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ABSTRACT
This paper investigates the general problem of pattern change
discovery between high-dimensional data sets. Current meth-
ods either mainly focus on magnitude change detection of
low-dimensional data sets or are under supervised frame-
works. In this paper, the notion of the principal angles be-
tween the subspaces is introduced to measure the subspace
difference between two high-dimensional data sets. Princi-
pal angles bear a property to isolate subspace change from
the magnitude change. To address the challenge of directly
computing the principal angles, we elect to use matrix fac-
torization to serve as a statistical framework and develop
the principle of the dominant subspace mapping to transfer
the principal angle based detection to a matrix factoriza-
tion problem. We show how matrix factorization can be
naturally embedded into the likelihood ratio test based on
the linear models. The proposed method is of an unsuper-
vised nature and addresses the statistical significance of the
pattern changes between high-dimensional data sets. We
have showcased the different applications of this solution in
several specific real-world applications to demonstrate the
power and effectiveness of this method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurements

Keywords
Unsupervised Learning, Pattern Change Detection, Princi-
pal Angles, Principle of Dominant Subspace Mapping, Ma-
trix Factorization
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Figure 1: The Euclidean metric fails to differentiate the
length difference from the direction difference

High dimensional data exist everywhere in our life and in
all the sectors of our society in every modality of the data
we live with today, including text, imagery, audio, video,
and graphics. Pattern change discovery from high dimen-
sional data sets is a general problem that arises in almost
every application in the real-world; examples of such ap-
plications include concept drift mining in text data, event
discovery in surveillance video data, event discovery in news
data, hot topic discovery in the literature, image pattern
change detection, as well as genome sequence change detec-
tion in bioinformatics, to just name a few.

In each of the above applications, we formulate the prob-
lem as follows. Given two typically high-dimensional data
sets, we intend to determine whether there is a significant
pattern change between the two data sets. In different ap-
plications, the physical interpretation of the two data sets
may be different. For example, in detecting any topic change
between two text documents, the two high-dimensional data
sets may be the two text documents; in detecting any con-
cept drift among a text stream, any pair of two neighboring
snapshots of the text collections in the timeline may be con-
sidered as the two high-dimensional data sets; in detecting
any pattern change between two images or two collections
of images, the two high dimensional data sets may be the
two corresponding images or the two collections of the im-
ages; in detecting any event occurred in a surveillance video
camera, the two high-dimensional data sets may be any pair
of two neighboring video frames or groups of video frames
in the video stream; in detecting any hot topics in a news
data stream, the two high-dimensional data sets may be two
neighboring sample windows of the news text data within
the stream.

One may wonder what makes high-dimensional data dif-



ferent when it comes to change detection. For almost all
the magnitude change detection methods, an invisible pit-
fall arises with the increase of data’s dimensionality. The
tricky conflict between Euclidean distance and dimensional-
ity is illustrated in Fig 1. Here we use Euclidean distance
because it is the most intuitive and popular metric. More
over, many commonly used metrics, such as L-norms, K-L
divergence, or more generally, Bregman divergence, are de-
fined based on the Euclidean distance. Fig 1 gives two pairs
of vectors (v1, v2) and (v′

1, v
′

2), and the angles, θ, θ′ between
each pair, respectively. Under Euclidean distance, ‖v1−v2‖,
and ‖v′

1 − v′

2‖ are the same. In other words, Euclidean dis-
tance fails to detect θ 6= θ′, and therefore, is unable to dif-
ferentiate the length difference from the direction difference
introduced by the dimensionality.

In fact in quite a few real-world applications, high dimen-
sional data per se do not contribute to the data vectors’ mag-
nitude change, but to a new combination of a certain subset
of the features. For example, we do not intend to conclude
that the difference between a human baby and an adult is
the same as that between the baby and a little monkey; a
banker is not interested in the volume of the financial news
but the newly emerged key words; to examine the mutation
of a DNA sequence, a biologist needs to find the new com-
bination of Adenine and Guanine instead of the DNA data
size change. In these cases, the change of feature subspace
should not be confused with the change of data’s magnitude.
One may argue that we still could round up all the vectors
into the same length and then apply the Euclidean distance
to avoid the confusion with the magnitude. Such a manipu-
lation theoretically works only when the subspace dimension
spanned by data is one (to compare only two vectors). More-
over, the round-up errors and the change of the original data
structure may lead to unmanageable consequences.

Based on the above fact, our first motivation is to find a
metric that is invariant under data’s magnitude change and
only characterize the subspace change introduced by dimen-
sionality. Further, we require that such a metric is in a
form suitable for computation and manipulation. We would
like to clarify that, it is not our intention to underestimate
the significance of detecting data’s magnitude change. Our
standpoint is that to detect the subspace change between
high-dimensional data sets through a magnitude-based met-
ric is inaccurate and conceptually confusing. In the rest
of the paper, when we say pattern change between high-
dimensional data sets, we refer to the subspace change, not
the magnitude change.

