the objective function is 1herefore, the convergence of the algorithm is guaranteed.

minimized at the current step. Note that the necessary com-

C;LQ* = 1forp* = argmin L, (20)
P

putation does not involve the whole objective function. Sim-
ilarly, we have the updating rule f&z(?,

C(z) _

hpe = 1 for p* = arg mpin L,. (12)

Since different complex graphs from different applica-

Soft clustering on complex graphs

In this section, we derive alternative optimization algorithms
for soft clustering on complex graphs based on the ideas
of the bound optimization procedure (Salakhutdinov and
Roweis 2003; Lee and Seung 2000). The basic idea is
to construct an auxiliary function which is a convex upper

tions may have different statistical properties, Euclidean dis- bound for the original objective function based on the solu-
tance, which corresponds to normal distribution assump- tion obtained from the previous iteration. Then, a new so-
tion, is not appropriate for all graphs. A large num- |ution to the current iteration is obtained by minimizing this
ber of useful distance functions, such as Euclidean dis- upper bound. The definition of the auxiliary function and a

tance, generalized I-divergence, and KL divergence, can be useful lemma (Lee and Seung 2000) are given as follows.

generalized as the Bregman divergences (S.D.Pietra 2001

Banerjee et al. 2004b), which correspond to a large number

of exponential family distributions. Due to the following
nice properties of Bregman divergences, Theorem 1 holds
true for all Bregman divergences.

Theorem 2. Let X be a random variable taking values in
X ={x}r,CcSC R? following distributionv. Given a
Bregman divergenc®, : S xint(S) — [0, o), the problem

min By [Dy(X, )] (12)

has a unique minimizer given By = E,[X].
The proof of Theorem 2 is omitted (please refer to

(S.D.Pietra 2001; Banerjee et al. 2004b)). Theorem 2 states

the optimal estimation of a Bregman representative is always
the mean of a sample. In the objective function (4) under a
Bregman divergencd) andB contains Bregman represen-
tatives of edge weights between or within clusters of nodes.
When cluster membershigg) andC?) are given, accord-
ing to Theorem 2, the optimd,,, is obtained as the mean
edge weights between thwh cluster of); and thegth clus-

ter of V,
1
ST P
P D jen
wherer'!) and=?) denote thesth cluster ofy’;and thegth

cluster ofV,, respectively. If we write Eq (13) in a matrix

form by using the cluster indicator matrices, we obtain Eq.
(7), i.e., Eg. (7) holds true for all Bregman divergences.
Similarly, Eg. (6) holds true for all Bregman divergences.
As for updating rules (10) and (11), they work well for any

' Definition 3. G(S, S*) is an auxiliary function forF'(S) if

G(S,8%) > F(S)andG(S, S) = F(S).

Lemma 4. If G is an auxiliary function, then F
is non-increasing under the updating rulg®+!
argmsinG(S,St).

First, we derive an algorithm under Euclidean distance
function. The most difficult part is the updating rule for
CM), since the objective function involves bo@(") and
(CN)T, We propose an auxiliary function f@ (" in the
following theorem.

Lemma 5.
(1) &) 2 =< (1) ATy A~ ~ (1)
G(C ,C ) (Sij—"_ ([C D(C ) ]mcig Dghcjh,
i, g,h
(1)y4
C; - .
) s,y
CRIE ‘

<
(A%
il

(1+2log CE;) — 2log CE;)))) +
1 -~ -
+ (GIEYBEM)uC)BEC) ],
g
(1)\4
(&35!

(<é£;’>4

+1) — 24, € [B(CP)",

(1+1logC{)) —log C{})))) 4
is an auxiliary function for

F(EW) = |Is - cWDE)T|]? +[j14 - cVBE)T|P. (15)
Proof.

< .
(8i; — [€WD(CM)T;)?

F(CcW)
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i,
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[CODEM)T];

+
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ij
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During the above deduction, we uses Jensen’s inequality,
convexity of the quadratic function and inequalitie$, +
y? > 2xy andx > 1+ log . O

The following theorem provides the updating rule for
cw.
Theorem 6. The objective functio(C™)) in Eq(15) is
nonincreasing under the updating rule,
SCWD 4 LAC®BT
CODCM)TCMHD + %é(l)B(CQ))TC(Q)BT

=

c(l) — é(l) o(

)4,

~ (16)
whereC(!) denotes the solution from the previous iteration,
© denotes entry-wise product, and the division between two
matrices is entry-wise division.

1) @&
Proof. Solve 24€_C 1) _
aC!

the matrix form to obtain (16). Then, by Lemma (4), The ob-
jective function in (15) is nonincreasing under this updating
rule. O

0 and write the solution into

Similarly, by designing appropriate auxiliary functions
(details are omitted due to the space limit), we obtain the
updating rules foC®), D andB,

T 1
c® _ g ATCYUB ) an
COBT(CH)TCHB
_ TS
D - Do(— ) SC ) (18)

(c(l))Tc(l)ﬁ(c(l))Tc(l)

(C(l))TAC(Q)
(CONTCHB(C@)TC
Unfortunately, unlike the hard clustering, the above up-
dating rules do not hold true for all Bregman divergences.

For different divergences, we need to design different auxil-
iary functions to derive updating rules.

B Bo(

5 (19)

A Unified View to Graph Partitioning

The traditional graphs of single-type nodes can be viewed
as a special case of complex graphs, i.e., we have only one
graph affinity matrixS. When applied to this special case,
the proposed framework actually provides a family of new
graph partition algorithms with both hard and soft versions.

Existing graph partitioning approaches are mainly based
on the edge cut objectives, such as ratio association (Shi
and Malik 2000), ratio cut (Chan, Schlag, and Zien 1993),
Kernighan-Lin objective (Kernighan and Lin 1970), and nor-
malized cut (Shi and Malik 2000), which can be formulated
as the following trace maximization (Dhillon, Guan, and
Kulis 2004), i.e.,maxtr(CTSC), Typically, C is formu-
lated as a weighted indicator matrix such ti@&tC = I,
wherel is an identity matrix.

We propose the following theorem to show that the edge
cut objectives are mathematically equivalent to a special
case of the proposed framework. To be consistent with
the tradition in edge cut objects, in the following theorem,
we assume tha is a weighted indicator matrix such that
cf’c=1
Theorem 7. The minimization

min  ||S — CDC”|? (20)
cTc=1,D=rI
is equivalent to the maximization
max tr(CTSC), (21)

cTC=I

wherer is a positive constant and tr denotes the trace of a
matrix.

Proof.
L

Let L denote the objective function in Eq. 20.
IS —cneh|?

tr(8”S) — 2rtr(CCT'S) + r*tr(ccrcch)
tr(STS) — 2rtr(CTSC) + 2k

Since t(ST'S), r andk are constants, the minimization bf
is equivalent to the maximization of(€”'SC). The proof
is completed.

Theorem 7 states that the traditional edge cut objectives
are equivalent to a special case of the complex graph clus-
tering, clustering on a homogeneous graph under Euclid-
ean distance with cluster pattern matfixrestricted to be
of form r1, i.e., a diagonal matrix. Based on this connec-
tion, edge cut objectives make two implicit assumptions for
a graph. First, Euclidean distance in Theorem 7 implies nor-
mal distribution assumption for the edge weights in a graph.
Second, the diagonal constraint Bhassumes that a cluster
of nodes always forms a strongly intra-connected subgraph.