In order to identify the appropriate subspace for discover-
ing the pattern change between the data sets, we introduce
the concept of dominant subspace based on the principal
angles [7]. The notion of principal angels between two sub-
space has a nice property of invariant under an isomorphism,
thus is independent of data’s magnitude change. The chal-
lenge then is to compute the principal angles. To address
this challenge, we elect to use matrix factorization to serve
as a statistical framework for computing the principal an-
gles. We develop the principle of dominant subspace map-
ping and show how matrix factorization can be naturally
embedded into the likelihood ratio test based on the princi-
ple. The proposed method is of an unsupervised nature and

addresses the statistical significance of the pattern changes
between high-dimensional data sets.

The contribution of this work is highlighted as follows.
First, we have studied the very general problem of pattern
change discovery among different high dimensional data sets.
Second, we have introduced the notion of principal angles
between subspaces as a metric for pattern change. Third,
we have introduced the principle of the dominant subspace
mapping to transfer the principal angle based detection to
a matrix factorization problem. Fourth, we have showcased
the different applications of this solution in several specific
real-world applications to demonstrate the power and effec-
tiveness of this method.

2. RELATED WORK
The classic paradigm for magnitude-based change detec-

tion between two data sets is through parameter estimations
based on established distribution models. More recent work
in this direction [25, 12, 27] attempts to avoid the paramet-
ric dependency and to define alternative distance measures
between the two distributions. In [25], Song et al. developed
a Monte-Carlo framework to detect distribution changes for
low dimensional data. In [12], Kifer et al. defined the A-
distance to measure the non-parametric distribution change.
In [27], Leeuwen and Siebes described the data distributions
using their compressed code table and defined the Code-
Table-Difference to capture the distribution difference be-
tween data sets. The limitation of the low-dimensional dis-
tribution models, as Vapnik pointed out at the beginning of
his book [28], is that they do not reflect the singularities of
the high-dimensional cases, and consequently cannot grasp
the change of the subspace.

Based on Vapnik’s statistic supervised learning theory, the
pattern change detection problem, also called concept drift

in several specific applications, has been attracted great ef-
fort [26, 31, 30, 29, 21]. Classifiers are trained to capture
the subspace structures of the high-dimensional data sets
via support vectors. The pattern changes can be indirectly
reflected through evaluating the classification errors on the
data sets. We refer to the survey by Tsymbal [26] for an
overview of the important literature on this topic. The main
categories of the methods to address the concept drift analy-
sis problem include the instance selection and weighting [13,
11], the ensemble learning [30, 31, 2], and the two-samples
hypothesis test [5, 10, 21]. Although supervised learning
techniques have the capacity to detect structural changes
between high-dimensional data sets, they require labels to
train and validate the classifiers. Most of the real-world
data sets, however, typically lack sufficient labels that can
be used to train the classifiers. In [5], Dries and Rückert
proposed a trade-off strategy. Without using real labels,
they constructed two virtual classifiers by giving two differ-
ent types of the labels to the two data sets, respectively, and
then proposed three two-sample test methods based on the
quality of the classifiers; a good quality indicates a concept
drift between the two data sets. Using one classifier to de-
scribe the whole dataset, however, oversimplifies the mixture
structures of the data sets, and the detection performance
is expected to be impaired (see Sec. 5).

As an unsupervised paradigm, matrix factorization is re-



cently considered for subspace analysis of high-dimensional
data sets. The theory and applications of matrix factoriza-
tion have been intensively developed during the last decade.
In [16], Lee and Seung developed the breakthrough of the
multiplicative updating rules for solving matrix factoriza-
tion, extending the classical vector quantization and princi-
pal components analysis to a new horizon. In [8], Gordon
unified the matrix factorization literature with the general-
ized linear models, strengthening the statistical foundation
for matrix factorization. As for the applications, Ding et
al. [4] applied non-negative matrix factorization to spectral
clustering, graph matching, and clique finding. Long et al.
[19, 18] used matrix factorization for relational clustering.
Miettinen [20] developed factorization algorithms for binary
data sets. In this paper, we use matrix factorization and
the notion of the principal angles between subspaces to cap-
ture the structural difference between the high-dimensional
data sets. We address the statistical significance of the dif-
ference through a likelihood hypothesis test based on the
linear model. To the best of our knowledge, this is the first
time when matrix factorization is used to develop a statisti-
cal framework for the pattern change detection.

Other recent efforts on the magnitude-based change de-
tection for specific applications include the event detection
from time series data [15, 22] focusing on discovering a sig-
nificant magnitude change and its duration on a particular
feature, word bursts tracking[6, 9], and trend analysis in
blogosphere by tracking singular values [3].

3. PRELIMINARIES

3.1 Notations
In this paper, a matrix is denoted as a capital letter in

boldface such as X. Xij is the entry in the ith row and
the jth column. Xi· stands for the ith row of X and X·j

stands for the jth column of X. A vector is a lowercase
letter in boldface such as x. A scalar variable is denoted as
a lowercase letter such as x. UT stands for the transpose
of the matrix U. Xm×n stands for a matrix X ∈ R

m×n.
span(A) stands for the subspace spanned by the column
vectors of the matrix A. ‖ · ‖ by default is the Frobenius
norm for a matrix; ‖ · ‖2 is the 2-norm [7] for a matrix.
diag({xi}) stands for a diagonal matrix with xi as its ith
diagonal entry.