These two assumptions are not always true in real applica-

tions. The distribution of edge weights could deviate from 1aPle 1 Summary of data sets for constructing complex

normal distribution; a cluster of nodes could weakly intra- 9r2Phs.

connected but have the same link pattern, i.e., they allare |_Name | n | k [ Balance]  Source |

strongly linked to another set of nodes (Long et al. 2007). trll 414 | 9 | 0.046 TREC

On the other hand, the proposed framework and algorithms tr45 690 | 10 | 0.0856 TREC

are flexible to avoid these assumptions when necessary. NG1-20 | 14000 | 20 1.0 20-newsgroups
klb 2340 | 6 0.043 WebACE

Related work

Traditional graph clustering mainly focus on homogeneous
graphs of single-type nodes. Graph partitioning divides
a graph into subgraphs by finding the best edge cuts of .~ -7 ° " S X ;
the graph. Several edge cut objectives, such as the aver—pl'c't link information is not available, the links between

age G (Chan, Schag, and Zien 1983, average associa- g OCATIE 1S sulted based on Bernoult dtin
tion (Shi and Malik 2000), normalized cut (Shi and Ma-

: : : each other with probabilitg.2 and the documents form the

lik 2000), and min-max cut (Ding et al. 2001), have been . : . .

proposed. Various spectral algorithms have been developedd'ﬁere.m clusters I_mkto each other with probabikipl. Un-

for these objective functions (Chan, Schiag, and Zien 1993; der this construction, both homogeneous and heterogeneous
Shi and Malik 2000; Ding et al 2601) Multilevel meth-  Inks provide information for the cluster structures. A sum-
ods have been used extensively for graph partitioning with Mary of all the data sets to construct complex graphs used in
the Kernighan-Lin objective, which attempts to minimize Lh; g?ﬁﬁi::]srr?gr?t\g? ('Felg,?elg tlﬁelnnvl\jmﬁge(;‘o:ﬁjsetgicnuunrgnt
the cut in the graph while maintaining equal-sized clusters

(Hendrickson and Leland 1995; Karypis and Kumar 1998) clusters, andalancedenotes the size ratio of the smallest
(Yu, Yu, and Tresp 2005) proposes the graph-factorization cIL@ters o the largest chjstgrsé | Graph Clusteri
clustering for soft graph partitioning, which seeks to con- HC(eBCcomgaéeﬂocl:Jr ?r G on;]pglx ¢ rap SCEI;SCerlng
struct a bipartite graph to approximate a given graph. (van ¢ ) and Soft Complex Graph Clustering ( ) un-
Dongen 2000) proposes a graph clustering algorithm based der Euclidean distance with three representative algorithms.

; : The first one is a classic graph partitioning algorithm, Nor-
on flow simulation. (Shental et al. 2004) formulates graph . A S
clustering as inferences in an undirected graphical model.  Malized Cut Graph Partitioning (NCGP), which is capable of

. : ; ing homogeneous links; the second is Spectral Bi-partite
Clustering on a special case of a complex graphs, a bi- using . S ;
partite graph consisting of two types of nodes, has been Sr?pgngéﬂzt?irr:rllg iﬁflsgci)i(—:)’a\rl'\c/i?::hr: ﬁap%bloeu?fbgzltnl?ng\?vﬁ:
touched in the literature as co-clustering. (Dhillon 2001) 9 P grapn.

proposes a spectral approach on a bi-partite graph. A gen- edge, there are no clustering algorithms for general com-

eralized co-clustering framework is presented by (Baner- géeﬁsgaagggé? tr;?) I'éi?;u;ﬁ'aHome; Cehr (SNe(;/ (IJI'[II’ea:|AC‘gI’|§r'hag(|jUS-
jee et al. 2004a) wherein any Bregman divergence can be prop bp ' 2P b

used in the objective function. Another special case of a tering using both Links and Atributes (SGCLA), which is

: ot g - able to use both link and word information by treating word
ﬁg?epsl’ex (?_r;? g (Iest Zlk p;(;the) g;%pphoggg S;S?rr;%g,vrgﬁl“ Otfy ?g_ information as attributes. We use SGCLA as the third com-
lation summary network to cluster k-partite graphs. (Gao palrzlso?halgontk;)m. f clust impl th b
et al. 2005) proposes an algorithm based on semi-definite _,~OF the number of clusters, we simply use the number