3.2 Principal Angles and Dominant Subspace
In this section, we introduce the principal angels between

subspaces to measure the subspace difference between data
sets of high dimensions. We have already addressed the pit-
fall of the popular distance metrics and now we explain why
the principal angles can avoid it. We start with the same
example in Fig 1. We have already shown that Euclidean
distance fails to detect θ 6= θ′, and therefore, is unable to dif-
ferentiate the length difference from the direction difference
introduced by the dimensionality. On the other hand, in
this specific example, the principal angle between span(v1)
and span(v2) is actually θ, and that between span(v′

1) and
span(v′

2) is θ′. One may notice that we here use span(v)
instead of just v. This indicates that θ and θ′ are invariant
under the length shrinking or stretching for the correspond-
ing vectors. Now one can reasonably understand the notion

of principal angles between two subspaces as a generaliza-
tion of an angle between two vectors as the dimensionality
goes from one (as for span(v1)) to n where n ≥ 1. The
principal angles have a very important property that all the
Euclidean-based metrics do not have – Invariant under an
isomorphism and thus independent of the magnitude change
(e.g., invariant under scalar multiplication when the dimen-
sionality is one).

Without loss of generality, assume two vector sets {xi}
m
i=1

and {yi}
l
i=1, xi,yi ∈ R

n. Golub and Loan proposed in [7]
the definition of principal angles as to measure the structural
difference between the two subspaces S1 = span({xi}

m
i=1)

and S2 = span({yi}
l
i=1): An increasing sequence of prin-

cipal angles {θk}
q

k=1 is defined between two arbitrary sub-
spaces S1 and S2 using their orthonormal basis: ([7] Page
602):

Definition 1. Let S1 and S2 be subspaces in R
n whose

dimensions satisfy

p = dim(S1) ≥ dim(S2) = q ≥ 1

The principal angles θk ∈ [0, π/2], k = 1, . . . , q, between S1

and S2 are defined recursively as

cos(θk) = max
u∈S1,v∈S2

u
T
v = u

T
k vk

when k = 1, ‖u1‖ = ‖v1‖ = 1; when k ≥ 2, ‖uk‖ = ‖vk‖ =

1; uT
k ui = 0; vT

k vi = 0 where i = 1, . . . , k − 1.

In this definition, vectors {uk}
q

k=1 and {vk}
q

k=1 are actu-
ally part of the orthonormal basis for S1 and S2; the inner
products of each pair uk and vk form a unique increasing
sequence of angles. These angles explicitly give the differ-
ence of the subspace structure between S1 and S2. The
algorithm given in [7] to compute the principal angles takes

O(4n(q2 + 2p2) + 2pq(n + q) + 12q3) in time complexity.
The leading largest principal angles depict the most no-

ticeable structural difference between S1 and S2. The cor-
responding dimensions responsible for the largest principal
angles are of great interest as they reflect the major pattern
change. We call the subspace formed by these dimensions
the dominant subspace. Now in order to measure the struc-

tural difference between {xi}
m
i=1 and {yi}

l
i=1, one may resort

to directly computing the principal angles between S1 and
S2, and then obtain the dominant subspace based on the
largest principal angles. In practice, however, this is not an
optimal solution. First, the values of n, p, and q in Defini-
tion 1 can be very large in real-world data sets, resulting
in a high complexity to compute the principal angles. Sec-
ond, since the real-world data sets typically contain noise
and outliers, the principal angles directly computed from
the raw data may not reflect the true situation. Third, in
many applications, given a large amount of samples, one is
only interested in the most frequent pattern changes in the
majority of the data set and does not care of the principal
angles for all the samples. All these issues require to de-
veloping an alternative solution to directly computing the
principal angles. On the other hand, matrix factorization
[16, 1, 4, 24] has been used extensively for reducing dimen-
sionality and extracting collective patterns from noisy data
in a form of a linear model. In the next section, we develop



the principle of dominant subspace mapping through ma-
trix factorization as the alternative to obtain the dominant
subspace.

4. MODEL FORMULATION
Given two data sets X′ = {x′

i}
n′

i=1 and X = {xi}
n
i=1, we

present a model to detect the pattern changes between X′

and X. Instead of computing the principal angles directly,
we provide a more practical strategy involving three steps:
To establish a null-hypothesis on pattern change, to extract
a set of basis vectors from span({xi}

n
i=1) under a null and

its alternative hypothesis, and a statistical test to confirm
these changes. We will show how principal angles, matrix
factorization and linear models work together to serve the
purpose.

4.1 Matrix Factorization
Learning mixture patterns from data can be formulated as

generalized2 linear2 models [8, 24] using the following matrix
factorization term:

X ≈ PS
T (1)

where the matrix Xm×n = [x1, x2 · · ·xn], x ∈ R
m, consist

of n data samples represented as the n column vectors.
Matrices Pm×k and Sn×k, k ≪ min(m, n), are two lower-
dimension factors whose product approximates the original
data set X. The k column vectors of P are prototype pat-
terns learned from X; the ith row of S is a soft indicator
using k prototypes to restore the ith sample. Thus, the
columns of P can also be considered as an approximate gen-
erating set for the subspace containing samples {xi}

n
i=1. In

this modeling, we concentrate on P, the prototype patterns,
and its changing behavior. S describes how the k prototypes
are distributed among the n samples and may also contains
useful information to characterize the dataset; yet in this
paper we do not discuss its behavior and leave it as an open
question.

Another advantage for matrix factorization is its form as a
linear model under which a hypothesis test can be developed.
More specifically, given a linear model with additive Gaus-

sian noise G : X = PST +ε, where ε·j ∼ Nm×1(0, σ2Im×m),
our strategy is to check the pattern change in P by prop-
erly constructing a hypothesis on P and then applying the
standard likelihood ratio test.

4.2 Principle of Dominant Subspace Mapping
In order to extract the plausible pattern changes, instead

of directly computing the principal angles we develop the
principle of dominant subspace mapping through construct-
ing a hypothesis testing as follows. We first establish a
hypothesis on the pattern matrix P. Assuming P′ and P

from the two data sets X′ and X, since the principal angles

{θi}
k
i=1 between span(P′) and span(P) indicate the scale

of pattern changes, it is straightforward to set up the hy-
pothesis on the principal angles to begin with. Now we
have two options for the null-hypothesis: To assume no pat-
tern change or to assume an obvious pattern change. If
we choose the former, there are two concerns. First, the
possibility that two data sets obtained from different times
or locations share the same subspace is almost zero, result-

ing in a hypothesis on an almost impossible event. Sec-
ond, as shown in definition 1, the principal angles are com-
puted via cos; the null-hypothesis of no pattern change gives

Ho : ‖diag({cos θi}
k
i=1)‖ = k, indicating that every princi-

pal angle is zero; such a setting is vulnerable due to differ-
ent k value in different applications and we have no prior
knowledge about the specific value of k. On the other hand,
if we set the hypothesis as an obvious pattern change, it
serves both purposes of detecting pattern change and a con-

venient form of Ho : ‖diag({cos θi}
k
i=1)‖ = 0. If the hy-

pothesis is true, the values of {θi}
k
i=1 are large, indicating

the large pattern change between span(P) ⊆ {xi}
n
i=1 and

span(P′) ⊆ {x′

i}
n′

i=1. More importantly, this hypothesis is
independent of the value k, making the detection more ro-
bust despite the possible information loss caused by matrix
factorization.

While the hypothesis Ho : ‖diag({cos θi}
k
i=1)‖ = 0 is

straightforward, in order to construct a simple statistic test,
we elect to use a hypothesis cast directly on P and P′. For
this purpose, we first introduce the following lemma:

Lemma 1. Given that P′ ∈ R
m×p and P ∈ R

m×q, each
with linearly independent columns, and that each column is
normalized into the same 2-norm length L, and further given

the QR factorizations P = QR and P′ = Q′R′,the princi-

pal angles {cos θi}
k
i=1 between span(P) and span(P′) satisfy

inequality:

1

pqL2
‖P′T P‖ ≤ ‖diag({cos θi}

k
i=1)‖ ≤

a

|σ1σ2|
‖P′T P‖ (2)

where a ≤ pq is a constant, and σ1 and σ2 are the smallest

eigenvalues of R′ and R, respectively.

The proof of Lemma 1 is in Appendix A. Lemma 1 gives

the upper and lower bounds of ‖diag({cos θi}
k
i=1)‖ in terms

of ‖P′T P‖. More importantly, due to the Sandwich The-

orem, ‖P′T P‖ and ‖diag({cos θi}
k
i=1)‖ are asymptotically

equivalent as ‖diag({cos θi}
k
i=1)‖ is close to zero. Therefore,

we establish a hypothesis using P and P′directly, as shown
in the following corollary:

Corollary 1. The null-hypothesis

Ho : ‖diag({cos θi}
k
i=1)‖ = 0

has its equivalent form of

Ho : P′T
P = 0 (3)

Proof. It is a direct result due to Lemma 1 and the
Sandwich Theorem.

4.3 Likelihood Ratio Test
Given the simple form of null-hypothesis Ho : P′T P = 0

on linear model G : X = PST +ε, where ε·j ∼ Nm×1(0, σ2Im×m),
one can use the standard likelihood ratio test for verification
([23] Page 98): First, estimate P only based on linear model
G. Second, estimate P under constraint Ho. Finally, com-
pute the likelihood ratio between the two cases.

To estimate P only based on the given linear model G :

X = PST +ε, where ε·j ∼ Nm×1(0, σ2Im×m), the likelihood
function for G is [23]

L(P, S) = (2πσ2)−mnexp[−
1

2σ2
‖X − PS

T ‖2]. (4)



Maximizing the likelihood function (4) is equivalent to es-

timating the factors P and S that minimize ‖X − PST ‖2.
This normal-distribution-based matrix factorization can be
efficiently solved via the multiplicative iteration algorithm
proposed by Lee and Seung in [16, 17]:

P
update
ij = Pij

(PT X)ij

(PST S)ij

;

S
update
ij = Sij

(XT P)ij

(SPT P)ij

(5)

The proof of the convergence of the updating rule can be
found in [17]. This updating rule generates the estimation

P̂ and Ŝ.
Finding the maximum likelihood estimates subject to the

constraint (3) gives the following log likelihood function ([23]
Page 98):

L(P,S) = − log L(P, S) + λ‖PT
P

′‖2

= constant +
np

2
+

1

2σ2
‖X −PS

T ‖2 + λ‖PT
P

′‖2

which is equivalent to minimizing:

L(P, S) = ‖X − PS
T ‖2 + λ‖PT

P
′‖2 (6)

where λ > 0 is the Lagrange multiplier. To solve this con-
strained optimization problem, we give the non-increasing
updating rule through the following Lemma:

Lemma 2. The loss function (6) is non-increasing under

the updating rule:

P
update
ij = Pij

(XS)ij

(PST S + λP′P′T P)ij

S
update
ij = Sij

(XT P)ij

(SPT P)ij

λupdate =
1

mk

X

ij

(XS − PST S)ij

(P′P′T P)ij

(7)

The loss function (6) is invariant under this rule if and only

if P and S are at a stationary point of the loss function.