; ; ; of the true document clusters. For performance measure

programming for clustering star-structured k-partite graphs. ; : '
: we elect to use the Normalized Mutual Information (NMI)

Note that these approaches focus on special complex graphs(Strehl and Ghosh 2002) between the resulting cluster labels

with only heterogeneous links and cannot make use of ho- and the true cluster labels, which is a standard way to mea-

mogeneous link information. sure the cluster quality. The final performance score is the
. average of ten runs.
Experiments Since NCGP makes use of only homogeneous links and

We consider the task of learning cluster structures from a SBGC makes use of only heterogeneous links, we actu-
collection of linked documents, such as a collection of cited ally have three types of graphs in the experiments, complex
papers or a collection of linked Web pages. The linked doc- graphs of both homogeneous and heterogeneous links (the
uments can be formulated as a complex graph of document results are reported with suffix "-all’), homogeneous graphs
nodes and word nodes, in which there are homogeneous of only homogeneous links (with suffix "-ho”); bi-partite
links within document nodes and heterogeneous links be- complex graphs of only heterogeneous links (with suffix "-
tween document and word nodes. he”). The NMI scores are reported in Table 2. First, we ob-

In this study, we use benchmark document data sets from serve that CGC algorithms always provide the best perfor-
the 20-newsgroups (Lang 1995), WebACE and TREC (tre ), mances when using both homogeneous and heterogeneous
which cover data sets of different sizes, different balances links. For example, for the difficult tr23 data, compared with
and different levels of difficulties. The documents are pre- SGCLA, HCGC increases performance abtiff,. Second,
processed by removing the stop words. We construct com- for the bipartite graphs of only heterogeneous links, CGC

plex graphs as follows. The link weights between document
nodes and word nodes are TF-IDF weights; since the ex-



Table 2: NMI scores comparison

| Algorithm | tr23 \ tr45 \ kib \ NG1-20 |
NCGP-ho 0.239 £0.019 0.528 +0.022 0.399 + 0.009 0.296 £+ 0.020
SBGC-he 0.272 £0.034 0.539 £ 0.029 0.493 £ 0.016 0.380 £ 0.030
SGCLA-all | 0.358 + 0.006 0.701 £ 0.012 0.554 +£0.016 0.538 £0.011
HCGC-ho 0.321 £ 0.030 0.653 +0.033 0.481 +£0.029 0.331 £0.035
SCGC-ho 0.330 £ 0.021 0.642 £0.035 0.493 +£0.019 0.403 £ 0.019
HCGC-he 0.313 £0.033 0.563 + 0.029 0.553 +0.017 0.402 £0.017
SCGC-he 0.307 £0.026 0.570 £ 0.034 0.573 £0.021 0.413 £0.023
HCGC-all | 0.501 +=0.027 | 0.801 £0.035 | 0.613 +£0.012 0.540 £ 0.031
SCGC-all 0.490 £ 0.024 0.793 £0.028 | 0.640 £+ 0.007 | 0.590 + 0.018

algorithms perform slightly better than SBGC. This verifies
the effectiveness of CGC algorithms on the bi-partite com-
plex graphs. Third, We observe that CGC algorithms per-

form better than NCGP on the homogeneous graphs of only
homogeneous links. This demonstrates the great potential of

CGC algorithms as new graph partitioning algorithms. Be-

sides the document clusters, the CGC algorithms also pro-
vide the word clusters and the relations between document

clusters and word clusters, which are very useful to identify
the topics of the document clusters. Finally, it is worth to

note that although the Euclidean distance function is most
popular, CGC algorithms under other Bregman divergences
may be more desirable in specific complex graph cluster-
ing applications depending on the statistical properties of the

graphs.

Conclusions

We have proposed a general framework and a family of al-
gorithms to cluster different types of nodes in a complex

graph by using both homogeneous and heterogeneous links.
Experiments show encouraging results. Future work may
include automatic learning the number of clusters and a

through investigation on more complex graphs from various
applications.
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