The proof of the lemma is in Appendix B. Using updating

rule (7), we obtain estimation P̂H and ŜH under the null-
hypothesis. The time complexity of the updating rule (7)

for each iteration is O(mnk + k2m), where m,n, and k are
defined at the beginning of Section 4.1.

After we obtain the estimation of P̂, Ŝ and P̂H , ŜH , the
likelihood ratio statistic is given by ([23] Page 99):

Λ =
‖X − P̂ŜT ‖2

‖X − P̂H ŜT
H‖2

(8)

According to the likelihood principle, a small Λ indicates

a bad estimation of P̂H and ŜH , and we then reject Ho.
On the other hand, a large value of Λ suggests a pattern

change detected in P̂H . The algorithm, called LRatio, is
summarized in Algorithm 1.

The time complexity of the updating rule (5) is O(mnk)

in each iteration, and that of (7) is O(mnk + k2m) in each
iteration; the complexity to compute Λ is O(mnk), where
m, n, and k are defined in Section 4.1. Thus, the total time

Algorithm 1 LRatio

Input: data sets X,X′, , and threshold h.
Output: Feature basis PH , indicator matrix SH , the like-
lihood ratio test statistic Λ, and the testing result.
Method:

1: Initialize P′,S′,P̂, Ŝ,P̂H and ŜH , and λ randomly.
2: Iteratively update P′ and S′ using (5) until convergence

3: Iteratively update P̂ and Ŝ using (5) until convergence

4: Iteratively update P̂H and ŜH using (7) until conver-
gence

5: Compute Λ using (8)
6: Reject Ho if Λ is smaller than h.

Name Part 1 Part 2 Sample

no.

Dim.

sys comp.sys.ibm.pc comp.sys.mac 400×

2

1558

ossys comp.os.ms-

windows.misc,

comp.sys.ibm.pc

comp.sys.mac

comp.windows.x

200×

4

2261

computer comp.graphics,

comp.os.ms-

windows.misc,

comp.sys.ibm.pc

comp.sys.ibm.pc,

comp.sys.mac,

sci.electronics

100×

6

1606

socialtalk talk.politics.guns,

talk.politics.mideast,

talk.politics.misc,

talk.religion.misc

alt.atheism,

soc.religion.christian,

talk.politics.misc,

talk.religion.misc,

100×

8

3312

sci sci.crypt sci.med 400×

2

2870

rec-sci rec.sport.baseball,

rec.sport.hockey

sci.electronics,

sci.space

200×

4

2800

comp-

sci

comp.graphics,

comp.os.ms-

windows.misc,

comp.sys.ibm.pc

sci.electronics,

sci.med,

sci.space

100×

6

1864

rec-talk rec.autos,

rec.motorcycles,

rec.sport.baseball,

rec.sport.hockey

talk.politics.guns,

talk.politics.mideast,

talk.politics.misc,

talk.religion.misc

100×

8

2992

Table 1: Configuration of the pattern change data sets.

complexity is O(mnk + k2m) for each iteration, which is
much lower than that of directly computing the principal
angles between X and X′.

5. EXPERIMENTS
In order to demonstrate the power and promise of LRatio

as well as its superiority to the existing literature in discov-
ering significant pattern changes in different applications in
the real-world, we have applied LRatio to several different
real-world problems in comparison with the existing meth-
ods in the related literature in these different applications.

5.1 Topic Change Detection among Documents
The goal of the first application is to verify the perfor-

mance of LRatio test using collections of text documents. In
this application, we use the standard 20-newsgroup data sets
[14], the dimension scale of which is of thousands. As listed
in Table 1, we construct eight scenarios using different topic
combinations. For each scenario, two parts are set up (Part 1
and Part 2 ). Each part contains articles evenly mixed from
one or more topics. Under each scenario, if the two data
sets are sampled from the same part, they should bear sim-
ilar subspace structure; while if the two data sets are from
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Figure 2: The detection performance of LRatio and 4 comparison methods. For each pair of W and B, a smaller overlap
between W and B indicates a better performance.

different parts, their subspace structures are different and
LRatio test should be able to reflect this difference through
the testing statistic. These eight scenarios are constructed
to showcase data sets with different structural complexities
and/or pattern change strengths. The first four scenarios
intend to imitate moderate pattern change by electing sim-
ilar topics between the two parts. The next four scenarios
imitate strong pattern change by setting different topics be-
tween the two parts. We compare the performance of LRatio
with the following methods.

Baseline. We apply the standard K-means to each of the
two data sets to obtain the data matrices composed of the
K centroids, respectively, and then compute the subspaces
distance between the pair of the K centroids based on Def-
inition (1). Intuitively, a pattern change shall results in a
large distance. We use this distance as a statistic to indicate
the pattern change, and compare its sensitivity with LRatio
test. For the reference purpose, we call this baseline method
as KM.

Peers. We elect to use three different concept drift de-
tection methods in the recent literature [5] by Dries and
Rückert for a peer comparison. They are PCA-Bayesian
Margin Test and two other error rate based test methods.
For the reference purpose, we call them SVM-margin, SVM-
sigmoid, and SVM-(0,1), respectively. The reasons why we
select these comparing methods are the following. First, un-
der the framework of support vector machine (SVM), their
methods are suitable for high-dimensional data sets. Sec-
ond, although based on supervised techniques, the model
does not require real labels and therefore can be used in un-
supervised applications. Third, these methods are in a sim-
ilar two-sample statistical test framework to that of LRatio,
resulting in a fair comparison environment.

In order to verify the detection sensitivity, we compare
the testing statistics of the data set pair having no pattern
change in between with the testing statistics of the data set
pair involving a pattern change in between. The evaluation
protocol is defined as follows.

For each scenario,
1. Obtain testing statistic from data set pair with no

pattern change in between:
i). Constructing two data sets by randomly sampling 200

articles, each dataset with 100 samples, only from Part 1 (or
Part 2).

ii). Applying LRatio and the four comparison methods on
the two data sets.

iii). Repeating i) and ii) 20 times.
2. Obtain testing statistic from data set pair with pattern

changes in between:
i). Constructing the first data set by randomly sampling

100 articles form Part 1; constructing the second data set
by randomly sampling 100 articles from Part 2.

ii). Applying LRatio and the four comparison methods on
the two data sets.

iii). Repeating i) and ii) 20 times.
3. For each method, normalize the 40 testing statistics to

the range of [0, 1] for easy comparison.
Ideally, there should be a big gap between the first 20

testing statistics and the last 20 testing statistics, because
the first 20 tests are from the dataset pair that has no pat-
tern change, and the last 20 tests are from the data set
pair with pattern changes. Fig. 2 documents all the re-
sults of this experiment, where a boxplot is used to rep-
resent the numerical distribution of the statistics obtained
from the sampling within each part (red boxplots) and sam-
pling between two parts (blue boxplots). In each boxplot,
the median(in ⊙), the 25th percentile(in bars), the 75th
percentiles(in whiskers) and the outliers(in ◦) of the distri-
bution are drawn. Consequently, for each method and for
each of the eight collections, there is a corresponding pair of
boxplots representing the statistic distributions for sampling
within each part (red boxplot labeled with letter W) and for
sampling between two parts (blue boxplot labeled with letter
B), respectively. Clearly, more overlap between the pair of
boxplots indicates the worse performance in discovering the
pattern change for the method. From the figure, all the four
comparing methods have the overlaps in the majority of the
eight collections; in comparison, LRatio is the only method
that has no overlap at all for all the eight collections; fur-
ther, for the first four scenarios where there expects to be
only moderate topic changes between the two parts, LRatio
still clearly stands out with no overlap at all between the two
boxplots. This demonstrates that LRatio is not only pow-



erful in discovering pattern changes, but also very sensitive
to the pattern changes.

5.2 Event Detection from News Streams
While the 20 newsgroups data experiment is for system-

atic evaluations of the pattern change discovery capabilities
and sensitivities, the next experiment is an application sce-
nario of event detection in a news stream data set. We have
manually collected Google news data everyday from 23. Oct.
to 22. Nov. for the year of 2008 for four specific tracks: po-
litical news, financial news, sports news, and entertainment
news. To form the news stream data for each of the four
tracks, we group the news documents and time-stamp these
documents in a unit of every three neighboring days. Since
all the five methods we used in the previous experiments
are for pattern change discovery between two data sets, we
apply each of them to each pair of the neighboring units of
the news stream in each track to obtain the statistic value.
Consequently, for the whole month news data in each track,
each method generates a statistic sequence, which is called
the test sequence for the track of the news for the corre-
sponding method.

Fig. 3 documents the political news test sequences within
the window between October 23, 2008, and November 22,
2008 for LRatio, KM, and SVM-margin. Since the three
methods from [5] are very close in performance, for the clar-
ity purpose in the figure, we only show the test sequence
of SVM-margin in this figure. Presumably in the figure for
each method a significant peak in the test sequence means a
significant pattern change, indicating that significant news
events are detected by this method on that day. We manu-
ally examined everyday’s news data within this whole month
to provide the ground truth regarding whether there are any
significant news events on everyday of the month, and an-
notated the specific events.

Since both LRatio and KM conduct the pattern change
discovery through the clustering manner, they are both fur-
ther able to detect the specific events through key words
in each cluster, and are able to rank the ”significance” of
each detected event based on the number of samples in each
cluster. Fig. 4 documents the top five detected significant
events on Nov. 7, Nov. 13, and Nov. 19 for both meth-
ods, respectively, where each event is represented using a
bar with the length proportional to the significance of the
event, and the same event is ground-truthed with the same
color. From the figure, there are three observations. First,
for each of the three days, all the five detected events by
LRatio are unique and distinct, while there are many du-
plications of the five top events detected by KM when com-
pared with the ground truth; this is particularly true for
Nov. 7 where all the five top events detected by KM are
about the Election Campaign. Second, as is also observed
in Fig. 3, for many events KM is unable to detect them ”in
time” but rather with a delay; in other words, for many of
the news events KM detected are actually old news events.
For example, the event that Obama was elected as the US
President occurred on Nov. 7 (which LRatio corrected de-
tected in time) is declared as the number one detected event
for KM both on Nov. 13 and on Nov. 19, but not on Nov.
7. In fact, for all the three days’ top five events detected
by KM, only the event Senator Clinton Became Secretary of

State on Nov. 13 and the event North Korea Nuclear Crisis

on Nov. 19 are caught by KM in time, whereas all others
are actually old news events. Third, the specific event data
reported in Fig. 4 coincide with the holistic event detection
results reported in Fig. 3 very well. Of all the three days,
KM essentially only detected old news events, and that is
why in Fig. 3 on these three days there is no peak in the
KM test sequence curve, indicating KM fails to detect any
significant events for these three days. While SVM-margin
does not have the capability to do the clustering analysis
to report the specific events detected on each day as LRatio
and KM do, it detects the events based on a holistic analysis
reported in the test sequence shown in Fig. 3, from which it
is clear that SVM-margin still fails to detect any significant
events on Nov. 13 and Nov. 19 with an exception on Nov.
7 because the event Obama Became US President was such
an obvious significant event that SVM-margin did not miss.

The difference in performance between LRatio and the
comparing methods is obvious. LRatio aims at discovering
pattern changes regardless of whether the pattern changes
come from a completely new topic or a new direction of an
existing topic. KM, on the other hand, aims at discovering
major clusters from the data; thus, new topics need time to
”accumulate” to form clusters in order to become significant
topics, while new directions of an existing topic are likely to
be absorbed into the clusters and would never show up un-
til they eventually dominate the clusters. That is why KM
always misses many significant events and often detects an
event with a delay in time. For SVM-margin, SVM-(0,1),
and SVM-(sigmoid), although they also aim at discovering
pattern changes, they work well only when the data have
a simple structure and the majority of the samples bear a
similar pattern change, which also explains why they only
provide a holistic statistic on event detection with no capa-
bility for the specific pattern changes.

5.3 Event Detection in Surveillance Video
Finally, we also showcase the application of LRatio to the

surveillance video stream data to detect events. In this con-
text, each frame of the video stream is considered as a sample
vector. Like the news data stream in the previous experi-
ment, here again we apply LRatio to each pair of neighboring
video segments (each segment has 100 frames) to see whether
there is any event occurred. To demonstrate the power of
the surveillance event detection capability, we apply LRa-
tio to several different video surveillance data sets collected
at different specific surveillance applications. Figs. 5 to 7
showcase three different tests of using LRatio for surveil-
lance event detection, where in each of the figures the left
panel is a snapshot of the surveillance video stream and the
right panel indicates the test sequence of LRatio along the
timeline.

6. CONCLUSION
We have studied the very general problem of pattern change

discovery among different high dimensional data sets which
exist everywhere in almost every application in the real-
world, and have identified an approach based on the prin-
cipal angles to discover the pattern change. We have intro-
duced the principle of the dominant subspace mapping to
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Figure 3: Test sequences for Google political news stream

transfer the principal angle based detection to a matrix fac-
torization problem through a hypothesis testing. Finally, we
have showcased the different applications of this solution in
several specific real-world applications to demonstrate the
power and effectiveness of this method.

7. APPENDIX

7.1 Poof of Lemma 1
The proof of Lemma 1 uses the method in [7] for com-

puting the principal angles. We first give this method as
follows.

Given A ∈ R
m×p and B ∈ R

m×q (p ≥ q), each with
linearly independent columns, the principal angles between
subspaces span(A) and span(B) can be computed as fol-
lows . First, compute the QR factorizations for A and B,
respectively

A = QARA QA
T
QA = Ip, RA ∈ R

p×p

B = QBRB QB
T
QB = Iq , RB ∈ R

q×q

Then, let C = QA
T QB and compute the SVD (singular

value decomposition) of C such that YT CZ = diag(cosθ),
where diag(cos θ) is short for the diagonal matrix with the
cosines of the principal angles {cos θ1, cos θ2 . . . cos θq} as the
diagonal elements.

Proof. Since

‖diag(cos θ)‖2 = ‖Y(QT
Q

′)Z‖2 = ‖QT
Q

′‖2

where diag(cosθ) = Y(QT Q′)Z is the SVD of QT Q′. The
inequality we are to prove can now be re-written as:

1

pqL2
‖P′T P‖ ≤ ‖QT Q′‖2 ≤

a

|σ1σ2|
‖P′T P‖ (9)

For the left hand side inequality, since ‖P‖ = ‖QR‖ =
‖R‖ = pL and similarly ‖P′‖ = ‖R′‖ = qL, we have

‖PT P′‖ = ‖RT QT Q′R′‖

≤ ‖R‖‖QT Q′‖‖R′‖ = pqL2‖QT Q′‖

For the right hand side inequality,

‖QT Q′‖ = ‖(RR−1)QT Q′(R′R′−1)‖

= ‖R−1PT P′R′−1‖

≤ ‖R−1‖‖PT P′‖‖R′−1‖ (10)
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Figure 4: Pattern changes detected by LRatio v.s. Clusters
found by KM. ’×’ marks the old news topics that have been
detected in the previous days. Boxes with the same colors
are related to the same news topics

Since R and R′ are upper triangular, the inverses R−1 and
R′−1 are also upper triangular. Therefore, the eigenvalues
of R are {(R)ii|i = 1, . . . , p}, the diagonal entries of R.

Hence, the eigenvalues of R−1 are { 1
(R)ii

}, the inverse of

the diagonal entries of R. The same conclusion also holds
true for R′−1. Thus, we have

‖R−1‖ ≤ ‖diag((R)−1
ii )‖ ≤

p

|σ|

‖R′−1‖ ≤ ‖diag((R′)−1
ii )‖ ≤

q

|σ′|
(11)

Combining (10) and (11) we obtain

‖QT
Q

′‖ ≤
a

|σσ′|
‖PT

P
′‖

where a ≤ pq.
This completes the proof of the Lemma.

7.2 Proof of Lemma 2
We first prove the convergence of the updating rules for P

and S, then determin the value of λ.To prove the updating
rules for P and S, we make use of an auxiliary function simi-
lar to that used in the Expectation-Maximization algorithm
[17].



(a) (b)

Figure 5: detection result for video 1; (a) rank 1 event: a
man is running towards a cart; (b) the test sequence; the
star marks the time when this man begins running.

(a) (b)

Figure 6: detection result for video 2; (a) rank 1 event:
an earthquake occurs and people are running out; (b) the
test sequence; the star marks the time when the earthquake
occurs.

Definition 2. G(u, u′) is an auxiliary function for F (u)
if the conditions

G(u, u′) ≥ F (u), G(u, u) = F (u) (12)

are satisfied.

The auxiliary function is a useful concept due to the fol-
lowing lemma:

Lemma 3. If G is an auxiliary function, then F is non-

increasing under the update:

ut+1 = arg min
u

G(u, ut) (13)

(a) (b) (c)

Figure 7: detection result for video 3; (a) rank 2 event:
the car collision occurs;(b) rank 1 event: a man is running
towards the accident scene (c) the test sequence; the star
marks the time of the collision.

Proof. F (ut+1) ≤ G(ut+1, ut) ≤ G(ut, ut) = F (ut)

We show that by defining the appropriate auxiliary func-
tion G(u, ut) for (6), the update rule in Lemma 2 easily

follows from (13). Now let u = PT
i· , u′ = P′T

i· .

Lemma 4. Function

G(u, ut) = F (ut) + (u − ut)T∇F (ut)

+
1

2
(u − ut)T K(uT )(u − ut) (14)

is an auxiliary function for

F (u) =
1

2

X

i

(xi −
X

a

Siaua)2 +
1

2

X

a

(u′

aua)2 (15)

where K(ut) is a diagonal matrix defined as

Kab(u
t) = δab(S

T
Su + λu′T u′

Iu)a/ut
a (16)

Proof. Since G(u, u) = F (u) is obvious, we only need to

show that G(u, ut) ≥ F (u). To do this, we compare

F (u) = F (ut) + (u − ut)T∇F (ut)

+
1

2
(u − ut)T (ST

S + λu′T u′
I)(u − ut) (17)

with (14) to find that G(u, ut) ≥ F (u) is equivalent to

0 ≤ (u − ut)T [K(ut) − (ST
S + λu′T u′

I)](u − ut) (18)

To prove the positive semidefiniteness, consider the matrix

Mab(u
t) = ut

a(K(ut) − (ST
S + λu′T u′

I))abu
t
b (19)

which is a rescaling of the components of K(ut) − (ST S +

λu′T u′I). Then, K(ut) − (ST S + λu′T u′I) is positive semi-
definite if and only if M is, and

vT Mv =
X

ab

vaMabvb

=
X

ab

ut
a(ST

S + λu′T u′
I)abu

t
bv

2
a

− vaut
a(ST

S + λu′T u′
I)abu

t
bvb

=
1

2

X

ab

(ST
S + λu′T u′

I)abu
t
aut

b[v
2
a + v2

b − 2vavb]

=
1

2

X

ab

(ST
S + λu′T u′

I)abu
t
aut

b(va − vb)
2

≥ 0 (20)

Now we are ready for the proof of the updating rule for P

in Lemma 2.

Proof. Applying update rule (13) to the auxiliary func-
tion (14) results in:

ut+1 = ut − K(ut)−1∇F (ut) (21)

Lemma 3 guarantees that F is non-increasing under this up-
date rule. Writing the component of this equation explicitly,
we obtain

P
t+1
ij = P

t
ij

(XS)ij

(PST S + λP′P′T P)ij

(22)

The proof of update rule for S is the same as that in
[17].



The approach to determine λ is more straightforward.
Since λ only controls the convergence rate of P and S, the-
oretically its value does not influence the final convergence
of P and S. We set the course to regularize λ by using
standard Lagrange multiplier procedure. Let

∂L(P, S)

∂P
= PS

T
S − XS + λP

′
P

′T
P = 0

We then get λ =
(XS−PS

T
S)ij

(P′P′T P)ij
. During the update, each

entry of P and S may have different gradient speed, we
therefore set λ to be the average

λ =
1

mk

X

ij

(XS− PST S)ij

(P′P′T P)ij

as given in Lemma 7
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